当前位置:文档之家› 数值计算方法__作业一

数值计算方法__作业一

数值计算方法__作业一
数值计算方法__作业一

数值计算方法作业一

下表为国家统计局的发布的中国人民银行的金融统计数据

作业内容:分别采用Lagrange插值、分段线性插值和三次样条插值等三种算法,利用计算机对以上数据进行插值,并作图。

作业要求:

1.可以使用任意一种计算机编程语言;

2.将所得结果绘制在一张图中;

3.利用所学数值计算方法的知识,通过实际上机计算结果分析哪种方法结

果更好;

4.结合时事对所得结果进行点评。

注意事项:

1.截止时间:10月14日(约两周的时间)

2.电子邮箱:ty342@16

https://www.doczj.com/doc/669392152.html,

3.所交作业应包含如下内容:问题描述、原程序(注明哪种语言)、结果

和图形、结果分析。

4.将Word文档和原程序压缩后,发送到上面的电子邮箱中。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

matlab与数值分析作业

数值分析作业(1) 1:思考题(判断是否正确并阐述理由) (a)一个问题的病态性如何,与求解它的算法有关系。 (b)无论问题是否病态,好的算法都会得到它好的近似解。 (c)计算中使用更高的精度,可以改善问题的病态性。 (d)用一个稳定的算法计算一个良态问题,一定会得到他好的近似解。 (e)浮点数在整个数轴上是均匀分布。 (f)浮点数的加法满足结合律。 (g)浮点数的加法满足交换律。 (h)浮点数构成有效集合。 (i)用一个收敛的算法计算一个良态问题,一定得到它好的近似解。√2: 解释下面Matlab程序的输出结果 t=0.1; n=1:10; e=n/10-n*t 3:对二次代数方程的求解问题 20 ++= ax bx c 有两种等价的一元二次方程求解公式

2224b x a c x b ac -±==- 对 a=1,b=-100000000,c=1,应采用哪种算法? 4:函数sin x 的幂级数展开为: 357 sin 3!5!7! x x x x x =-+-+ 利用该公式的Matlab 程序为 function y=powersin(x) % powersin. Power series for sin(x) % powersin(x) tries to compute sin(x)from a power series s=0; t=x; n=1; while s+t~=s; s=s+t; t=-x^2/((n+1)*(n+2))*t n=n+2; end

(a ) 解释上述程序的终止准则; (b ) 对于x=/2π、x=11/2π、x =21/2π,计算的精度是多少?分别需 要计算多少项? 5:指数函数的幂级数展开 2312!3!x x x e x =+++ + 根据该展开式,编写Matlab 程序计算指数函数的值,并分析计算结果(重点分析0x <的计算结果)。

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值计算方法作业

数值计算方法作业 姓名:李琦 学号:062410124 求 013=--x x 在x=1.5附近的一个根。 一.牛顿下山法: #include #include float f(float x) /* 定义函数f(x) */ { return x*x*x-x-1; } void main() { float x0,x1=1.5; x0=1; for(;;) { printf (" x0=%f",x0); printf (" x1=%f\n",x1); x0=x1; x1=x0-((x0*x0*x0-x0-1)/(3*x0*x0-1)); if(x0==x1) break; } printf(" x=%f\n",x1); }

二.加权法 #include #include float f(float x) /* 定义函数f(x) */ { return x*x*x-1; } float f1(float x) /* 定义函数f(x)的导数*/ { return 3*x*x; } void main() { float x0,x1=1.5,c; c=f1(x1);x0=1; printf("c=%f\n",c); for(;;) { printf (" x0=%f",x0); printf (" x1=%f\n",x1); x0=x1; x1=(f(x0)-c*x0)/(1-c); if(x0==x1) break; } printf("x=%f\n",x1); }

三.单点弦法: #include #include float f(float x) /* 定义函数f(x) */ { return x*x*x-x-1; } void main() { float x1,x0=1.5,a; a=f(x0); x1=1; for(;;) { printf (" x0=%f",x0); printf (" x1=%f\n",x1); x0=x1; x1=x0-(f(x0)*(x0-1.5)/(f(x0)-a)); if(x0==x1) break; } printf(" x=%f\n",x1); }

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

数值分析作业

第二章 1. 题目:运用MATLAB编程实现牛顿迭代 2. 实验操作 1、打开MATLAB程序软件。 2、在MATLAB中编辑如下的M程序。 function [p1,err,k,y]=newton(f,df,p0,delta,max) %f 是要求根的方程(f(x)=0); %df 是f(x)的导数; %p0是所给初值,位于x*附近; %delta是给定允许误差; %max是迭代的最大次数; %p1是newton法求得的方程的近似解; %err是p0的误差估计; %k是迭代次数; p0 for k=1:max p1=p0-feval('f',p0)/feval('df',p0); err=abs(p1-p0); p0=p1; k p1 err y=feval('f',p1) if (err> newton('f','df',1.2,10^(-6),20) 3.实验结果

p0 = 1.2000 k =1 p1=1.1030 err=0.0970 y=0.0329 k= 2 p1=1.0524 err=0.0507 y=0.0084 k =3 p1=1.0264 err=0.0260 y=0.0021 k =4 p1=1.0133 err=0.0131 y=5.2963e-004 k =5 p1=1.0066 err=0.0066 y=1.3270e-004 k =6 p1=1.0033 err=0.0033 y=3.3211e-005 k =7 p1=1.0017 err=0.0017 y=8.3074e-006 k =8 p1=1.0008 err=8.3157e-004 y = 2.0774e-006 k =9 p1=1.0004 err=4.1596e-004 y =5.1943e-007 k=10 p1=1.0002 err=2.0802e-004 y= 1.2987e-007 k=11 p1=1.0001 err=1.0402e-004 y =3.2468e-008 k=12 p1=1.0001 err=5.2014e-005 y=8.1170e-009 k=13 p1=1.0000 err=2.6008e-005 y= 2.0293e-009 k=14 p1=1.0000 err=1.3004e-005 y=5.0732e-010 k=15 p1 =1.0000 err=6.5020e-006 y=1.2683e-010 k=16 p1 =1.0000 err=3.2510e-006 y=3.1708e-011 k=17 p1 =1.0000 err=1.6255e-006 y =7.9272e-012 k=18 p1 =1.0000 err =8.1279e-007 y= 1.9820e-012 ans = 1.0000 结果说明:经过18次迭代得到精确解为1,误差为8.1279e-007。

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

数值计算方法第4次作业

第四章 问题一 一、问题综述 在离地球表面高度为y处的重力加速度如下: 计算高度y=55000m处的重力加速度值。 二、问题分析 以高度y作为自变量,重力加速度的值为因变量。得到以下信息: f(0)=9.8100; f(30000)=9.7487; f(60000)=9.6879; f(90000)=9.6278; f(120000)=9.5682; 本题要求的就是f(55000)的值。 以下将采用课堂中学到的Lagrange插值多项式法、Newton插值多项式法、分段低次插值法和样条插值法求解该问题。 三、问题解决 1. lagrange插值多项式法 对某个多项式函数,已知有给定的k+ 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: 拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。 源程序lagrange.m function [c,f]=lagrange(x,y,a) % 输入:x是自变量的矩阵;y是因变量的矩阵;a是要计算的值的自变量; % 输出:c是插值多项式系数矩阵;f是所求自变量对应的因变量; m=length(x); l=zeros(m,m); % l是权矩阵 f=0; for i=1:m v=1; for j=1:m if i~=j v=conv(v,poly(x(j)))/(x(i)-x(j)); % v是l_i(x)的系数矩阵 end end l(i,:)=v; % l矩阵的每一行都是x从高次到低次的系数矩阵 end c=vpa(y*l,10); % 对应阶次的系数相加,乘以y,显示10位有效数字 for k=1:m f=f+c(k)*a^(m-k); end 输入矩阵 x=[0 30000 60000 90000 120000] y=[9.81 9.7487 9.6879 9.6278 9.5682] a=55000 再运行源函数,可得: c = [ -2.057613169e-23, 4.938271605e-18, -3.703703702e-14, -0.000002046111111, 9.81] f = 9.6979851723251649906109417384537

数值分析Matlab作业

数值分析编程作业

2012年12月 第二章 14.考虑梯形电阻电路的设计,电路如下: 电路中的各个电流{i1,i2,…,i8}须满足下列线性方程组: 12 123 234 345 456 567 678 78 22/ 2520 2520 2520 2520 2520 2520 250 i i V R i i i i i i i i i i i i i i i i i i i i -= -+-= -+-= -+-= -+-= -+-= -+-= -+= 这是一个三对角方程组。设V=220V,R=27Ω,运用追赶法,求各段电路的电流量。Matlab程序如下: function chase () %追赶法求梯形电路中各段的电流量 a=input('请输入下主对角线向量a='); b=input('请输入主对角线向量b='); c=input('请输入上主对角线向量c='); d=input('请输入右端向量d='); n=input('请输入系数矩阵维数n='); u(1)=b(1); for i=2:n l(i)=a(i)/u(i-1); u(i)=b(i)-c(i-1)*l(i); end y(1)=d(1); for i=2:n y(i)=d(i)-l(i)*y(i-1); end x(n)=y(n)/u(n); i=n-1; while i>0 x(i)=(y(i)-c(i)*x(i+1))/u(i); i=i-1; end x 输入如下:

请输入下主对角线向量a=[0,-2,-2,-2,-2,-2,-2,-2]; 请输入主对角线向量b=[2,5,5,5,5,5,5,5]; 请输入上主对角线向量c=[-2,-2,-2,-2,-2,-2,-2,0]; 请输入方程组右端向量d=[220/27,0,0,0,0,0,0,0]; 请输入系数矩阵阶数n=8 运行结果如下: x = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477 第三章 14.试分别用(1)Jacobi 迭代法;(2)Gauss-Seidel 迭代法解线性方程组 1234510123412191232721735143231211743511512x x x x x ?????? ??????---????????????=--?????? --?????? ??????---?????? 迭代初始向量 (0)(0,0,0,0,0)T x =。 (1)雅可比迭代法程序如下: function jacobi() %Jacobi 迭代法 a=input('请输入系数矩阵a='); b=input('请输入右端向量b='); x0=input('请输入初始向量x0='); n=input('请输入系数矩阵阶数n='); er=input('请输入允许误差er='); N=input('请输入最大迭代次数N='); for i=1:n for j=1:n if i==j d(i,j)=a(i,j); else d(i,j)=0; end end end m=eye(5)-d\a; %迭代矩阵 g=d\b; x=m*x0+g; k=1; while k<=N %进行迭代 for i=1:5 if max(abs(x(i)-x0(i))) >er x=m*x+g; k=k+1;

数值计算大作业

数值计算大作业 题目一、非线性方程求根 1.题目 假设人口随时间和当时人口数目成比例连续增长,在此假设下人口在短期内的增长建立数学模型。 (1)如果令()N t 表示在t 时刻的人口数目,β 表示固定的人口出生率,则人口数目满足微分方程() ()dN t N t dt β=,此方程的解为0()=t N t N e β; (2)如果允许移民移入且速率为恒定的v ,则微分方程变成() ()dN t N t v dt β=+, 此方程的解为 0()=+ (1) t t v N t N e e βββ -; 假设某地区初始有1000000人,在第一年有435000人移入,又假设在第一年年底该地区人口数量1564000人,试通过下面的方程确定人口出生率β,精确到 410-;且通过这个数值来预测第二年年末的人口数,假设移民速度v 保持不变。 435000 1564000=1000000(1) e e βββ + - 2.数学原理 采用牛顿迭代法,牛顿迭代法的数学原理是,对于方程0)(=x f ,如果) (x f 是线性函数,则它的求根是很容易的,牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程0)(=x f 逐步归结为某种线性方程来求解。 设已知方程0)(=x f 有近似根k x (假定0)(≠'x f ),将函数)(x f 在点k x 进行泰勒展开,有 . ))(()()(???+-'+≈k k k x x x f x f x f 于是方程0)(=x f 可近似地表示为 ))(()(=-'+k k x x x f x f 这是个线性方程,记其根为1k x +,则1k x +的计算公式为

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值计算方法大作业

题目利用数值计算方法求取基尼系数 姓名与学号 指导教师 年级与专业 所在学院

一、问题综述: 基尼系数(Gini coefficient),是20世纪初意大利学者科拉多·吉尼根据劳伦茨曲线所定义的判断收入分配公平程度的指标。是比例数值,在0和1之间。基尼指数(Gini index)是指基尼系数乘100倍作百分比表示。在民众收入中,如基尼系数最大为“1”,最小等于“0”。前者表示居民之间的收入分配绝对不平均(即所有收入都集中在一个人手里,其余的国民没有收入),而后者则表示居民之间的收入分配绝对平均,即人与人之间收入绝对平等,但这两种情况只出现在理论上;因此,基尼系数的实际数值只能介于0~1之间,基尼系数越小收入分配越平均,基尼系数越大收入分配越不平均。 设右图中的 实际收入分配曲线 (红线)和收入分 配绝对平等线(绿 线)之间的面积为 A,和收入分配绝 对不平等线(蓝 线)之间的面积为 B,则表示收入与 人口之间的比例的基尼系数为 A A+B 。 如果A为零,即基尼系数为0,表示收入分配完全平等(红线和绿线重叠);如果B为零,则系数为1,收入分配绝对不平等(红线和蓝线重叠)。该系数可在0和1之间取任何值。实际上,一般国家的收入分配,既不是完全平等,也不是完全不平等,而是在两者之间,劳伦茨曲线为一条凸向横轴的曲线。收入分配越趋向平等,劳伦茨曲线的弧度越小(斜度越倾向45度),基尼系数也越小;反之,收入分配越趋向不平等,劳伦茨曲线的弧度越大,那么基尼系数也越大。

基尼系数的调节需要国家通过财政政策进行国民收入的二次分配,例如对民众的财政公共服务支出和税收等,从而让收入均等化,令基尼系数缩小。 基尼系数由于给出了反映居民之间贫富差异程度的数量界线,可以较客观、直观地反映和监测居民之间的贫富差距,预报、预警和防止居民之间出现贫富两极分化。因此得到世界各国的广泛认同和普遍采用。 联合国有关组织规定: ●若低于0.2表示收入平均; ●0.2-0.3表示相对平均; ●0.3-0.4表示相对合理; ●0.4-0.5表示收入差距大; ●0.6以上表示收入差距悬殊。 2013年1月18日,中国国家统计局一次性公布了自2003年以来十年的全国基尼系数。大陆统计局局长马建堂称,按照国际新的统计口径,大陆居民收入的基尼系数,2003年是0.479,2004年是0.473,2005年为0.485,2006年为0.487,2007年为0.484,2008年为0.491,2009年为0.490,2010年为 0.481,2011年为0.477,到2012年的数据是0.474,为2005年以来最低水平,而自2008年起,基尼系数也在逐年下降。而此前西南财大调查数据显示,中国的2012年的基尼系数为0.61,但无论是民间统计的数据还是官方统计的数据,结果都遭到学术界质疑,仍具有争议性。 本文将根据网络上国家统计局的数据,利用上面给出的公式来计算我国从2002年以来的城镇居民基尼系数,并将计算出的数据与现有数据进行比较。 全球基尼系数

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

数值计算方法计算习题

1.已知ln( 2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0.8329, 试用线性插值和抛物插值计算.ln2.1的值并估计误差(牛顿插值和拉格朗日插值) 2.已知函数y=sinx 的数表如下,分别用前插和后插公式计算sin0.57891的值,并估算误差。 i x 0.4 0.5 0.6 0.7 )(i x f 0.38942 0.47943 0.56464 0.64422 3. 已知 i x -2 -1 0 1 2 )(i x f 4 2 1 3 5 求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。 4. 数值积分公式形如 ?'+'++=≈1 )1()0()1()0()()(f D f C Bf Af x S dx x xf 试确定参数D C B A ,,,使公式代数 精度尽量高;(2)设]1,0[)(4 C x f ∈,推导余项公式?-=1 ) ()()(x S dx x xf x R ,并估计 误差。 5. 已知数值积分公式为: )] ()0([)]()0([2)(''20 h f f h h f f h dx x f h -++≈? λ,试确定积分公式中的参数 λ,使其代数精确度尽量高,并指出其代数精确度的次数。

6. 用复化Simpson 公式计算积分 ()? =1 0sin dx x x I 的近似值,要求误差限为 5105.0-?。 7. 已知012113,,4 2 4 x x x ===,给出以这3个点为求积节点在[]0.1上的插值型求积公 式。 8. 给出 900,cos ≤≤x x 的函数表,步长 )60/1(1='=h ,若函数具有5位有 效数字,研究用线性插值求x cos 近似值时的总误差界。 9. 求一个次数不高于4次的多项式)(x P ,使它满足0)0()0(='=P P , 1)1()1(='=P P ,1)2(=P 。 10. 单原子波函数的形式为bx ae y -=,试按照最小二乘法决定参数a 和b ,已 知数据如下: X 0 1 2 4 y 2.010 1.210 0.740 0.450 11. 分别用梯形公式和辛普森公式计算下列积分:? +1 02 4dx x x 。并估算误差。 12. 用矩阵的克劳特和克利特尔三角分解法求解方程组:??????? ??=??????? ????????? ??7173530103421101002014321x x x x

数值计算方法实习作业模板小

2.1函数图形与极限 2.1.1 实验目的 1.熟悉Mathematica 基本绘图语句。 2.掌握函数极限的有关操作命令。 3.学会利用Mathematica 软件对函数进行分析研究。 4.熟悉Mathematica 二元函数绘图语句。 2.1.2 实验内容 【基本语句】 1.Plot[f[x],{x,xmin,xmax},选项]; 功能: 画出函数f[x] 从min 到max 间的图形; 2.Plot[{f1[x],f2[x],...},{x,xmin,xmax},选项]; 功能: 在同一坐标系下画出函数f1,f2,...的图形。 3. ParametricPlot[{fx,fy},{t,tmin,tmax}]; 功能: 画出参数方程fx=x(t),fy=y(t)的图形; ParametricPlot[{{f1x,f1y},{f2x,f2y}},{t,tmin,tmax}]; 功能:在同一坐标系下画出用参数方程表示的两幅函数图形。 【备注】fx,fy 的给出方式: ⑴fx=x(t) , fy=y(t) ⑵fx=x ,fy=f(x)与fx=f(x) ,fy=x 构成反函数的图形关系 ⑶r=r(t) , fx=r(t)Cos(t) , fy=r(t)Sin(t) 4. Show[tu1,tu2]功能:将tu1及tu2两幅函数图形重叠在一起,将两个函数图形一起显示。 5. Plot3D[f[x,y],{x,x0,x1},{y,y0,y1}] 功能:作出函数f[x,y]在区域[x0,x1]×[y0,y1]上的图形; ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,u0,u1},{v,v0,v1}] 功能:作出参数方程表示的曲面。 6. Limit[f[x],x->x0] 功能:求函数f[x]在x0处的极限。 7. Limit[f[x],x->x0,Direction->+1] 功能:求函数f[x]在x0处的左极限。 8. Limit[f[x],x->x0,Direction->-1] 功能:求函数f[x]在x0处的右极限。 9. Limit[f[x],x->Infinity] 功能:求函数f[x]在 x->无穷时的极限。 10. Limit[f[x],x->-Infinity] 功能:求函数f[x]在 x->负无穷时的极限。 【实验2.1】画出以下函数的图形。 (1)x y ln = 其中]10,1.0[∈x 。 (2))6 cos(,sin 21π+==x y x y ,其中]6,4[-∈x 。 (3)14233221,,,--====x y x y x y x y ,其中]4,4[-∈x 。 【实验2.2】画出以下函数的图形。 (1)? ??==t y t x sin 其中],0[π∈t 。 (2)???==?? ???==???==t y t x t y t x t y t x 和2 2,其中]2,2[-∈t 。 (3)???===t r y t r x t r sin cos 2cos 9且其中]4,4[ππ-∈t 。 (3)Mathematica 语句: 【实验2.4】利用图形显示命令作出下列函数的图形:

相关主题
文本预览
相关文档 最新文档