当前位置:文档之家› 基于m序列的直接序列扩频系统的抗噪声性能仿真

基于m序列的直接序列扩频系统的抗噪声性能仿真

基于m序列的直接序列扩频系统的抗噪声性能仿真
基于m序列的直接序列扩频系统的抗噪声性能仿真

课程设计

课程设计名称:通信综合课程设计

专业班级:

学生姓名:

学号:

指导教师:

课程设计时间: 2010.12.27-2011.1.8

电子信息工程专业课程设计任务书

学生姓名专业班级电信1班学号

题目基于m序列的直接序列扩频系统的抗噪声性能仿真

课题性质工程技术研究课题来源自拟课题指导教师同组姓名无

主要内容掌握直接序列扩频中对于抗噪声性能仿真的原理和设计步骤,掌握运用MATLAB和Simulink进行直接序列扩频中对于抗噪声性能仿真。

任务要求

1.掌握扩频通信系统的原理和实现方法,学会应用流程图来表示设计的具体思想。

2.用MATLAB产生扩频信号,以及输出解频信号。

3.通过应用MATLAB编写出直接扩频中对与抗噪声性能仿真的程序,并对编译码程序进行编译和仿真分析。

4.设置不同的信噪比,分析对结果的影响。

参考文献

1.郭文彬,桑林编著,通信原理-基于Matlab的计算机仿真,北京邮电大学出版社,2006年

2.曹志刚,钱亚生,现代通信原理,清华大学出版社,2002年3.郭仕剑等,《MATLAB 7.x数字信号处理》,人民邮电出版社,2006年

4.张辉,曹丽娜编著,通信原理学习指导,西安电子科技大学,2003年

5.钟麟,王峰编著MATLAB仿真技术与应用教程,国防工业出版社,2004年

审查意见

指导教师签字:

教研室主任签字: 2010年12月27日说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

1 需求分析

在通信发射端将载波信号展宽到较宽的频段上;在接收端,用同样的扩频码序列进行解扩和解调,把展宽的信号还原成原始信息.通过扩展频谱的相关处理,大大降低了频谱的平均能量密度,可在负信噪比条件下工作,获得了高处理增益,从而降低了被截获和检测的概率,避免了干扰影响.通过仿真模型结果分析抗噪声性能结果。

2 概要设计

扩频通信系统分为直接序列扩频系统、跳频扩频系统、跳时扩频系统和混合式扩频系统。直接序列扩频系统,又称“平均”系统或伪噪声系统,就是采用高码率的扩频码序列PN 码(伪随机码),在发送端与编码数据信号进行模2 加,产生一扩频序列,这一码序列由于码元很窄,占用了很宽的频带,达到扩频的目的,然后用扩频序列去调制载波并予以传输。在接收端接收到的扩频信号经高频放大混频之后,用与发端相同且同步的伪随机码对扩频信号进行相关解扩,由于收发端伪随机码的相关系数为1,故可以完全恢复所传的信息,而干扰和噪声由于与接收机伪随机码不相关,在相关解调时大大降低进入信号通频带内的干扰。它是目前应用较广泛的一种扩展频谱系统。在国外已获得成功的空间探测器“喷气推进实验室(JPL)测距技术”就是一种直接序列调制,TATS-1 军用卫星中的扩展频谱多址(SSMA)系统等都使用DSSS。

直接序列扩频系统的接收一般采用相关接收,并分成两步,即解扩和解调。在接收端,接收信号经过数控振荡器放大混频后,用与发射端相同且同步的由M 序列发生器产生的伪随机码对中频信号进行相关解扩,把扩频信号恢复成窄带信号,然后再由基带滤波器进行解调,最后恢复出原始信息序列。扩频与解扩过程中,利用PN序列生成器模块( PN Sequence Generator ) ,产生6级、传输速率500b/s的PN伪随机序列来达到扩频和多址接入效果,这里扩频增益为50倍.扩频的运算是信息流与PN码相乘或模二加的过程.解扩的过程与扩频过程完全相同,即将接收的信号用PN码进行第二次扩频处理.要求使用的PN码与发送端扩频用PN 码不仅码字相同,而且相位相同.否则会使有用信号自身相互抵消.解扩处理将信

号压缩到信号频带内,由宽带信号恢复为窄带信号.同时将干扰信号扩展,降低干扰信号的谱密度,使之进入到信息频带内的功率下降,从而使系统获得处理增益,提高系统的抗干扰能力.调制与解调使用二相相移键控PSK方式.

为了方便分析, 我们可对系统作如下假设: 系统各用户同步;系统各用户功率相同;仅考虑系统MAI和白噪声干扰引起的误码, 忽略信号传输、调制解调过程中的误码。

3 运行环境

软件运行环境:windows xp系统

Matlab 软件

处理器系列:英特尔酷睿2双核 T6系列

处理器型号: Intel 酷睿2双核 T6600

主板芯片组: Intel GM45

硬盘容量: 160GB

硬盘描述: 5400转,SATA

4 开发工具和编程语言

开发工具:

基于MATLAB通信工具箱的线性分组码汉明码的设计与仿真

编程语言:

MATLAB是一个交互式的系统,其基本数据元素是无须定义维数的数组。这让你能解决很多技术计算的问题,尤其是那些要用到矩阵和向量表达式的问题。而要花的时间则只是用一种标量非交互语言(例如C或Fortran)写一个程序的时间的一小部分。 .

5 详细设计

程序代码:

产生高斯噪声:

function [gsrv1,gsrv2]=gngauss(m,sgma)

if nargin == 0,

m=0; sgma=1;

elseif nargin == 1,

sgma=m; m=0;

end;

u=rand; % a uniform random variable in (0,1)

z=sgma*(sqrt(2*log(1/(1-u)))); % a Rayleigh distributed random variable

u=rand; % another uniform random variable in (0,1)

gsrv1=m+z*cos(2*pi*u);

gsrv2=m+z*sin(2*pi*u);

function[p]=ss_Pe94(snr_in_dB,lc,A,w0)

snr=10^(snr_in_dB/10);

sgma=1;

Lc=20;

Eb=2*sgma^2*snr;

E_chip=Eb/Lc;

N=10000;

num_of_err=0;

for i=1:N,

temp=rand;

if(temp<0.5),

data=-1;

else

data=1;

end;

for j=1:Lc,

repeated_data(j)=data;

end;

for j=1:Lc,

temp=rand;

if(temp<0.5),

pn_seq(j)=-1;

else

pn_seq(j)=1;

end;

end;

trans_sig=sqrt(E_chip)*repeated_data.*pn_seq; noise=sgma*randn(1,Lc);

n=(i-1)*Lc+1:i*Lc;

interference=A*sin(w0*n);

rec_sig=trans_sig+noise+interference;

temp=rec_sig.*pn_seq;

decision_variable=sum(temp);

if(decision_variable<0),

decision=-1;

else

decision=1;

end;

if(decision~=data),

num_of_err=num_of_err+1;

end;

end;

p=num_of_err/N;

主程序:

Lc=20;

A1=3;

A2=7;

A3=12;

A4=0;

w0=1;

SNRindB=0:2:30;

for i=1:length(SNRindB),

smld_err_prb1(i)=ss_Pe94(SNRindB(i),Lc,A1,w0);

smld_err_prb2(i)=ss_Pe94(SNRindB(i),Lc,A2,w0);

smld_err_prb3(i)=ss_Pe94(SNRindB(i),Lc,A3,w0);

end;

SNRindB4=0:1:8;

for i=1:length(SNRindB4),

smld_err_prb4(i)=ss_Pe94(SNRindB4(i),Lc,A4,w0);

end;

x=SNRindB;

y1=smld_err_prb1;

y2=smld_err_prb2;

y3=smld_err_prb3;

semilogy(x,y1,x,y2,x,y3);

6 调试分析

分析结果如下:

根据香农定理和柯捷尔尼可夫潜在抗干扰理论,借助Ma tL ab

工具箱和M on te Car lo仿真算法,建立了直接序列扩频通信系统仿真模型,通过分析无干扰时的误码率仿真曲与理论计算值,证明了所建仿真模型的正确性,以此为基础,研究了扩频处理增益,正弦干扰信号振幅与误码率的关系,结果表明,在相同信噪比下,处理增益越大,误码率越小,特别是大信噪比时,这种差别尤为明显,而在处理增益不变时,正弦干扰信号振幅增加,误码率则增大。

我们选取仿真时间为300秒.当干扰用户为5个时,PN码长度为63位时,我们可以从仿真的结果可以看到,系统并没有产生很大的误差.随着干扰用户的不断增多,系统的误码率也越来越大.总结仿真实验归纳如下:

1.伪码长度越长,其系统误码率就越低

2.系统误码率还与信道里的信噪比大小有关

从系统仿真的结果看来,直序扩频技术拥有良好的抗干扰能力.无论是对正弦信号还是高斯噪声,都有很强的抗干扰能力,而更为出色的是它的抗多址干扰能力.

7 测试结果

图1 信号源的输入波形

图2 低通滤波器的处理信号

图3 未加干扰前的已调信号的频谱图

参考文献

1.郭文彬,桑林编著,通信原理-基于Matlab的计算机仿真,北京邮电大学出版社,2006年

2.曹志刚,钱亚生,现代通信原理,清华大学出版社,2002年

3.钟麟,王峰等编著,MATLAB仿真技术与应用教程,国防工业出版社,2004年

4.张辉,曹丽娜编著,通信原理学习指导,西安电子科技大学,2003年

5.徐明远,邵玉斌等编著,《MATLAB仿真在通信与电子工程中的应用》,西安电子科技大学出版社,2005年

6.郭仕剑等,《MATLAB 7.x数字信号处理》,人民邮电出版社,2006年

心得体会

利用不同的伪随机序列作为不同用户的地址码,可实现码分多址通信.当同时通信的用户数增多时,多址干扰电平增大,导致系统的误码率也增大.

(1)扩频通信系统具有极强的抗人为宽带干扰、窄带瞄准式干扰、中继转发式干扰的能力,这对军用和民用移动通信是很有利的。

(2)扩频系统使用周期很长的伪随机码,在一个伪码周期中具有随机特性,经它调制后的数字信息类似于随机噪声。在接收端进行解扩时,只有当本地码和发射的伪码完全一致时,才能有效地恢复信息。若要破密,就必须准确地知道所用伪随机码的种类、码长和初相,这显然是比较困难的。因为不同长度的伪随机码有无数种,同一长度的M序列又有数个不同序列,况且同—个码长p的伪码,又有p个不同的初相。对非线性码情况更为复杂,所以窃听者要获得基带数字信息是非常困难的。还可以和常规通信一样,在基带数字调制时采用加密编码。这样对传送的保密消息,就相当于加了“双保险”,故提高了保密可靠性。

(3)扩频通信技术把被传送的信号带宽展宽,从而降低了系统在单位频宽内的电波“通量密度”,这对空间通信大有好处。于无线电波运载的各种信息充塞了有限“时频空间”的大城市,使用扩展频谱码分多址通信技术,可以解决常规通信中存在的大难题——电波拥挤的缺点,故扩频码分多址通信在城市移动通信中有着广阔的应用前景。

直接序列扩频通信

MATLAB仿真直接序列扩频通信 1.摘要 直接序列扩频通信系统(DS-CDMA)因其抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点,而被广泛应用于许多领域中。针对频通信广泛的应用,本文用MATLAB工具箱中的SIMULINK通信仿真模块和MATLAB函数对直接序列扩频通信系统进行了分析和仿真,使其更加形象和具体。 关键字:扩频通信m序列gold正交序列matlab仿真 2.引言 直接序列扩频(DSSS— Direct Sequence Spread Spectrum)技术是当今人们所熟知的扩频技术之一。这种技术是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端,用与发端扩展用的相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信息。 它是二战期间开发的,最初的用途是为军事通信提供安全保障, 是美军重要的无线保密通信技术。这种技术使敌人很难探测到信号。即便探测到信号,如果不知道正确的编码,也不可能将噪声信号重新汇编成原始的信号。有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr 和钢琴家George Antheil提出的。基于对鱼雷控制的安全无线通信的思路,他们申请了美国专利#2.292.387。不幸的是,当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。 直序扩频解决了短距离数据收发信机、如:卫星定位系统(GPS)、3G移动通信系统、WLAN (IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等应用的关键问题。扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。 3.直接序列扩频DS-SS是直接用具有高码率的扩频码序列在发送端去扩展信 号的频谱。而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。

直接序列扩频通信系统仿真

直接序列扩频通信系统仿真

直接序列扩频通信系统仿真 一、实验的背景及内容 1、直接扩频通信背景 扩频通信,即扩展频谱通信(Spread Spectrum Communication),它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。 有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr和钢琴家George Antheil提出的。解决了短距离数据收发信机、如:卫星定位系统(GPS)、移动通信系统、WLAN(IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等应用的关键问题。扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。 扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。直到80年代初才被应用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等等的系统中。 2、实验的内容及意义 本次实验主要研究了直接序列扩频系统,建立了直接序列扩频系统的matlab仿真模型,在信道中存在高斯白噪声和干扰的情况下,对系统误码率性能进行了仿真及分析。 近年来,随着超大规模集成电路技术、微处理器技术的飞速发展,以及一些新型元器件的应用,扩频通信在技术上已迈上了一个新的台阶,不仅在军事通信中占有重要地位,而且正迅速地渗透到了个人通信和计算机通信等民用领域,成为新世纪最有潜力的通信技术之一因此研究扩频通信具有很深远的意义。本人通过此次实验,进行深入地研究学习扩频通信技术及对它进行仿真应用,将所学的知识进行归纳与总结,从而巩固通信专业基础知识,为以后的个人学习和工作打下基础。

扩频编码M序列和gold序列

M序列 由n级移位寄存器所能产生的周期最长的序列。这种序列必须由非线性移位寄存器产生,并且周期为2n(n 为移位寄存器的级数)。例如,考察图中a的非线性反馈移位寄存器,其状态转移关系如表:

状态(a k-3,a k-2,a k-1)的接续状态是(a k-2,a k-1,a k),其中a k=a k-3嘰a k-1嘰1嘰a k-2a k-1是一种非线性逻辑。从任一状态出发,例如从(000)出发,其接续状态恰好构成一个完全循环(图b),由此产生一个周期为23=8的3级序列。M序列最早是用抽象的数学方法构造的。它出现于组合数学的一些数学游戏中,例如L.欧拉关于哥尼斯堡的七桥问题等。后来发现这种序列具有某些良好的伪随机特性。例如,M序列在一个周期中,0与1的个数各占一半。同时,同样长度的0游程与1游程也各占一半。所有这些性质在数据通信、自动控制、光学技术和密码学诸领域中均有重要应用。 隐蔽通信内容的通信方式。为了使非法的截收者不能理解通信内容的含义,信息在传输前必须先进行各种形式的变化,成为加密信息,在收信端进行相应的逆变化以恢复原信息。电报通信、电话通信、图像通信和数据通信,都有相应的保密技术问题。另一方面,为了从保密通信中获得军事、政治、经济、技术等机密信息,破译技术也在发展。保密技术和破译技术是在相互对立中发展起来的。 1881年世界上出现了第一个电话保密专利。电话保密开始是采用模拟保密或置乱的方法,即把话音的频谱或时间分段打乱。置乱后的信号仍保持连续变化的性质。在第二次世界大战期间,频域和时域的置乱器在技术上已基本成熟。70年代以来,由于采用集成电路,电话保密通信得到进一步完善。但置乱器仍是有线载波和短波单边带电话保密通信的主要手段。模拟保密还可以采用加噪声掩盖、人工混响或逆向混响等方法,但因恢复后话音的质量大幅度下降或保密效果差,这些方法没有得到推广应用。数字保密是由文字密码发展起来的。数字信号(包括由模拟信号转换成的数字信号),由相同速率的密码序列加密,成为数字保密信号;保密信号传输到收信端后由同一密码序列去密,恢复原数字信号。随着集成电路的发展,数字保密通信已成为保密通信的主要发展方向。话音、图像等模拟信号都可以用数字保密方式。一般来说,数字破译要比模拟破译困难得多。数字保密的主要限制是传输数字信号所需带宽要比传输模拟信号的带宽大好多倍。 模拟保密通信话音信号置乱后的带宽基本保持不变,这是模拟保密通信的一个特点。但是,置乱后恢复的话音质量有所下降。置乱的过程越复杂,则话音质量下降的程度越大。 倒频用倒频器(图1)把话音频谱颠倒过来,使高频变为低频,低频变为高频,这是最简单的一种频域置乱方法。频域置乱器的基本电路是平衡调制器和带通滤波器。平衡调制器可以搬移和倒置频谱,而滤波器可以滤取所需要的频谱成分。输入的话音信号经过平衡调制器后输出上、下两个边带。适当地选择

基于matlab的直接序列扩频通信系统仿真

基于MATLAB的直接序列扩频通信系统仿真 1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调 制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10DB以上,从而有效地提高了整机倍噪比。 1.1 直扩系统模型 直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK等方式,本实验中采取BPSK方式。 直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<

直接序列扩频通信系统抗干扰性能分析复习课程

直接序列扩频通信系统抗干扰性能分析

直接序列扩频通信系统抗干扰性能分析 在现代战争中,通信对抗扮演着越来越重要的角色。随 着计算机技术、微电子技术等大量高新技术的应用,军事通信获得了长足的发展,尤其是跳频、扩频等一些新的通信手段应用之后,使得通信频谱越来越宽,通信的反侦察、抗干扰能力越来越强,迫使各国加紧对通信对抗技术以及装备的研制。直接序列扩频通信由于其优良的多址接入、低截获概率、抗干扰和强保密等特性,使得它在军事通信、卫星通信和民用领域得到了广泛应用。在电子对抗中,对扩频通信的有效干扰成为制胜关键。 第一章研究背景介绍 1.1直扩通信研究背景 现代战争首先是电子战,在电子战中失去优势的一方,将导致通信中断,指挥失灵等,从而丧失战争主导权。两次海湾战争,前南斯拉夫战争以及阿富汗战争都是很好的佐证。因此,通信对抗作为C4ISR系统的核心,越来越受到各国的重视。通信对抗属于电子对抗,它包括通信侦察、通信干扰等主要对抗措施。通信对抗的目的在于:侦收和截获敌方信息,测量有关技战术参数;采用各种干扰方式阻止敌方正常通信并抑制敌方对我方的干扰,保证我方通信系统有效工作。

扩频通信作为新型的通信方式,具有优良的抗干扰、抗衰落和抗多径性能及频谱利用率高、多址通信等诸多优点,并被广泛地应用于军事通信领域,极大地提高了通信系统的抗截获和抗干扰能力。因此,扩频通信系统成为干扰方的首要作战目标,同时,扩频通信的抗干扰、抗截获、抗侦破特性给干扰方带来了巨大的困难。为取得现代电子战的胜利,针对扩频通信系统研究高效的干扰方式,如何有效的干扰成为取得现代电子战胜利的重要一环,对战时通信对抗具有重要意义。 1.2直扩通信的军事应用情况 1)直扩通信技术在舰艇卫星通信系统上应用广泛。国外舰艇卫星通信系统和国内舰艇卫星通信系统均采用码分多址通信方式,使用C波段。这样网络组织与撤收灵活,通信质量高,频道使用少。从目前使用看,这种方式充分发挥了直接序列扩频通信的特点,是扩频通信应用成功的范例。另外,美军使用的联合战术信息分发系统也使用直接扩频技术,主要用于在战术作战环境中进行抗干扰、发布保密数字信息,具有容纳用户数多和交互数据量大的特点,能快速保密地交换指挥控制信息和敌方战术设备的状态参数。 2)直扩通信技术在军用战术移动通信电台、数据分发系统中发挥重要作用。1996年美军演示了SICOM公司研制

直接序列扩频系统设计

扩频通信技术实现方法的研究和设计 ——DS直接序列扩频 专业:通信工程 班级:2002级1班 姓名:佟岩

引言 3 1扩频通信系统 6 1.1扩展频谱通信的定义 6 1.2扩频通信的理论基础 6 1.3扩频通信的主要性能指标8 1.4扩频通信的主要特点10 1.5频谱扩展的实现和直接序列扩频13 1.6扩频系统需要满足以下几个条件1 7 1.7扩频通信特征17 2直序扩频通信系统 18 2.1直序扩频通信系统框图18 2.2直接序列扩频信号的产生原理18 2.3直接序列扩频原理20 2.4直接序列扩频信号的实现方法21 3用编程来实现直序扩频通信系统23 3.1直接序列扩频系统与PSK调制23 3.2信号解调 24 3.3差错概率 26 4实验28 4.1 Monte Carlo仿真28 4.2 SIMULINK仿真30 结论 36 致谢 37 参考文献 38 附录1直扩程序M-文件40 附录2直扩-SIMULINK动态仿真模框图43

扩频通信技术(简称扩频通信)是一种新兴的高科技通信技术,具有大容量、抗干扰、低截获功率等特点以及可实现码分多址(CDMA)等优点,在军事和民用通信系统中都得到了广泛的应用,并成为下一代移动通信的技术基础。在扩频通信系统中,直序扩频的应用最为广泛。首先介绍扩频通信的基本原理及组成,重点论述了直序扩频通信在通信系统中的使用。 MATLAB因具有强大的数学计算、算法推导、建模仿真和图形绘制等功能而广泛应用于各领域,本文利用MATLAB的M语言进行编程、仿真,从而对CDMA无线通信系统的性能进行了分析。 在此基础上,通过实例介绍了建立系统仿真模型的方法。利用MATLAB 软件对CDMA无线通信系统的性能进行了分析。可见利用MATLAB/SIMULINK进行系统仿真简单、方便、形象、具体,是系统仿真较好软件之一。 关键词: 直序扩频通信系统;PN序列产生器;误码率;仿真;MATLAB;干扰

直接序列扩频通信系统开题报告

哈尔滨工业大学华德应用技术学院毕业设计(论文)开题报告 题目:直接序列扩频通信系统的设计与仿真实现 系(部)应用电子与通信技术 专业通信工程 学生薛光宇 学号24 班号0992222 指导教师周凯 开题报告日期2012.10,22 哈工大华德学院

说明 一、开题报告应包括下列主要内容: 1.通过学生对文献论述和方案论证,判断是否已充分理解毕业设计(论文)的内容和要求 2.进度计划是否切实可行; 3.是否具备毕业设计所要求的基础条件。 4.预计研究过程中可能遇到的困难和问题,以及解决的措施; 5.主要参考文献。 二、如学生首次开题报告未通过,需在一周内再进行一次。 三、开题报告由指导教师填写意见、签字后,统一交所在系(部)保存,以备检查。指导教师评语: 指导教师签字:检查日期:

一、课题题目和课题研究现状 课题题目:直接序列扩频通信系统的设计与仿真实现。 研究现状:目前扩频技术中研究最多的对象是CDMA技术,其中又以码捕获技术和多用户检测(MUD)技术代表了目前扩频技术研究的现状。 1.码捕获 同步的实现是直扩系统中一个关键问题。只有在接收机将本地产生的伪码和接收信号中调制信息的伪码实现同步以后,才有可能实现直序扩频通信的各种优点。同步过程分为两步来实现:首先是捕获阶段,实现对接收信号中伪码的粗跟踪;然后是跟踪阶段,实现对伪码的精确跟踪。目前的研究主要集中在码捕获过程。 2, 多用户检测 CDMA系统容量受到来自其他用户的多址干扰的限制,多用户检测能够利用这些多址干扰来改善接收机的性能,因此是一种提高系统容量的有效方法。传统的CDMA 接收机是由一系列单用户检测器组成,每个检测器都是与特定扩频码对应的相关器,它并没有考虑多址干扰的结构,而是把来自其它用户的干扰当成加性噪声,因此当用户数量增加时,其性能急剧下降。通过对所有用户的联合译码可以极大地改善CDMA系统的性能。但是最优的多用户接收机,其复杂度随用户数量成指数增长,因此在实际通信系统中几乎不可能实现。这样寻找在性能和复杂度之间折中的次最优多用户检测器成为研究的热点 二、目的及意义 通过对该课题的研究,了解科研学术论文的撰写流程,并且将自己所学的理论知识运用到论文中,全面多角度的分析该领域的发展现状,同时提高自己的思维能力,对搜集的数据进行恰当处理和准确分析,对大学本科四年学习成果进行有效的检验,并且进一步提高自学能力和自主进行科学研究的水平。 三、课题的基本内容 所谓直接序列扩频(DS),就是直接用具有高速率的扩频码序列在发送端去扩展信号的频谱。而接收端,用相同的扩频码序列进行解扩,把展宽的扩频信号还原成原始信息。

基于m序列的直接序列扩频

扩频通信实验 实验名称:基于m序列的直接序列扩频 专业班级:通信111501班 学生姓名:穆琦沈傲立孙琳王瑞学熊晓倩

学号:201115040111 13 16 20 27 指导教师:郑秀萍 时间:2014.10.29 1 需求分析 在通信发射端将载波信号展宽到较宽的频段上;在接收端,用同样的扩频码序列进行解扩和解调,把展宽的信号还原成原始信息.通过扩展频谱的相关处理,大大降低了频谱的平均能量密度,可在负信噪比条件下工作,获得了高处理增益,从而降低了被截获和检测的概率,避免了干扰影响.通过仿真模型结果分析抗噪声性能结果。 2 概要设计 扩频通信系统分为直接序列扩频系统、跳频扩频系统、跳时扩频系统和混合式扩频系统。直接序列扩频系统,又称“平均”系统或伪噪声系统,就是采用高码率的扩频码序列PN 码(伪随机码),在发送端与编码数据信号进行模2 加,产生一扩频序列,这一码序列由于码元很窄,占用了很宽的频带,达到扩频的目的,然后用扩频序列去调制载波并予以传输。在接收端接收到的扩频信号经高频放大混频之后,用与发端相同且同步的伪随机码对扩频信号进行相关解扩,由于收发端伪随机码的相关系数为1,故可以完全恢复所传的信息,而干扰和噪声由于与接收机伪

随机码不相关,在相关解调时大大降低进入信号通频带内的干扰。它是目前应用较广泛的一种扩展频谱系统。在国外已获得成功的空间探测器“喷气推进实验室(JPL)测距技术”就是一种直接序列调制,TATS-1 军用卫星中的扩展频谱多址(SSMA)系统等都使用DSSS。 直接序列扩频系统的接收一般采用相关接收,并分成两步,即解扩和解调。在接收端,接收信号经过数控振荡器放大混频后,用与发射端相同且同步的由M 序列发生器产生的伪随机码对中频信号进行相关解扩,把扩频信号恢复成窄带信号,然后再由基带滤波器进行解调,最后恢复出原始信息序列。扩频与解扩过程中,利用PN序列生成器模块( PN Sequence Generator ) ,产生6级、传输速率500b/s的PN伪随机序列来达到扩频和多址接入效果,这里扩频增益为50倍.扩频的运算是信息流与PN码相乘或模二加的过程.解扩的过程与扩频过程完全相同,即将接收的信号用PN码进行第二次扩频处理.要求使用的PN码与发送端扩频用PN码不仅码字相同,而且相位相同.否则会使有用信号自身相互抵消.解扩处理将信号压缩到信号频带内,由宽带信号恢复为窄带信号.同时将干扰信号扩展,降低干扰信号的谱密度,使之进入到信息频带内的功率下降,从而使系统获得处理增益,提高系统的抗干扰能力.调制与解调使用二相相移键控PSK方式. 为了方便分析, 我们可对系统作如下假设: 系统各用户同步;系统各用户功率相同;仅考虑系统MAI和白噪声干扰引起的误码, 忽略信号传输、调制解调过程中的误码。 3 开发工具和编程语言 开发工具:

直接序列扩频系统的Simulink仿真

直接序列扩频系统的Matlab/Simulink仿真 摘要:本文利用Matlab/Simulink对直接序列扩频系统进行了仿真,对其原理进 行了相关的说明。读者可以通过对本文的阅读对直接序列扩频的相关原理有一定的了解。 关键字:扩频通信直接序列扩频 一、仿真的意义 随着信息技术的发展,通信技术变得越来越复杂,技术更新的周期也越来越短。对于大部分学者,特别是我们学生来说,在学习通信技术时,若对每一个系统都要实体研究是不现实的。此时通信系统仿真对我们来说可以说是必不可少的。通过建立相应的通信系统的模型,对其进行仿真,可以使我们把琐碎的知识联系在一起,形成一个个通信系统的概念,可以让我们对各个知识点的原理有更加深刻的理解和掌握。 二、直接序列扩频的原理 扩频通信,即扩展频谱通信(Spread Spectrum Communication)是将待传送的信息数据用伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输而接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。扩频通信具有抗干扰能力强、抗噪声、保密性强、功率谱密度低,具有隐蔽性和较低的截获概率、可多址复用和任意选址、高精度测量等优点。 根据扩展频谱方式的不同,可以将扩频通信系统分为直接序列扩频(Direct Sequence Spread Spectrum)工作方式,简称直扩(DS)方式;跳变频率(Frequency Hopping)工作方式,简称跳频(FH)方式;跳变时间(Time Hopping)工作方式,简称跳时(TH)方式;宽带线性调频(Chirp Modulation)工作方式,简称Chirp方式和各种混合方式。 直接序列(DS-Direct Scquency)扩频,就是直接用具有高码率的扩频码序列在发端去扩展信号的频谱,而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。直接序列扩频是扩频通信系统最基本的工作方式。 假设信源序列对应的双极性波形为a(t),其电平取值为±1 ,码元速率为Rabps,码元宽度为Ta=1/Ra/秒。扩频所使用的伪随机序列c(t)也是电平取值为±1 的双极性波形,伪随机序列(PN序列)的码元也称为码片(chip),码片速率设为Rcchip/s,对应的码片宽度就是Tc=1/Rc/秒。对于双极性波形而言,扩频过程等价于数据流a(t)与伪随机序列c(t)相乘的过程,扩频输出序列设为d(t),也是取值为±1 的双极性波形,其速率等于码片速率。扩频序列经过调制后得到调制输出信号s(t)送入信道。对于BPSK调制,发送的信号就相当于是数据流与伪随机序列相乘后再乘于一个高频的余弦信号。在接收端,接收到的信号中有包含了有用信号s(t)及各种干扰J(t)和噪声n(t)。由于接收端采用相关解扩,即将s(t)J(t)n(t)和本地PN序列c(t)相乘,只有有用信号的频谱能够被还原为窄带信号,其他的噪声和干扰的频谱只会被展宽,当信号通过窄带滤波器后只有一小部分被展宽了的频谱会混进有用信号中,由此大大增强了其抗干扰的能力。 三、仿真的系统与结果 此处是对直接序列扩频通信系统的仿真。假设该系统以BPSK方式调制,数

m序列产生及其特性

一、实验目的 通过本实验掌握m 序列的特性、产生方法及应用。 二、实验内容 1、观察m 序列,识别其特征。 2、观察m 序列的自相关特性。 三、基本原理 m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。码分多址系统主要采用两种长度的m 序列:一种是周期为1521-的m 序列,又称短PN 序列;另一种是周期为 4221-的m 序列,又称为长PN 码序列。m 序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽, 即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。 3、m 序列的互相关函数 两个码序列的互相关函数是两个不同码序列一致程度(相似性)的度量,它也是位移量的函数。当使 用码序列来区分地址时,必须选择码序列互相关函数值很小的码,以避免用户之间互相干扰。 研究表明,两个长度周期相同,由不同反馈系数产生的m 序列,其互相关函数(或互相关系数)与自 相关函数相比,没有尖锐的二值特性,是多值的。作为地址码而言,希望选择的互相关函数越小越好,这 样便于区分不同用户,或者说,抗干扰能力强。 在二进制情况下,假设码序列周期为P 的两个m 序列,其互相关函数R xy (τ)为 ()xy R A D τ=- (9-9) 式中,A 为两序列对应位相同的个数,即两序列模2加后“0”的个数;D 为两序列对应位不同的个数, 即两序列模2加后“1”的个数。 为了理解上述指出的互相关函数问题,在此以5n =时由不同的反馈系数产生的两个m 序列为例计算它 们的互相关系数,以进一步讲述m 序列的互相关特性。将反馈系数为8(45)和8(75)时产生的两个5级m 序 列分别记做:1m :1000010010110011111000110111010和2m :111110111000101011010000110100,序列1m 和 2m 的互相关函数如表9-3所示。 表9-3序列1m 和2m 的互相关函数表

基于SIMULINK直接扩频序列通信系统的设计

石家庄铁道大学四方学院毕业设计 基于Simulink直接序列扩频通信系统 设计 Direct Sequence Spread Spectrum Communication Systems Design Based on Simulink

摘要 直接序列扩频通信系统(DSSS)因其抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点,而被广泛应用于许多领域中。 本文设计了一种基于Simulink的直接序列扩频通信系统。首先对直接序列扩频通信系统从应用背景、特点、意义和发展几个方面进行了研究,然后从直接序列扩频通信系统的基本理论、基本原理、性能和扩频通信系统的同步原理等方面阐述了直接序列扩频通信系统,并对直接扩频通信系统进行了仿真研究和理论分析,达到了预期的效果。本文从理论上分析了直接序列扩频通信系统的抗干扰性能。 本系统包括信号生成部分、发送部分、接收部分、调制和解调、加扩与解扩五个部分。并以BPSK系统为例,给出了误码率理论分析结果,达到了预期的效果。本文研究的直接序列扩频通信系统,为以后的频谱通信系统打下了基础。 关键词:直接序列扩频通信系统MATLAB仿真Simulink模块仿真

Abstract Direct sequence spread spectrum communication system (DSSS) because of its strong anti-interference, easy to conceal and easy to realize code division multiple access (CDMA), fight multipath interference, straight expansion communication rate higher numerous advantages, is widely used in many fields. This paper introduces a design of Simulink based on the direct sequence spread spectrum communication system. First to direct sequence spread spectrum communication system from application background, features, significance and the development of a research, and then from the direct sequence spread spectrum communication system, the basic theory of basic principle, performance and spread spectrum communication system of synchronous principle, this paper describes direct sequence spread spectrum communication system, and the directly spread spectrum communication system simulation and theory analysis, achieve the expected effect. The paper theoretically analyzes the direct sequence spread spectrum communication system of anti-jamming performance. This system includes signal generation part, sending part, receiving part, modulation and demodulation, add expansion and solution expansion of five parts. And with BPSK system as an example, the theoretical analysis results are ber, achieve the expected effect. This paper studies the direct sequence spread spectrum communication system, for the following spectrum communication system laid a foundation. Keywords: Direct sequence spread spectrum communication system Simulink MATLAB Simulation

直接序列扩频系统matlab仿真

直接序列扩频通信系统仿真 一、实验的背景及内容 1、直接扩频通信的背景 扩频通信,即扩展频谱通信(Spread Spectrum Communication),它和光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。 有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr和钢琴家George Antheil提出的。基于对鱼雷控制的安全无线通信的思路,他们申请了美国专利#2.292.387[1]。不幸的是,当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。解决了短距离数据收发信机、如:卫星定位系统(GPS)、移动通信系统、WLAN(IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等使用的关键问题。扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。 扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛使用于军事通信、电子对抗以及导航、测量等各个领域。直到80年代初才被使用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛使用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等等的系统中。 2、实验的内容及意义 本次实验主要研究了直接序列扩频系统,建立了直接序列扩频系统的matlab仿真模型,在信道中存在高斯白噪声和干扰的情况下,对系统的在不同扩频增益下的误码率性能进行了仿真及分析。 近年来,随着超大规模集成电路技术、微处理器技术的飞速发展,以及一些新型元器件的使用,扩频通信在技术上已迈上了一个新的台阶,不仅在军事通信中占有重要地位,而且正迅速地渗透到了个人通信和计算机通信等民用领域,成为新世纪最有潜力的通信技术之一因此研究扩频通信具有很深远的意义。本人通过此次实验,进行深入地研究学习扩频通信技术及对它进行仿真使用,将所学的知识进行归纳和总结,从而巩固通信专业基础知识,为以后的个人学习和工作打下基础。

直接序列扩频通信系统的误码率仿真培训讲学

直接序列扩频通信系统的误码率仿真

直接序列扩频通信系统的误码率仿真 1.引言 扩展频谱通信系统是将基带信号的频谱扩展至很宽的频带上,然后再进行 传输的一种通信系统,即将待传送的信息数据用伪随机编码调制,实现频谱扩展后再传输,接收端则采用同样的编码进行解调及相关处理,恢复原始信息数据。 扩频通信的基础理论根据信息论中的shannon 公式 ) (N S B C /1log 2+= 式中,C 是系统的信道容量,B 是系统信道带宽,N 是噪声功率,S 为信号的功率,S/N 即为信噪比。 Shannon 公式表明了一个系统信道无误差的传输信息的能力与存在于信道中的信噪比以及用于传输信息的系统信道带宽之间的关系。该公式说明了两个极为重要的概念:一是在一定的信道容量条件下,可以用减少发送信号功率、增加带宽的方法来达到信道容量的要求;另一个是可以采用减少带宽而增加信号功率的方法来达到信道容量的要求。这也就说明了信道容量可以通过带宽与信噪比的互换来保持不变。在实际的工程应用中,改变信号的功率并不容易,相比较而言,扩展信号的带宽更容易操作,所以,要提高信道容量,采用增加信号的带宽比提高信号功率的方法要有效的多。 由于扩频通信系统可以在信号功率远低于噪声功率的环境中工作,因此扩 频通信系统具有抗干扰能力强,保密性强等优点,在现在通信领域内的应用越 来越广泛。 2.系统概述 本次仿真实验是以MATLAB 为仿真平台,信号是8位双极性二进制信号,由 1和-1组成。随后对产生的双极性信号进行时域抽样,得到基带信号s ,是一组1024位的信息码。伪随机序列由mgen 函数产生,共有1024个码元。对已得到的基带信号进行扩频调制,直接把基带信号S 与产生的伪随机序列相乘,得到扩频信号。然后对已作扩频处理的信号作BPSK 载波调制,得到发射信号。发射信号通过存在高斯白噪声的信道,到达接到端,接收端首先对信号进

基于MATLAB的直接序列扩频通信系统课程设计报告

《扩频通信原理》课程设计报告 题目:直接扩频系统仿真 班级:0110910和0110911 姓名:詹晓丹(2009210432) 姜微(2009210503) 张建华(2009210336) 指导老师:李兆玉

1.课程设计目的 (1)了解、掌握直接扩频通信系统的组成、工作原理; (2)了解、熟悉扩频调制、解调、解扩方法,并分析其性能; (3)学习、掌握Matlab相关编程知识并用其实现仿真的直接扩频通信系统; 2.课程设计实验原理 直接扩频通信系统工作原理: 直接序列扩频,就是直接用高码率的扩频码序列在发端去扩展信号的频谱,在收端用相同的扩频码去解扩,把展宽的扩频信号还原成原始的基带信号。 在发端输入的信息与扩频码发生器产生的伪随机码序列(这里使用的是m序列)进行波形相乘,得到复合信号,实现信号频谱的展宽,展宽后的信号再调制射频载波发送出去。由于采用平衡调制可以提高系统抗侦波的能力,所以直接序列扩频调制一般都采用二相平衡调制方式。一般扩频调制时一个信息码包含一个周期的伪码,用扩频后的复合信号对载波进行二相相移监控(BPSK)调制,当gt从“0”变成“1”或从“1”变到“0”时,载波相位发生180度相移。接收端的本振信号与发射端射频载波相差一个中频,接收端收到的宽带射频信号与本振信号混频、低频滤波后得到中频信号,然后与本地产生的与发端相同并且同步的扩频码序列进行波形相乘,实现相关解扩,再经信息解调,恢复出原始信号。 3.建立模型描述 (1)直接扩频通信系统组成框图: (2)直接扩频通信系统波形图:

4.模块功能分析 (1)直扩系统的调制功能模块:(都包含模块框图和不同调制、解调方式介绍、分析)(a)扩频调制模块 用扩频码发生器产生一个伪随机码pn(这里用的是m序列),与信源信息码序列xt相乘,实现频谱的展宽 (b)BPSK调制模块

M序列的产生和性能分析

M序列的产生和性能分析 摘要 在扩频函数中,伪随机信号不但要求具有尖锐的互相关函数,互相关函数应接近于零,而且具有足够长的码周期,以确保抗侦破、抗干扰的要求;由足够多的独立地址数,以实现码分多址的要求。M序列是伪随机序列的一种,可由m序列添加全0状态而得到。m序列与M序列对比得出在同级移位寄存器下M序列的数量远远大于m序列数量,其可供选择序列数多,在作跳频和加密码具有极强的抗侦破能力。 本文在matlab中的Simulink下用移位寄存器建立了4级、5级、6级M 序列的仿真模型,进行了仿真,画出其时域图、频谱图、互相关性图。通过时域图和频域图可看出,经过扩频后的信号频带明显的被扩展;由M序列互相关性图,得出M序列有较小的互相关性,较强的自相关性,但相关性略差于m序列。最后,本文又将M序列应用于CDMA扩频通信仿真系统中,得到下列结论:当使用与扩频时相同的M序列做解扩操作与用其他序列做解扩的输出有巨大的差别。使用相同的序列进行解扩时系统输出值很大,而使用其他序列解扩时输出值在零附近变化。这就是扩频通信的基础。 关键词:伪随机编码, 扩频通信自相关函数,互相关函数

M SEQUENCE GENERATION AND PERFORMANCE ANALYSIS ABSTRACT In spread-spectrum communication, pseudo-random sequence must have high autocorrelation value, low cross correlation, long code period and lots of dependent address to satisfy code division multiple access(CDMA). M sequence is one kind of the pseudo-random sequences. It can be may obtained through adding entire 0 states to m sequence. The number of M sequence is greater than the m-sequence under the same level shift register. It may supply the more choice. The M-sequence is often applied to the frequency hopping and adds the password to have greatly strengthened anti- solves the ability. At first, M sequences which has n=4、5、7 levels of shift registers are produced under Simulink of Matlab. The time domain chart, the spectrograph, the mutual correlation chart are plotted. Through the time domain chart and the spectrograph, we could see how the bandwidth of the information signal is expanded. The pseudo-random symbol speed rate higher noise signal frequency spectrum is proliferated widely, the output power spectrum scope is lower. This can explain the spread-spectrum communication system principle from the frequency range. Through the M sequence’s auto correlation chart we can see that the auto correlation of M-sequence is quite good but is inferior to the m sequence. Finally, the M sequence is applied to the code division multiple access (CDMA) communication system. This is the spread-spectrum communication foundation. KEY WORDS:Pseudo-random code, auto-correlation, cross-correlation

直接序列扩频通信系统仿真

直接序列扩频通系统仿真 一、课程设计目的 学习扩频通信系统的原理,理解扩频通信系统性能能指标的意义,学会分析扩频通信系统性能能指标的方法。学会根据给定的系统参数和性能,设计扩频通信系统的方法。 二、课程设计基本要求 1、学会MATLAB的使用和MATLAB的程序设计方法; 2、掌握扩频通信系统的原理; 3、理解扩频通信系统性能指标的意义; 4、能够用Monte Carlo仿真估计直接序列扩频通信系统的性能。 三、课程设计内容 1、讨扩频通信系统的原理,分析直接序列扩频通信系统的性能; 2、讨论根据给定的系统参数和性能,设计扩频通信系统的方法; 3、通过Monte Carlo仿真,说明直接序列扩频通信系统在抑制正弦干扰方面的有效性。仿真系统的方框图如图: 四、理论基础 4.1扩频通信的背景 扩展频谱通信是建立在Claude E.Shannon的信息论基础之上的一种新型的通信体制。由于扩频通信体制具有抗干扰能力强、截获率低、码分多址、信号隐蔽、测距和易于组网等一系列优点,自从问世之后便引起了世界各国的极大关注,并率先应用在军事通信中。随着近年来大规模、超大规模集成电路和微处理器技的广泛应用,以及一些新型器件的应用,扩频技术的应用形成了新的高潮。事实上,扩频通信已成为电子对抗环境下提高通信设备抗干扰能力的最有效的手段,并在近十几年来爆发的几场现代化战争中发挥了巨大的威力。随着CDMA扩频通信技术在民用通信中的深入应用和不断渗透,以及在卫星通信、深空通信、武器制导、GPS全球定位系统和跳频通信等民用和国防民事通信的强烈需求下,扩谱通信的地位越来越重要了。 4.2直接序列扩频通信原理理论基础 直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10DB以上,从而有效地提高了整机倍噪比。

三种扩频码的作用

短码、长码和Walsh码 直序列扩频通信系统 扩频通信是一种无线通信技术。他所用的传送频带比任何用户的信息频带和数据速率都大许多倍。用W表示传送带宽(单位为Hz),用R表示数据速率(单位为bit/s),W/R被称为扩展系数或处理增益。W/R的值一般可以在一百到一百万的范围(20db~60db)。 讲到这里,不得不把香农老先生搬出来,这个人可是咱们现代通信理论的奠基人,严重的崇拜(可惜他的著作《信息论》咱实在是看不懂啊,汗!) 香农容量公式(Shannon’ scapacityequation),这个公式放在这里,人老先生费半天劲搞出来的,我们不去讨论其推算原理,只认为这是正确的。哦,香农还指出这是在加性高斯白噪声的信道模型下的公式,基本上我们现在的移动通信就是用这个东东啦。 C=Blog2[1 + S/N] 其中:B为传送带宽(单位为Hz); C为信道容量(单位为bit/s);

S/N为信号噪声功率比。 传统通信系统通常压缩信号速率至尽可能小的带宽信道进行传送,cdma系统则采用宽带信道传送信号,以获得处理增益,提高信道容量。为什么哪?根据香农公式,他老人家说增加信道带宽可以换取更高的信道容量或者是更低的信噪比,以提高收发双方通信的可靠性。 当一个用户以9600bps速率进行语音通信时,cdma的信道带宽是1,228,800hz,处理增益为1,228,800hz/9600=128=21dB。以此推算,每当用户数增加一倍,信道处理增益下降3db,当用户数达到32个时,信噪比接近底线,达到单扇区容量极限。实际上,cdma系统对单载波单扇区通话的用户数进行了限制,以确保系统处理增益可以保持在理想的水平。 发信者把需传送的低速数据与一组快速扩频序列合成后通过发射机发射出去,接收者从空中借口截取信息流后,用同一快速扩频序列进行解扩频,从而得到原始信息。 好,扩频的概念有了。我们再接着往下看。 cdma系统通过码片(chip)来传输信号(signal),通常每一比特信息要占用几个码片。所有用户共用cdma信道资源,每个用户拥有自己唯一的码型以区别

相关主题
相关文档 最新文档