当前位置:文档之家› 低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析
低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析

题目:低碳钢和铸铁的力学性能分析

学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月

低碳钢和铸铁的力学性能分析

作者:xxx

作者单位:255000 山东理工大学

摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。材料的力学性

能是零件设计、材料选择及工艺评定的主要依据。本文主要讨论低碳钢和铸铁的力学性能

在拉伸和压缩情况下的影响。

关键词:低碳钢、铸铁、拉伸、压缩

(一)材料微观组成分析

材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料

的组成成分。而研究材料的组成成分需要从下面这张铁碳合金相图说起。

这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。低碳

钢是指碳含量

低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试

验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3%

Ws≤0.15% Wp≤0.3%。低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体

是珠光体二次渗碳体和莱氏体。铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。

渗碳体是一种复

杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。珠光体

是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。

1

2

(二)拉伸试验

12

A :奥氏体 F:铁素体 P:珠光体 Fe3C:渗碳体 Ld:莱氏体

δ:固相区 L:液相区

1

低碳钢碳含量较低,请强度硬度低,塑形较好,拉伸实验结果

3

如图可分为四个阶段,即弹性阶段、屈服阶段、强化阶段和局部变形阶段,对应应力

大小分别为ζe、ζs、ζp,材料的变形程度逐渐变大。在弹性阶段符合胡克定律应力ζ

与应变ε成正比,即ζ=Eε,E为弹性模量,这种变形成为弹性变形。a点到b点,ζ

与ε之间的关系不再是直线,但二者距离很近,不做区分,b点对应的应力ζe

是材料只出现弹性变形极限值,称为弹性极限;在屈服阶段,当应力超过b点增加到

某一值时,应变有明显的增大,而应力先是下降,然后作微小的波动,在图中接近水平线

的小锯齿形折线,这种现象叫做屈服或流动。在屈服阶段内的最高应力和最低应力分别上

屈服极限和下屈上屈服极限的值与试样形状、加载速度等因素有关,不稳定。下屈服极限

则比较稳定,能反应材料的性能,称为屈服极限或屈服点,用ζs表示。在拉伸时在与杆

线成45°倾角的斜截面上切应力最大,结果就是在磨光的试样屈服时,表面将出现与轴线大致成45°倾角的条纹,可见屈服现象的出现与最大切应力有关,断口处出现明显的缩颈现象。材料屈服表现为显著的塑形变形,而某些构件的塑形变形将影响机器的正常工作,

所以屈服极限ζs是衡量强度的重要指标。度过屈服阶段后,进入强化阶段,在此阶段材

料恢复了抵抗变形的能力,要使它继续变形必须加大拉力,这种现象叫做材料的强化。强

化阶段最高点e对应应力ζb是材料所能承受的最大拉力,称为强度极限或抗拉强度。它

是衡量材料强度的又一重要指标。在此阶段,试样的横向尺寸有明显的缩小。接下来就是

局部变形阶段,过了e点后,在试样的某一局部范围内,横向尺寸突然急剧缩小,出现颈

缩现象。由于在颈缩部分横截面面积急剧缩小,使试样继续拉长所需要的应力也相应减小,在图中应力降落到f点,试样被拉断。

脆性材料的拉伸相对来说比较简单。如图一所示,应力-应变关系是一段微弯曲线,

没有明显的直线

部分。在较小的拉应力下就会被拉断,没有屈服和颈缩现象,拉断前的应变很小,伸

长率也很小,断口的形状为平面。铸铁拉断时的最大应力即为其强度极限,由于没有屈服

现象ζb是衡量强度的唯一指标。铸铁等脆性材料的抗拉强度很低,所以不宜做抗拉零部

件的材料。铸铁经过球化处理后成为球墨铸铁,力学性能

有显著变化,有较高的强度和较好的塑形。

L1?LL

塑形材料的变形程度通常可以用伸长率δ和断面收缩率ψ来衡量。对应公式为

δ=×100%(L1:试

样断后长度 L:试样原始长度)低碳钢的伸长率平均值可以达到20%~30%,说明其塑形良好。在工程中按δ的大小通常把δ>5%的材料称为塑形材料,如碳钢、黄铜、铝合金等;把δ

2

铁、陶瓷、玻璃等。对于没有明显屈服阶段的塑形材料,可经将产生0.2%塑形应变时的应力作为屈服指标,成为名义屈服极限或条件屈服极限,用ζ0.2来表示。ψ=

A?A1A

×100%(A1:材料拉断后颈缩处最小横截

面面积 A:材料原始横截面面积)ψ也是衡量材料塑形的指标。

(三)压缩试验

低碳钢压缩时的E和ζs都与拉伸大致相同,如图。进入屈服阶段后,试样越压越扁,横截面积不断增大,试样抗压能力继续增强,因而得不到压缩时的强度极限。由于可以从

拉伸试验测定低碳钢压缩时的主要性能,所以实用上不一定要进行压缩试验。

铸铁进行压缩试验时,试样在较小的变形下突然破坏。破坏断面的法线与轴大致成45°~55°的倾角,因为在此方向上其所受的切应力最大,表明试样沿斜截面因相对错动

而破坏。铸铁的抗压强度极限比它的抗拉强度极限高4~5倍。其它脆性材料,如混凝土、石料等,抗压强度极限也远高于抗拉强度极限。脆性材料抗拉强度低,塑形差,但抗压能

力强,价格低廉,宜作为抗压构件的材料。铸铁坚硬耐磨,易于浇筑成形状复杂的零部件,广泛用于铸造机床床身、机座、缸体及轴承等受压零部件。因此其压缩试验比拉伸试验更

为重要。

低碳钢压缩试验图铸铁压缩试验图

参考文献

【1】刘鸿文主编.材料力学Ⅰ第五版.北京:高等教育出版社,2019.1

【2】于文强陈宗民主编.金属材料及工艺.北京:北京大学出版社,2019.9

3

球墨铸铁标准

标准 CXB01-2014 南乐县昌盛线路器材有限公司 线路器材球铁件 1.主题内容与适用范围 本标准规定了线路球铁件采用的国家标准和客商要求的美国标准,球铁牌号和技术条件。 本标准适用于砂型铸造的球墨铸铁件。 2.线路球墨铸铁件使用标准和牌号 GB1348-1988 单铸试块的力学性能。附表1 ANSI/ASTM A536-84 球墨铸铁件标准 附表2 球墨铸铁的拉伸性能(单铸试样)

GB1412-85 球墨铸铁用生铁附表3 GB9941-88 球化分级附表4 珠光体数量分级(GB9941-88) 附表5

热镀锌标准: ANSI/ASTMA-153CLASSA,锌层平均厚度不小于86um,最薄厚度不小于70um. 3.技术要求。 生产方法:线路球墨铸铁件采用国标生铁,中频感应电炉熔炼,出铁温度控制在1570℃~1610℃冲入法球化,二次孕育,湿砂型浇注或覆膜砂壳型浇注。开箱温度不超过550℃,砂轮机清除冒口残根,履带式抛丸清理机清理表面。热镀锌表面处理,其锌层平均厚度不小于86um.出口箱包装,汽车运输至北京帕尔普线路器材有限公司。 机械性能:本线路件以机械性能的抗拉强度和延伸率以及客商提供的图纸要求为验收依据,屈服点,硬度为参考,但必须在工艺控制上符合本标准的牌号规定。 化学成分:化学成分不作为验收依据,是工艺控制的重要指标,依据美国帕尔普公司的建议,推荐化学成分如下: 附表6 建议化学成分 球化级别和基体组织:本产品依据客商提供图纸的要求,球化级别为1-2级,最低不低于3级。符合GB9941-88的规定,石墨球数不小于100,符合GB9941-88的规定。其基体组织及硬度依据美国帕尔普线路器材有限公司建议推荐如下: 附表7 建议基体组织及硬度

钢材的力学性能

B 钢材的力学性能 含碳2%以下的铁碳合金称为钢。炼钢的主要任务是按所炼钢种的质量要求,调整钢中碳和合金元素含量到规定范围之内,并使P 、S 、H 、O 、N 等杂质的含量降至允许限量之下。炼钢过程实质上是一个氧化过程,炉料中过剩的碳被氧化,燃烧生成CO 气体逸出,其它Si 、P 、Mn 等氧化后进入炉渣中。S 部分进入炼渣中,部分则生成SO 2排出。当钢水成份和温度达到工艺要求后,即可出钢。为了除去钢中过剩的氧及调整化学成份,可以添加脱氧剂和铁合金或合金元素。 1、拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 (1)强度 金属材料在外力作用下,抵抗变形和断 裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 (2)比例极限 对金属施加拉力,金属存在着力与 变形成直线比例的阶段,而这个阶段的最大极限负荷Pp 除以试样的原横截面积即为比例极限,用σP 表示。 (3)弹性极限 金属受外力作用发生了变形,外力 去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe 表示。 (4)抗拉强度 试样拉伸时,在拉断前所承受的最大 负荷除以原横截面积所得的应力,称作抗拉强度,用σb 表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb 越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb 的最小值为400MPa ,超高强度钢是指σb ≥1373MPa 的钢。 (5)屈强比 屈强比即屈服强度与抗拉强度之比值 (σS /σb )。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS /σb ≥0.90)。此外,疲劳寿命与抗拉强度及表面质 量往往有很大关联。 (6)塑性 金属材料在受力破坏前可以经受永久变 形的性能称为塑性。塑性指标通常用伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 2、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk 表示。 目前常用的10mm ×10mm ×55mm 、带2mm 深的V 形缺口夏氏冲击试样,标准上直接采用冲击功AK ,而不是采用αk 值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT (断口面积转化温度)要低于某一温度的技术条件。所谓FATT ,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm 的钢板,可取得3/4小尺寸冲击试样(7.5mm ×10mm ×55mm )或1/2小尺寸冲击试样(5mm ×10mm ×55mm )。但是一定要注意,同规格及同温度下的冲击功值才可相互比较。只有在标准规定的条件下,才可按标准的换算方法,折算成标准冲击试样的冲击功,再相互比较。 3、硬度试验 金属材料抵抗压头(淬硬的钢球或具有1200圆锥或角锥的金刚石压头)压陷表面的能力称为硬度。根据试验方法和适用范围的不同,硬度可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度以及显微硬度、高温硬度等。冶金产品常用的是布氏硬度和洛氏硬度。 4、宝钢企业标准(Q/BQB ) 宝钢企标中的钢号大致可分为3个来源:即从日本JIS 标准、德国DIN 标准移植及自行开发研制的钢号。从日本JIS 标准中移植来的钢号,一般首位常为S (Steel );从DIN 标准移植来的钢号,一般常以ST 开头(Stahl 德文中的“钢”);宝钢自行开发研制的钢号,一般首位常以宝钢的拼音首位B 开头。(作者单位:辽阳县产品质量监督检验所) □谷迎春王立伟 质量论谈 4

112 碳钢的力学性能

【课题】1、1、2 了解碳钢的力学性能(授课人:王竞男) 【授课类型】理论课 【教学目标】 【知识与技能目标】 1、了解碳钢常见的力学性能:强度、塑性、硬度、韧性与疲劳强度的含义及其衡量指标; 2、了解拉伸试验的原理、过程,常见的硬度测试方法及其指标; 3、进一步理解常见类型碳钢及其力学性能特点。 【过程与方法目标】 1、通过学习碳钢常见的力学性能及其衡量指标,理解力学性能对碳钢应用的重要影响; 2、通过学习拉伸试验的原理、观瞧拉伸试验过程的视频,了解碳钢强度、塑性衡量指标的来源 与含义; 3、了解硬度测试方法与类型,能根据材料类型初步选择合适的硬度。 【情感态度与价值观目标】 1、通过对材料的拉伸试验、硬度测试方法的学习,形成科学严谨的学习态度; 2、通过对碳钢的力学性能与其衡量指标的学习,懂得方法的选择以合适、恰当为最好。 【教学重点】1、碳钢常见的力学性能:强度、塑性、硬度、韧性与疲劳强度的含义及其衡量指标; 2、拉伸试验过程与硬度测试方法。 3、常见类型碳钢及其力学性能特点。 【教学难点】常见类型碳钢及其力学性能特点。 【教学方法】 学情分析:学生已经对碳钢及其成分有了一定的认识,但对碳钢力学性能及其衡量指标缺乏系统的认知,且由于学生在力学相关的物理学科知识方面基础薄弱,所以在学习力学性能部分时,应联系生活、生产中生动形象的实际例子帮助学生理解。 教法:读书指导法、问题引导法、小组讨论法 学法:以自学法为主,配合讨论法 【教学用具】多媒体设备及多媒体课件 【教学时间】2课时(90分钟) 【教学过程】 一、新课导入(7分) 师:同学们,本节课我们将进一步深入学习与了解碳钢的力学性能。假如您已经步入工作岗位,现在需要为一批订单选购适于数控车削的原材料,那么您会从哪些方面来挑选?请简要说明原因。下面给大家半分钟思考时间,然后分别请几位同学为大家举例。 生:材料的软硬程度,这将决定其就是否适宜车削加工…… 师:碳钢之所以获得广泛应用,就是由于它具有良好的力学性能。碳钢的力学性能不但就是设计零件、选用材料的重要依据,而且也就是按验收标准来鉴定材料的依据以及对产品工艺进行质量控制的重要参数。 下面,就让我们进入到今天这节课的学习——碳钢的力学性能。 二、明确目标 结合PPT展示,明确本节课的学习目标与学习重、难点,让学生将任务了然于胸。 三、讲授新课 1、强度与拉伸试验

灰铸铁力学性能测试(长安大学)

综合实验:灰铸铁力学性能测试 一、实验目的: 目的是培养学生,理论联系实际的学风,独立动脑分析问题,独立动手解决问题,独立设计实验方案,独立完成实验全过程,独立总结实验过程的实际工作能力和初步的创新能力。 二、实验内容 我们小组拿到的是灰铸铁试样,由小组8人进行不同的热处理工艺,如表所示:工艺编号 1 2 3 4 5 6 7 8 正火℃无860 无无无无无无 淬火℃无无860 (水) 860 (水) 860 (油) 860 (油) 860 (油) 860 (油) 回火℃无无无560 无560 460 260 我选择的工艺是第7组. 二、实验步骤: 2.对灰铸铁进行淬火,温度860℃,保温10分钟,淬火介质为油。 3.测试淬火后试样的硬度值(洛氏硬度试验机)。 4.对试样进行回火处理,温度460℃,保温60分钟,取出后空冷。 5.测试回火后的试样硬度值(洛氏硬度试验机)。 6.通过打磨、研磨、抛光、侵蚀,在金相显微镜下观察试样经过处理后的金相组织,观察后拍照。 三、实验结果: 1.试样硬度表(HRC) 试 样编号 次数 1 2 3 4 5 6 7 8 120.9 11.6 42.7 -10.0 —-5.5 8.9 28 221.0 13.3 41.9 0.0 —-6.3 4.7 31.2 319.6 11.1 40.6 -8.5 —-4.7 8.8 26.1 422.9 10.0 35 -20.0 —-3.7 7.0 30.9 521.7 10.3 54.6 -11.3 —-6.5 8.0 31.5

平均21.22 11.26 42.96 -9.96 23.01-5.34 7.48 29.54 45#2—15.0 60.0 21.0 26.0 16.0 —— 1、此数据为我的式样测得的平均值; 2、45钢的硬度数据综合了其他组同学的数据; 3、一般资料上面对于铸铁硬度的表示采用的是布氏硬度,但由于布氏硬度测量麻烦,故我们采用洛氏硬度表示,必要时可进行硬度换算。 四、实验分析: 灰口铸铁是指含有片状石墨组织的铸铁,这种铸铁因其断面呈灰黑色而得名,其基体组织则分为三种类型:铁素体、珠光体及铁素体+珠光体,从组织可以看出灰口铸铁中的碳大部或全部以片状石墨形式存在(如图8),片状石墨单晶体是由许多薄片晶层叠集而成,薄片晶之间存在着许多亚结构,普通铸铁的石墨晶体中,总是存在许多晶体缺陷。灰口铸铁中的石墨与钢的基体相比,可以把灰铸铁的组织看做是“钢的基体”加上片状石墨的夹杂,石墨的力学性能几乎可以看做为“0” ,而片状石墨的存在相当于基体中许多小的裂纹,破坏了材料的连续性和整体性,减少了基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,是材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多,石墨片的量愈多,尺寸愈大,其其影响也愈大。石墨虽然降低了铸铁的力学性能,但使铸铁获得了许多钢没有的优良性能。 灰铸铁的金属基体与碳钢基本相似,但由于灰铸铁内的硅、锰含量与碳钢相比较高,它们能溶解于铁素体中使铁素体得到强化。因此,铸铁中就金属基体而言,其本身的强度比碳钢要高。例如,碳钢中铁素体的硬度约为80HBS,而灰铸铁中铁素体的硬度约为100HBS,一般情况下铁素体灰口铸铁的硬度在143~229HBS(<0.9~22.5HRC)[布氏硬度值数据来自参考资料6,175页表7-1]。灰铸铁通常测定布氏硬度,因为布氏硬度试验范围适合测定铸铁,而且压痕面积大,能够覆盖较多显微组织,反映多相组织硬度综合值。但是由于实验室设备有限,以及我们操作能力不足,故而测定的是灰铸铁的洛氏硬度HRC,在必要条件下可通过查表换算出其大概的布氏硬度。有教材上说[7] ,灰口铸铁的布氏硬度值与同样基体的正火钢相近,这在上面硬度表中似乎得到说明。 基于以上原因老师指导我们按照45钢的热处理工艺处理灰铸铁,我们首先对灰铸铁试样进行了分析,在做金相分析后确定我们拿到的试样是铁素体基灰铸铁,如图1。我的试样按照预先设定的实验步骤进行处理。最后打硬度平均值为7.48,相当与布氏硬度170左右,属于143~229HBS范围之内,拍金相照片得到图6。 以下是不同工艺后拍的金相图片:

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

低碳钢和铸铁在拉伸试验中的力学性能教学内容

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能 根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1、低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段 在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。当材料屈服时,如果用砂纸将试件表面 1 打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(ζb ),强度极限所对应的载荷为试件所能承受的最大载荷 Fb 。 (4)局部变形阶段 试样拉伸达到强度极限ζb 之前,在标距范围内的变形是均匀的。当应力增大至强度极限ζb 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲 2

影响钢材力学性能的因素2

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

实验一低碳钢和铸铁拉伸时力学性能地测定

实验一 低碳钢和铸铁拉伸时力学性能的测定 一、实验目的 1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象; 2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ; 3.了解万能材料试验机的结构原理,能正确独立操作使用。 二、实验设备 1.SHT5305拉伸试验机。 2.x —Y 记录仪。 3.游标卡尺。 三、拉伸试样 四、实验原理和方法 首先将试件安装于试验机的夹头,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。 1.弹性阶段 是指拉伸图上的OA ′段,没有任何残留变形。在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。 2.屈服阶段 对应拉伸图上的BC 段。金属材料的屈服是宏观塑性变形开始的一种标志,

是位错增值和运动的结果,是由切应力引起的。在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为 0/A F SL S =σ 3.强化阶段 对应于拉伸图中的CD 段。变形强化标志着材料抵抗继续变形的能力在增强。这也表明材料要继续变形,就要不断增加载荷。D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ 0/A F b b =σ 4.颈缩阶段 对应于拉伸图的DE 段。载荷达到最大值后,塑性变形开始局部进行。这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。材料的塑性性能通常用试样断后残留的变形来衡量。轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为 %100/001?-=l l l )(δ %100/010?-=A A A )(ψ 式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长度和断口面积。 五、实验步骤 1.取实验材料,并用游标卡尺量取其直径(量三次取平均值),记为d 0; 2.量取试样标记围的长度(量三次取平均值),记为l 0; 3.将试样架在万能试验机上夹紧; 4.通过电脑控制给试样加载,并观察材料的变形过程,同时电脑将自动绘制出拉伸曲线; 5.待材料拉断为止,取下试样测量拉伸后试验的直径和长度(均测量三次),分别记作d 1,l 1。 六、数据记录及处理 1.拉伸试样拉伸前后的直径和长度

碳钢的力学性能

【课题】了解碳钢的力学性能(授课人:王竞男) 【授课类型】理论课 【教学目标】 【知识与技能目标】 1.了解碳钢常见的力学性能:强度、塑性、硬度、韧性和疲劳强度的含义及其衡量指标; 2.了解拉伸试验的原理、过程,常见的硬度测试方法及其指标; 3.进一步理解常见类型碳钢及其力学性能特点。 【过程与方法目标】 1. 通过学习碳钢常见的力学性能及其衡量指标,理解力学性能对碳钢应用的重要影响; 2. 通过学习拉伸试验的原理、观看拉伸试验过程的视频,了解碳钢强度、塑性衡量指标 的来源和含义; 3. 了解硬度测试方法和类型,能根据材料类型初步选择合适的硬度。 【情感态度与价值观目标】 1.通过对材料的拉伸试验、硬度测试方法的学习,形成科学严谨的学习态度; 2.通过对碳钢的力学性能与其衡量指标的学习,懂得方法的选择以合适、恰当为最好。 【教学重点】1. 碳钢常见的力学性能:强度、塑性、硬度、韧性和疲劳强度的含义及其衡量指标; 2. 拉伸试验过程和硬度测试方法。 3. 常见类型碳钢及其力学性能特点。 【教学难点】常见类型碳钢及其力学性能特点。 【教学方法】 学情分析:学生已经对碳钢及其成分有了一定的认识,但对碳钢力学性能及其衡量指标缺乏系统的认知,且由于学生在力学相关的物理学科知识方面基础薄弱,所以在学习力学性能部分时,应联系生活、生产中生动形象的实际例子帮助学生理解。 教法:读书指导法、问题引导法、小组讨论法 学法:以自学法为主,配合讨论法 【教学用具】多媒体设备及多媒体课件 【教学时间】2课时(90分钟) 【教学过程】 一、新课导入(7分) 师:同学们,本节课我们将进一步深入学习和了解碳钢的力学性能。假如你已经步入工作岗位,现在需要为一批订单选购适于数控车削的原材料,那么你会从哪些方面来挑选请简要说明原因。下面给大家半分钟思考时间,然后分别请几位同学为大家举例。 生:材料的软硬程度,这将决定其是否适宜车削加工…… 师:碳钢之所以获得广泛应用,是由于它具有良好的力学性能。碳钢的力学性能不但是设计零件、选用材料的重要依据,而且也是按验收标准来鉴定材料的依据以及对产品工艺进行质量控制的重要参数。 下面,就让我们进入到今天这节课的学习——碳钢的力学性能。 二、明确目标 结合PPT展示,明确本节课的学习目标和学习重、难点,让学生将任务了然于胸。 三、讲授新课

球墨铸铁

球墨铸铁 球墨铸铁是指铁液经球化处理后,使石墨大部或全部呈球状形态的铸铁。 与灰铸铁比较,球墨铸铁的力学性能有显著提高。因为它的石石墨呈球状,对基体的切割作用最小,可有效地利用基体强度的70%~80%灰铸铁—般只能利用基体强度的30%。球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了工业性生产。而且,各个时期都有代表性的产品或技术。20世纪50年代的代表产品是发动机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面轻量化、近终型球墨铸铁。 如今,球墨铸铁已在汽车、铸管、机床、矿山和核工业等领域获得广泛的应用。据统计,2000年世界的球墨铸铁产量已超过1500万吨o 球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。 表1xx试块球墨铸铁牌号 牌号 QT400-18 QT400-15 QT450-10 QT500-7 QT600-3 QT700-2 QT800-2抗拉强度Rm

MPa 400 400 450 500 600 700 800断后伸长率A%18 15 107322布氏硬度 HBW 130~180 130~180 160~210 170~230 190~270 225~305 245~335主要金相组织 铁素体铁素体+珠光体+铁素体珠光体或回火组织贝氏体或回火组织QT900-~360

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

铸铁的基础知识

2 铁—碳相图及其应用 正是因为铸铁的组织与铸铁的力学性能、铸造性能和使用性能,甚至切削加工性能等息息相关,我们就必须要掌握铸铁组织的形成规律,以达到控制组织和性能的目的。铁—碳平衡图就是掌握凝固过程及其形成组织极好工具,从中可以了解铸铁的凝固规律,控制所获得凝固组织的种类、形状和多少。 另外,生产中有多种因素会影响铸铁组织的形成,从铁—碳平衡图上也可一目了然地分析出这些因素对组织的影响情况,从而可通过控制形成的组织类型和数量来控制铸件的性能。 所以,铸造技术人员必须具备熟练应用铁—碳平衡图的能力,这样才能在生产实践中对铸件产生的各类问题进行有理论依据的分析和找出有针对性的解决办法。 2.1 铸铁的分类 铸铁是一种以Fe、C、Si为基础的多元合金,其中碳含量(质量分数)为2.0%~4.0%。铸铁成分中除C、Si外,还有Mn、P、S,号称五大元素。 在铸铁中加入Al、Cr、Ni、Mn等合金元素,可满足耐热、抗磨、耐腐蚀等性能要求,所形成的合金铸铁又称为特种铸铁。 按使用性能,铸铁可被分为工程结构件铸铁与特种性能铸铁两大类(见表14)。 表14 铸铁的分类

2.2 铁—碳双重相图 2.2.1 铁—碳双重相图的基本概念 表示合金状态与温度、成分之间关系的图形称为合金相图,是研究合金结晶过程中组织形成与变化规律的工具。在极缓慢冷却条件下,不同成分的铁—碳合金在不同温度时形成各类组织的图形为铁—碳合金相图。 铸铁中的碳能以石墨或渗碳体两种独立相存在,因此铁—碳相图存在两重性,即铁—石墨(C)相图与铁—渗碳体(Fe3C)相图。在一定条件下,Fe—Fe3C 系相图可以向Fe—C系相图转化,所以Fe—C为稳定系平衡相图,Fe—Fe3C为亚稳定系相图(见图16)。

低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析 题目:低碳钢和铸铁的力学性能分析 学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月 低碳钢和铸铁的力学性能分析 作者:xxx 作者单位:255000 山东理工大学 摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。材料的力学性 能是零件设计、材料选择及工艺评定的主要依据。本文主要讨论低碳钢和铸铁的力学性能 在拉伸和压缩情况下的影响。 关键词:低碳钢、铸铁、拉伸、压缩 (一)材料微观组成分析 材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料 的组成成分。而研究材料的组成成分需要从下面这张铁碳合金相图说起。 这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。低碳 钢是指碳含量 低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试 验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3% Ws≤0.15% Wp≤0.3%。低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体 是珠光体二次渗碳体和莱氏体。铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。 渗碳体是一种复 杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。珠光体 是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。 1 2 (二)拉伸试验

钢材—含碳量对碳钢的组织和力学性能的影响

钢材—含碳量对碳钢的组织和力学性能的影响 含碳量少,一般组织由铁素体和珠光体组成,淬火后多为板条马氏体;低碳钢韧性大,硬度低,耐磨性差含碳量高,组织一般由渗碳体跟珠光体组成,淬火后多为片状马氏体;高碳钢脆性大,硬度高,耐磨性好一般碳的含量越高硬度越大,韧性降低! 以下是各种钢的特点的一些简介: 1 碳钢碳钢也叫碳素钢,是含碳量wc小于2%的铁碳合金。碳钢除含碳外一般还含有少量的硅、锰、硫、磷。按用途可以把碳钢分为碳素结构钢、碳素工具钢和易切削结构钢三类。碳素结构钢又可分为建筑结构钢和机器制造结构钢两种。按含碳量可以把碳钢分为低碳钢(wc≤0.25%),中碳钢(wc 0.25%一0.6%)和高碳钢(wc >O.6%)按磷、硫含量可以把碳素钢分为普通碳素钢(含磷、硫较高)、优质碳素钢(含磷、硫较低)和高级优质钢(含磷、硫更低) 。一般碳钢中含碳量越高则硬度越高,强度也越高,但塑性降低。 2 碳素结构钢这类钢主要保证力学性能,故其牌号体现其力学性能,用Q+数字表示,其中“Q”为屈服点“屈”字的汉语拼音字首,数字表示屈服点数值,例如Q275表示屈服点为275MPa。若牌号后面标注字母A、B、C、D,则表示钢材质量等级不同,含s、P 的量依次降低,钢材质量依次提高。若在牌号后面标注字母“F”则为沸腾钢,标注“b”为半镇静钢,不标注“F,’或“b”者为镇静钢。例如Q235-A·F表示屈服点为235MPa的A 级沸腾钢,Q235-c表示屈服点为235MPa的c级镇静钢。碳素结构钢一般情况下都不经热处理,而在供应状态下直接使用。通常Q195、Q215、Q235钢碳的质量分数低,焊接性能好,塑性、韧性好,有一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构和制造普通铆钉、螺钉、螺母等零件。Q255和Q275钢碳的质量分数稍高,强度较高,塑性、韧性较好,可进行焊接,通常轧制成型钢、条钢和钢板作结构件以及制造简单机械的连杆、齿轮、联轴节、销等零件。 3 优质结构钢这类钢必须同时保证化学成分和力学性能。其牌号是采用两位数字表示钢中平均碳的质量分数的万分数(wс×10000)。例如45钢表示钢中平均碳的质量分数为0.45%;08钢表示钢中平均碳的质量分数为0.08%。优质碳素结构钢主要用于制造机器零件。一般都要经过热处理以提高力学性能。根据碳的质量分数不同,有不同的用途。08、08F、10、10F钢,塑性、韧性高,具有优良的冷成形性能和焊接性能,常冷轧成薄板,用于制作仪表外壳、汽车和拖拉机上的冷冲压件,如汽车身、拖拉机驾驶室等;15、20、25钢用于制作尺寸较小、负荷较轻、表面要求耐磨、心部强度要求不高的渗碳零件,如活塞销、样板等;30、35、40、45、50钢经热处理(淬火+高温回火)后具有良好的综合力学性能,即具有较高的强度和较高的塑性、韧性,用于制作轴类零件,例如40、45钢常用于制造汽车、拖拉机的曲轴、连杆、一般机床主轴、机床齿轮和其他受力不大的轴类零件;55、60、65钢热处理(淬火+中温回火)后具有高的弹性极限,常用于制作负荷不大、尺寸较小(截面尺寸小于12~15mm)的弹簧,如调压和调速弹簧、柱塞弹簧、冷卷弹簧等。 4 碳素工具钢碳素工具钢是基本上不含合金元素的高碳钢,含碳量在0.65%~1.35%范围内,其生产成本低,原料来源易取得,切削加工性良好,处理后可以得到高硬度和高耐磨性,所以是被广泛采用的钢种,用来制造各种刃具、模具、量具但这类钢的红硬性差,即当工作温度大于250℃时,钢的硬度和耐磨性就会急剧下降而失去工作能力。另外,碳素工具钢如制成较大的零件则不易淬硬,而且容易产生变形和裂纹。 5 易切削结构钢易切削结构钢是在钢中加入一些使钢变脆的元素,使钢切削时切屑易脆断成碎屑,从而有利于提高切削速度和延长刀具寿命。使钢变脆的元素主要是硫,在普通低合金易切削结构钢中使用了铅、碲、铋等元素。这种钢的含硫量ws在0.08%一0.30%范围内,含锰量wMn在0.60%-1.55%范围内。钢中的硫和锰以硫化锰形态存在,硫化锰很脆并有润滑效能,从而使切屑容易碎断,并有利于提高加工表面的质量。 6 合金

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度围,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

07实验一低碳钢拉伸时的力学性能

《力学原理与工程应用》教案 实验项目:低碳钢拉伸时力学性能 实验时间: 实验地点:建筑工程学院力学实验室 实验课时:2H 同组成员: 一、实验目的 1、研究低碳钢的应力-应变曲线图 2、测定低碳钢屈服极限c s、强度极限c b、断后伸长率A、断面收缩率z 二、实验设备: WE-600B型万能材料试验机、游标卡尺 三、实验原理

1、构件的强度和变形不仅与构件的尺寸和承受的载荷有关,而且与所选用材料的力学性能有关。 2、材料的力学性能是指材料承载时,在强度和变形等方面所表现出来的特性,一般由试验来确定。 3、只讨论在常温和静载条件下材料的力学性能。所谓常温就是指室温,静载是指载荷从零开始缓慢地增加到一定数值后不再改变(或变化极不明显)的载荷。 4、试件。必须按照国家标准(GB228-76)加工成标准试件。通常采用圆截面的标准 长试件(丨10d )或短试件(丨5d )。 5、由于加工中存在误差,所以试验前要进行相关尺寸的测量。 &将试件装在夹头中,然后开动机器缓慢增加载荷。 7、试件受到由零逐渐增加的拉力F作用,同时发生伸长变形,加载一直进行到试件断裂为止。 8、这一过程中,试验机的测力示值系统会显示出每一时刻的拉力F,试验机的位移-载荷记录系统会将每一时刻的拉力F和对应的变形I自动绘制成拉伸图。 9、拉伸图反映出试件的力学性能与试件的尺寸是相关的。为了消除试件几何 尺寸的影响,利用F N 和—,将拉伸图转化为应力-应变曲线。应力-应变A I 曲线反映试件材料本身的力学性能。 四、实验步骤 1、试件尺寸测量 2、安装试件,检查并启动机器 3、缓慢增加载荷,直至试件断裂为止 4、收集机器自动绘制的拉伸图 5、绘制应力-应变图 &计算分析得到材料的屈服极限、强度极限、断后伸长率、断面收缩率

钢材的机械性能

钢材的机械性能 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设P s为屈服点s处的外力,F o为试样断面积,则屈服点σs=P s/F o(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设P b为材料被拉断前达到的最大拉力,F o为试样截面面积,则抗拉强度σb= P b/F o(MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 ⑶维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 SPCC、SECC、SGCC 的差异性

相关主题
文本预览
相关文档 最新文档