当前位置:文档之家› 事件的相互独立性教案

事件的相互独立性教案

事件的相互独立性教案
事件的相互独立性教案

§2.2.2事件的相互独立性

教学目标:

知识与技能:理解两个事件相互独立的概念。

过程与方法:能进行一些与事件独立有关的概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:独立事件同时发生的概率

教学难点:有关独立事件发生的概率计算

授课类型:新授课

课时安排:2课时

教学过程:

一、复习引入:

1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;

必然事件:在一定条件下必然发生的事件;

不可能事件:在一定条件下不可能发生的事件

2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m

总是接近某个常数,在它附近摆动,这时就把这个常数叫

n

做事件A的概率,记作()

P A.

3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1

≤≤,必然事件和不可能事件看作随机事件的两

P A

个极端情形

5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称

为一个基本事件

6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n

,这种事件叫等可能性事件

7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法

9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+

一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就

说事件12,,,n A A A L 彼此互斥

11.对立事件:必然有一个发生的互斥事件.

()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么

12()n P A A A +++L =12()()()n P A P A P A +++L

探究:

(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上

(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?

事件A:从甲坛子里摸出1个球,得到白球;事件B:从乙坛子里摸出1个球,得到白球

问题(1)、(2)中事件A、B是否互斥?(不互斥)可以同时发生吗?(可以)

问题(1)、(2)中事件A(或B)是否发生对事件B(或A)发生的概率有无影响?(无影响)

思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A为“第一名同学没有抽到中奖奖券”, 事件B为“最后一名同学抽到中奖奖券”. 事件A的发生会影响事件B 发生的概率吗?

显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B 发生的概率.于是P(B| A)=P(B),

P(AB)=P( A ) P ( B |A)=P(A)P(B).

二、讲解新课:

1.相互独立事件的定义:

设A, B为两个事件,如果P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B相互独立(mutually independent ) .

事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件

若A与B是相互独立事件,则A与B,A与B,A与B也相互独立

2.相互独立事件同时发生的概率:()()()P A B P A P B ?=?

问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ?.(简称积事件)

从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果同时摸出白球的结果有32?种所以从这两个

坛子里分别摸出1个球,它们都是白球的概率323()5410

P A B ??=

=?. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5

P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ?=?.

这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A L 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,

即 1212()()()()n n P A A A P A P A P A ???=???L L .

3.对于事件A 与B 及它们的和事件与积事件有下面的关系:

)()()()(B A P B P A P B A P ?-+=+

三、讲解范例:

例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:

(1)都抽到某一指定号码;

(2)恰有一次抽到某一指定号码;

(3)至少有一次抽到某一指定号码.

解:(1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.

(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B)U (A B)表示.由于事件A B与A B互斥,根据概率加法公式和相互独立事件的定义,所求的概率为

P (A B)十P(A B)=P(A)P(B)+ P(A)P(B )

= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.

( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B)U(A B)表示.由于事件AB , A B和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P ( AB ) + P(A B)+ P(A B ) = 0.0025 +0. 095 = 0. 097 5.

例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:

(1)2人都射中目标的概率;

(2)2人中恰有1人射中目标的概率;

(3)2人至少有1人射中目标的概率;

(4)2人至多有1人射中目标的概率?

解:记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,A与B,A与B,A与B为相互独立事件,(1)2人都射中的概率为:

?=?=?=,

P A B P A P B

()()()0.80.90.72

∴2人都射中目标的概率是0.72.

(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B?发生),另一种是甲未击中、乙击中(事件A B?发生)根据题意,事件A B?与A B?互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:?+?=?+?

P A B P A B P A P B P A P B

()()()()()()

=?-+-?=+=

0.8(10.9)(10.8)0.90.080.180.26

∴2人中恰有1人射中目标的概率是0.26.

(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为=?+?+?=+=.

()[()()]0.720.260.98

P P A B P A B P A B

(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,

2个都未击中目标的概率是P A B P A P B

?=?=--=,

()()()(10.8)(10.9)0.02

∴“两人至少有1人击中目标”的概率为=-?=-=.

1()10.020.98

P P A B

(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,

故所求概率为:

=?+?+?

P P A B P A B P A B

()()()

=?+?+?

()()()()()()

P A P B P A P B P A P B

0.020.080.180.28=++=.

(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,

故所求概率为1()1()()10.720.28P P A B P A P B =-?=-?=-=

例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定

在某段时间内每个开关能够闭合的概率都是0.7,计算

在这段时间内线路正常工作的概率

解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C . 由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是

()()()()P A B C P A P B P C ??=??

[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=

∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是

1()10.0270.973P A B C -??=-=.

答:在这段时间内线路正常工作的概率是0.973.

变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间

内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ??-???=?=??)

变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率

方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ??+??+??+??+?? ()()()()()()()()()

()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =??+??+??+??+??

0.847=

方法二:分析要使这段时间内线路正常工作只要排

除C J 开且A J 与B J 至少有1个开的情况

[]21()1()10.3(10.7)0.847P C P A B --?=-?-= 例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2. (1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;

(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?

分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率

解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),

那么5门高炮都未击中敌机的事件为12345A A A A A ????.

∵事件1A ,2A ,3A ,4A ,5A 相互独立,

∴敌机未被击中的概率为

12345()P A A A A A ????=12345()()()()()P A P A P A P A P A ????

5(10.2)=-=5)5

4( ∴敌机未被击中的概率为5)54(.

(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿

(1)可得:

敌机被击中的概率为1-n )54( ∴令41()0.95n -≥,∴41()510n ≤

两边取常用对数,得110.313lg 2

n ≥

≈- ∵+∈N n ,∴11n =

∴至少需要布置11门高炮才能有0.9以上的概率击中敌机 点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便

四、课堂练习: 1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )

()A 320 ()B 15 ()C 25

()D 920

2.从甲口袋内摸出1个白球的概率是1

3

,从乙口袋内摸出1个白球

的概率是1

2,从两个口袋内各摸出1个球,那么5

6

等于()

()A2个球都是白球的概率()B2个球都不是白球的概率()

C2个球不都是白球的概率()D2个球中恰好有1个是白球的概率

3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()

()A0.128 ()B0.096 ()C0.104 ()D0.384 4.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()

()A

35

192

()B

25

192

()

C

35

576

()

D

65

192

5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.

6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,

(1)每穴播两粒,此穴缺苗的概率为;此穴无壮苗的概率为.

(2)每穴播三粒,此穴有苗的概率为;此穴有壮苗的概率为.

7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人

去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.

8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?

9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?

答案:1. C 2. C 3. B 4. A 5.(1)1

(2) 0.56

32

6.(1)0.01,0.16(2)0.999,0.936

7. P=22

?≈

0.790.810.404

8. P=0.040.950.960.050.086

?+?≈

9.提示:86461

P=?+?=

121212122

五、小结:两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的

六、课后作业:课本58页练习1、2、3第60页习题2. 2A组4. B 组1

七、板书设计(略)

八、教学反思:

1. 理解两个事件相互独立的概念。

2. 能进行一些与事件独立有关的概率的计算。

3. 通过对实例的分析,会进行简单的应用。

《随机事件与可能性》教案

《随机事件与可能性》教案 教学目标 知识与技能 1.了解必然事件,不可能事件和随机事件的概念. 2.理解随机事件发生的可能性大小. 过程与方法 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 教学重点 不同的随机事件发生的可能性的大小有可能不同. 教学难点 理解随机事件发生的可能性的大小. 教学过程 一、情境导入,初步认识 动脑筋:下列事件中,哪些一定发生,哪些不可能发生,哪些可能发生. ①晴天的早晨,太阳从东方升起. ②通常,在1个标准大气压下,水加热到100℃沸腾. ③a是实数,a2<0. ④种瓜得豆. ⑤买一张福利彩票,中奖. ⑥掷一枚均匀的硬币,出现正面朝上. 【教学说明】要求同学们凭生活经验或已学过知识,对上述问题分组讨论,然后回答. 二、思考探究,获取新知 1.必然事件、不可能事件、随机事件的概念 在一定条件下,必然发生的事件称为必然事件,如动脑筋中的①和②. 在一定条件下,一定不发生的事件称为不可能事件,如动脑筋中的③和④. 在一定条件下,可能发生也可能不发生的事件,称为随机事件,如动脑筋中的⑤和⑥. 必然事件和不可能事件统称为确定性事件,确定性事件和随机事件统称为事件. 请同学们举出日常生活中见到的必然事件,不可能事件,随机事件的例子. 例1掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6的点数,试问,下列哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)出现的点数大于0.

(2)出现的点数为7. (3)出现的点数为5. 【教学说明】本例比较简单,要求学生独立完成作答. 2.随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同. 例1如课本图,一个质地均匀的小立方体有6面,其中1个涂成红色,2个面涂成黄色,3个面涂成蓝色.在桌面扔这个小立方体,正面朝上的颜色可能出现哪些结果?这些结果发生的可能性一样大吗? 3.教师引导学生完成教材P121的议一议. 练习1:1下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)掷一枚6面上分别刻有1,2,…6点的均匀骰子,朝上一面的点数是偶数; (2)在全是红球的袋中任意摸出一球,结果是白球; (3)地球绕着太阳转. 练习2:1、比较下列随机事件发生的可能性大小. (1)如图,转动一个能自由转动的转盘,指针指向红色区域和指向白色区域; (2)小明和小亮做掷硬币的游戏,他们商定:将一枚硬币掷两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜.谁获胜的可能性大? 2、10张扑克牌中有3张黑桃、2张方片、5张红桃.从中任意抽取一张,抽到哪一种花色牌的可能性最大?抽到哪一种花色牌的可能性最小? 四、师生互动,课堂小结 1.师生共同回顾事件的分类及概念,知道随机事件发生的可能性有大小. 2.通过这节课学习,你掌握了哪些知识?还有哪些疑问?请与同学们交流. 课后作业 1.完成教材P122第1、2题. 2.完成同步练习册中本课时的练习.

北师大版高中数学选修条件概率与独立事件一教案

2.3条件概率 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解. 教学难点:概率计算公式的应用. 授课类型:新授课 . 课时安排:1课时. 教具:多媒体、实物投影仪. 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一 名同学抽到中奖奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽 到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,

《等可能事件的概率(2)》教学设计

第九章概率初步 3 等可能事件的概率(第2课时) 一、学生起点分析: 学生的知识技能基础:学生在前面的学习中已经了解了用事件发生的频率估计该事件发生的概率,初步理解了概率的含义以及一些常见古典概型概率的求法,具备了求简单事件的概率的基本技能; 学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些小组合作试验活动,解决了一些简单的概率问题,感受到了数据收集和处理的必要性和作用,获得了从事合作试验所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、学习任务分析: 教科书基于学生对频率、概率认识的基础之上,提出了本课的具体学习任务:理解游戏的公平性,并能根据不同题目的要求设计出符合条件的摸球游戏。但这仅仅是这堂课外显的具体的教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《摸到红球的概率》内容从属于“统计与概率”这一数学学习领域,因而务必服务于概率教学的远期目标:“让学生经历数据收集、整理与表示、数据分析以及作出推断的全过程,发展学生的随机意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标为: 1.知识与技能:通过小组合作、交流、试验,理解游戏的公平性,并能根据

不同问题的要求设计出符合条件的摸球游戏; 2.过程与方法:再次经历数据的收集、整理和简单分析、作出决策的合作交流过程.发展学生的随机意识;让学生在小组活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力; 3.情感与态度:在试验过程中体会数据的客观真实性,感受数学与现实生活的密切联系,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯. 教学重点: 1、概率的意义及古典概型的概率的计算方法的理解与应用。 2、初步理解游戏的公平性,会设计简单的公平的游戏. 3、根据题目要求设计游戏方案。 教学难点: 1、初步理解游戏的公平性,会设计简单的公平的游戏. 2、灵活应用概率的计算方法解决各种类型的实际问题。 教学方法:为了充分体现“以学生为主体”的教学宗旨,结合本节课内容主要采取了“自主、合作、探究”的探究式和启发式教学法。 教学手段和教具准备:自制球箱,准备了红、白色乒乓球若干,并运用了现代多媒体教学平台。 三、教学过程设计: 本节课设计了七个教学环节:游戏设置;创设冲突,导入新课;小组合作交流,学习新知;在自我挑战过程中获得和巩固新知;更上层楼,突破难点;课堂小节;布置作业。

事件的相互独立性教案定稿

2.2.2 事件的相互独立性 一、教学目标 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 二、教学重难点 教学重点:独立事件同时发生的概率。 教学难点:有关独立事件发生的概率计算。 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件。 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现 的可能性都相等,那么每个基本事件的概率都是1 n ,这种事件叫等可能性事件。 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率 ()m P A n =。 讲解新课: 1.相互独立事件的定义: 设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立. 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 2.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ?.(简称积事件) 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果。同时摸出白球的结果有32?种所以从这两个坛子里分别摸出1个球,它们

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

《随机事件发生的可能性》教案

《随机事件发生的可能性》教案 教学目标 知识与技能 理解随机事件发生的可能性大小. 过程与方法 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 教学重点 不同的随机事件发生的可能性的大小有可能不同. 教学难点 理解随机事件发生的可能性的大小. 教学过程 一、随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同,可能性的大小也就是概率的大小. 二、例题讲解 例1、如教材134页图13-1,是一个可以转动的转盘.盘面上有8个全等的扇形区域,其中1个是红色,2个是绿色,2个是白色,3个是黄色.用力转动转盘,当转盘停止后,指针对准哪种颜色区域的可能性最小?对准哪种颜色区域的可能性最大? 例2、任意掷一枚骰子,比较下列情况出现的可能性的大小. (1)面朝上的点数系小于2;(2)面朝上的点数是奇数 (3)面朝上的点数是偶数;(4)面朝上的点数大于2. 三、练一练 1、比较下列随机事件发生的可能性大小. (1)如图,转动一个能自由转动的转盘,指针指向红色区域和指向白色区域; (2)小明和小亮做掷硬币的游戏,他们商定:将一枚硬币掷两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜.谁获胜的可能性大?

2、10张扑克牌中有3张黑桃、2张方片、5张红桃.从中任意抽取一张,抽到哪一种花色牌的可能性最大?抽到哪一种花色牌的可能性最小? 四、师生互动,课堂小结 1.师生共同回顾事件的分类及概念,知道随机事件发生的可能性有大小. 2.通过这节课学习,你掌握了哪些知识?还有哪些疑问?请与同学们交流.

人教版高中数学高二选修2-3 第二章《事件的相互独立性》教案

2.2.2事件的相互独立性 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结 果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件 12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,, ,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++ 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这 两个坛子里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球, 得到白球

等可能事件的概率教案

课题:等可能性事件的概率 教材:人民教育出版社的全日制普通高级中学教科书(试验修订本.必修)《数学》第二册(下B)第十一章概率第一节(第二课时) 教学目标; (1)知识与技能目标:了解等可能性事件的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事件的概率。(2)过程和方法目标:通过学习、生活中的实际问题的引入,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力;通过计算等可能性事件的概率,提高综合运用排列、组合知识的能力和分析问题、解决问题的能力。(3)情感与态度目标:营造亲切、和谐的氛围,以“趣”激学;随机事件的发生既有随机性,又有规律性,使学生了解偶然性寓于必然性之中的辩证思想;引导学生树立科学的人生观和价值观,培养学生的综合素质。 教学重点: 等可能性事件的概率的意义及其求法。 教学难点: 等可能性事件概率计算公式的重要前提:每个结果出现的可能性必须相同。 教学方法: 启发式探索法 教学手段: 计算机辅助教学、实物展示台 教具准备: 转盘一个 教学过程: 附:课前兴趣阅读: 生活中的数学 1、你做过这样的调查吗?我们班在座的同学中至少有两位同学在同一天生日的可能性 多大? 2、无为一中进行演讲比赛,参赛选手的演讲顺序通过抽签决定,抽签时有先有后,你 认为公平吗? 同学们,要想解决上面的问题,就让我们继续学习概率吧! 一、复习旧知: 抛掷一枚均匀硬币, (1)出现正面向上;(2)出现正面向上或反面向上;(3)出现正面向上且反面向上. 各是什么事件?概率分别是多少?(学生回答)(1)随机事件,概率是1/2 (2)必然事件,概率是 1 (3)不可能事件,概率是0

教案及说课稿:等可能性事件的概率

课题:等可能性事件的概率(一) 一、教学目标: (1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。 (2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。 (3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。 二、教学重点: 等可能性事件的概率的意义及其求法。 三、教学难点: 等可能性事件的判断以及如何求某个事件所包含的基本事件数。 四、教学方法: 启发式探索法 五、教学过程: 1、复习引入、创设情境 问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类? (生)必然事件,随机事件,不可能事件。 (师)好! 问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。 是不是所有的随机事件都需要大量的重复试验来求得呢? (生)不一定。 (师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。 问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么? 2、逐层探索,构建新知 问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少? 通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。 问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。 我们把具有这两个特征的随机事件叫做等可能性事件;为了方便描述等可能性事件的概念,我们引进一个概念----基本事件的概念。

选修2-3教案2.2.2 事件的独立性

§2.2.2 事件的独立性 教学目标 (1)理解两个事件相互独立的概念; (2)能进行一些与事件独立有关的概率的计算. 教学重点,难点:理解事件的独立性,会求一些简单问题的概率. 教学过程 一.问题情境 1.情境:抛掷一枚质地均匀的硬币两次. 在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 2.问题:第一次出现正面向上的条件,对第二次出现正面向上的概率是否产生影响. 二.学生活动 设B 表示事件“第一次正面向上”, A 表示事件“第二次正面向上”,由古典概型知 ()12P A = ,()12P B =,()1 4 P AB =, 所以() ()() 1 2 P AB P A B P B = = . 即()() P A P A B =,这说明事件B 的发生不影响事件A 发生的概率. 三.建构数学 1.两个事件的独立性 一般地,若事件A ,B 满足() ()P A B P A =,则称事件A ,B 独立. 当A ,B 独立时,若()0P A >,因为() ()()()P AB P A B P A P B = =, 所以 ()()()P AB P A P B =,反过来() ()() ()P AB P B A P B P A = =, 即B ,A 也独立.这说明A 与B 独立是相互的,此时事件A 和B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即 ()()()P AB P A P B =.(*) 若我们认为任何事件与必然事件相独立,任何事件与不可能事件相独立,那么两个事件 A , B 相互独立的充要条件是()()()P AB P A P B =.今后我们将遵循此约定. 事实上,若B φ=,则()0P B =,同时就有()0P AB =,此时不论A 是什么事件,都有(*)式成立,亦即任何事件都与φ独立.同理任何事件也与必然事件Ω独立. 2. 个事件的独立性可以推广到(2)n n >个事件的独立性,且若事件12,,,n A A A 相互独立, 则这n 个事件同时发生的概率()()()()1212n n P A A A P A P A P A = .

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

《独立性检验》教案)

《独立性检验》教案 一、教学目标 1、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题. 2、过程与方法: 通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力. 3、情感态度价值观: 通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。 二、教学重点 理解独立性检验的基本思想及实施步骤. 三、教学难点 1.了解独立性检验的基本思想; 2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。 四、教学方法 以“问题串”的形式,层层设疑,诱思探究。用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容. 五、教学过程设计

环 节 互动意图创 设情景、引入新课课下预习,搜集有关分类变量有无关系的一些实例。 情境引入、提出问题:1、吸烟与患肺癌有关系吗? 2、你有多大程度把握吸烟与患肺癌有关? 组织引 导学生 课下预 习问题 背景, 初步明 确定要 解决 “吸烟 与患肺 癌”之 间的关 系问 题. 好的课 堂情景 引入, 能激发 学生求 知欲, 是新问 题能够 顺利解 决的前 提条件 之一. 初步探索、展示内涵 变量有定量变量、分类变量,定量变量—回归分析;分类变 量—独立性检验,引出课题。 问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些 量呢? 列联表:分类变量的汇总统计表(频数表). 一般我们只 研究每个分类变量只取两个值,这样的列联表称为2*2列联表 . 如吸烟与患肺癌的列联表: 不患肺癌患肺癌总计 不吸烟7775 42 7817 吸烟2099 49 2148 总计9874 91 9965 问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在 不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比 例为________. 1,教师 通过举 例,引 入分类 变量这 个新概 念.引 出课题 2,组织 学生填 表讨论 问题, 初步得 到问题 的结 论. 从实际 问题出 发引入 概念, 提出问 题有利 于学生 明白我 们要学 习这节 课的必 要性。。

4.1随机事件与可能性 教案

4.1 随机事件与可能性教案 【知识与技能】 1.了解必然事件,不可能事件和随机事件的概念. 2.理解随机事件发生的可能性大小. 【过程与方法】 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 【教学重点】 不同的随机事件发生的可能性的大小有可能不同. 【教学难点】 理解随机事件发生的可能性的大小. 一、情境导入,初步认识 动脑筋:下列事件中,哪些一定发生,哪些不可能发生,哪些可能发生. ①晴天的早晨,太阳从东方升起. ②通常,在1个标准大气压下,水加热到100℃沸腾. ③a是实数,a2<0. ④种瓜得豆. ⑤买一张福利彩票,中奖. ⑥掷一枚均匀的硬币,出现正面朝上. 【教学说明】要求同学们凭生活经验或已学过知识,对上述问题分组讨论,然后回答. 二、思考探究,获取新知 1.必然事件、不可能事件、随机事件的概念 在一定条件下,必然发生的事件称为必然事件,如动脑筋中的①和②. 在一定条件下,一定不发生的事件称为不可能事件,如动脑筋中的③和④. 在一定条件下,可能发生也可能不发生的事件,称为随机事件,如动脑筋中的⑤和⑥. 必然事件和不可能事件统称为确定性事件,确定性事件和随机事件统称为事件.

事件的分类 请同学们举出日常生活中见到的必然事件,不可能事件,随机事件的例子. 例1 掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6的点数,试问,下列哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)出现的点数大于0. (2)出现的点数为7. (3)出现的点数为5. 【教学说明】本例比较简单,要求学生独立完成作答. 2.随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同. 例1 教材P121例题 3.教师引导学生完成教材P121的议一议. 三、运用新知,深化理解 1.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( ) A.事件A,B都是随机事件 B.事件A,B都是必然事件 C.事件A是随机事件,事件B是必然事件 D.事件A是必然事件,事件B是随机事件 2.下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上; ③任取两个正整数,其和大于1;④长为3cm,5cm,9cm的三条线段能围成一个三角形,其

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

浙教版初中数学2.1《事件的可能性》教案

《事件的可能性》教案 教学目标 知识与能力:通过实例进一步体验事件发生的可能性的意义;了解必然事件、不确定事件、不可能事件的概念;会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件;会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数. 过程和方法目标:在教学过程中采用师生互动、师生合作的形式,通过有趣的游戏 活动激发学生的学习兴趣.鼓励学生用观察、实验方法认识事物,学会分析实验数据,从中发现事物背后的规律. 教学准备 两个乒乓球(一个黄乒乓球,一个白乒乓球),硬币(课堂向学生借),课件. 教学设计 (一)讲述故事,引出课题 有一位语文老师给学生布置了一篇关于畅想未来的作文,要求对现在不可能发生的事物进行幻想,各位同学写好后,老师要求同学们不要交流,并且把作文放在信封里保存好,等五十年后同学们聚会时带上并拆开相互传阅,五十年后,同学们如约聚会,相互拆阅了各自尘封已久的那篇作文. 当他们看完所有的作文后,全都兴奋不已,感慨万千,原来,在他们青少年时代,未见过的也无法预言的事情,竟有很多都变成了现实.由不可能到可能,显示着社会的进步. 长江后浪推前浪,世上新人换旧人.相信我们的明天会更好. 今天我们就来学习刚才故事中提到的不可能和可能性事件. (二)创设情景,导出概念 1.情景引入 (1).掷硬币如果我们将一元硬币向上抛起,然后让它自然下落到地面,国徽面一定朝上吗? (2).投骰子如果我们将一枚6个面上分布着不同点数的“骰子”掷出后,我想得到抛出的点数是“6点”,一定能做到吗? 在学生回答完这两个问题之后,老师继续提问: ①此之外在生活中还有其他类似的事件吗?

事件的独立性教案

事件的相互独立性 数学与统计学学院芮丽娟2009212085 一、教学目标: 1、知识与技能: (1)了解独立性的定义(即事件A的发生对事件B的发生没有影响); (2)掌握相互独立事件的概率乘法公式P(AB)=P(A)P(B) 2、过程与方法: 通过对现实生活中不同事件问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 二、重点与难点: 正确理解独立性的定义与互斥事件的差别,掌握并运用独立事件概率公式 三、教学设想: 1、创设情境:通过回顾上节课学习的条件概率,引入本节课独立性的定义 例:3张奖券中只有一张能中奖,现分别由3名同学无放回的抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。则问事件A的发生会影响事件B发生的概率吗?若条件改为有放回,这时又是什么情况? 解:显然无放回时,A的发生影响着B,即是条件概率。而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率。于是P(B|A)=P(B),代入条件概率公式得P(AB)=P(B|A)P(A)=P(A)P(B) 2、基本概念: 独立性定义:设A,B为两个事件,如果满足P(AB)=P(A)P(B),则称事件A与事件B 相互独立。 例1:分别抛掷两枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”。问:A,B,C中哪两个相互独立? 分析:理解相互独立的定义,即是一事件的发生对另一事件的发生与否没有影响,由于A事件抛掷第一枚硬币为正面,对B事件第二枚硬币为正面没有影响,故A与B独立,而

2.2.1条件概率与事件的相互独立性

2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率. 2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自 动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则1 12()A A A A =表示不超过2次就按对 密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095 P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则 112(|)(|)(|)P A B P A B P A A B =+ 14125545 ?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩, 问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为 P ( AB )=P (A )P (B )=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为 48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

2.1认识事件的可能性教案及反思13

2.1事件的可能性 一、教材分析:事件的可能性及其大小与人们的生活和生产实践密切相关,在今后的概率学习中几乎所有问题都会涉及,准确认识事件的可能性及分析简单随机事件中各种可能性是学好概率的一个十分重要的起点。 学情分析:这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,对本节课的设计是关注易错,理解提升,教会学生把生活中问题转化成数学模型,渗透统计思想方法。 二、教学目标: (1)知识目标:了解必然事件、不确定事件、不可能事件的概念; (2)能力目标:会根据经验判断一个事件是属于必然事件、不可能事件还是不确定事件;会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数。 (3)情感目标:经历猜测、试验、收集与分析实验结果等过程,进一步体验事件发生的可能性的意义,提高学生学习数学的兴趣,积累一定的数学活动经验。 三、教学重点:事件发生的可能性的意义,包括按事件发生的可能性对事件分类。 四、教学难点:用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点。 五、教学准备 若干个纸盒和黄、白颜色乒乓球若干个。

六、教学流程 摸球游戏引入课题形成概念应用概念 例题探究实验操作变式提高回顾总结 七、教学活动 (一)摸球游戏引入课题 1、游戏规则:在一个箱子里放有2个形状大小完全一样的黄球。 ①摸出后放回,请学生摸球(参加摸球的同学必然会摸到黄球) ②分别由三位学生参加摸球游戏,摸出后不放回,问第三位学生可能摸到黄球吗?(给出课题:事件的可能性) 2、利用游戏引入新知 问:根据事件发生(摸到黄球)的可能性你能将上述事件分类吗?如:第一位和第二位学生摸到黄球是必然发生的属于必然事件;如:第三位学生摸到黄球是必然不会发生的属于不可能事件。 思考:如何改变游戏规则,可能摸到黄球也可能摸不到黄球? 生:在一个箱子里放形状大小完全一样黄、白各1个的乒乓球。此时可能摸到黄球也可能摸不到黄球属于不确定事件(随机事件)。 归纳:按事件发生的可能性将事件分为三类:必然事件、不可能事件、不确定事件(随机事件)。 (说明:由游戏引入,激发学生的兴趣,充分让学生参与数学教学中,让学生体会数学来源于生活,生活中处处有数学。) (二)形成概念: 1、在数学中,我们把在一定条件下必然发生的事件叫做必然事件。

相关主题
文本预览
相关文档 最新文档