当前位置:文档之家› 飞机基本结构

飞机基本结构

飞机基本结构
飞机基本结构

飞机结构详细讲解

机翼

机翼是飞机的重要部件之一,安装在机

上。其最主要作用是产生升力,同时也

在机翼内布置弹药仓和油箱,在飞行中

收藏起落架。另外,在机翼上还安装有

起飞和着陆性能的襟翼和用于飞机横向

纵的副翼,有的还在机翼前缘装有缝翼

加升力的装置。

由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。

机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根就没有接头。以下是典型的梁式机翼的结构。

一、纵向骨架 机翼的纵向骨架由翼梁、纵

樯和桁条等组成,所谓纵向是指沿翼展方

向,它们都是沿翼展方向布置的。

* 翼梁是最主要的纵向构件,它承受

全部或大部分弯矩和剪力。翼梁一般由凸

缘、腹板和支柱构成(如图所示)。凸缘通

常由锻造铝合金或高强度合金钢制成,腹板

用硬铝合金板材制成,与上下凸缘用螺钉或

铆钉相连接。凸缘和腹板组成工字型梁,承

受由外载荷转化而成的弯矩和剪力。

* 纵樯与翼梁十分相像,二者的区别在

樯的凸缘很弱并且不与机身相连,其长

时仅为翼展的一部分。纵樯通常布置在

的前后缘部分,与上下蒙皮相连,形成

盒段,承受扭矩。靠后缘的纵樯还可以

襟翼和副翼。

* 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承力,并共同将气动力分布载荷传给翼肋。 二、横向骨架

机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,

向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。

* 普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。

* 加强翼肋就是承受有集中载荷的翼肋。

随着现代航空技术的进步,新的飞行动力理

论的应用,飞机机身的外形也呈现千姿百

态,变化多端,如隐身战斗机所使用的机翼

和机身融为一体的翼身融合体;除去机身和

尾翼的飞翼;除去机翼的升力体机身;以汽

车作为机身的汽车飞机等等。

三、蒙皮蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮除了形成和维持机翼的气动外形之外,还能够承受局部气动力。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。

双翼机、多翼机等;

* 按机翼的平面形状分类:可分为平直

翼、后掠翼、前掠翼、三角翼等等;

* 按机翼的构造形式分类:可分为构架

式、梁式、壁板式、整体式等等。

此外,机翼的剖面形状也是多种多样,随着生产技术以及流体力学的发展,从早期的平直矩形机翼剖面到后来的流线形剖面、菱形剖面,机翼的升力性能越来越好,相反受到的空气阻力越来越小,也就是说机翼的升力系数越来越大,相同面积的机翼所产生的升力就越来越大。

尽管机翼的外形五花八门、多种多样,然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使结构重量尽可能的轻。所谓良好的气动外形,是指升

力大、阻力小、稳定操纵性好。以下是用来衡量机翼气动外形的主要几何参数

翼展:翼展是指机翼左右翼尖之间的长

度,一般用l 表示。

翼弦:翼弦是指机翼沿机身方向的弦

长。除了矩形机翼外,机翼不同地方的翼弦

是不一样的,有翼根弦长b0、翼尖弦长b1。

一般常用的弦长参数为平均几何弦长bav ,

其计算方法为:bav =(b0+b1)/2。

展弦比:翼展l 和平均几何弦长bav 的比值叫做展弦比,用λ表示,其计算公式可表示为:λ=l/ bav 。同时,展弦比也可以表示为翼展的平方于机翼面积的比值。展弦比越大,机翼的升力系数越大,但阻力也增大,因此,高速飞机一般采用小展弦比的机翼。

后掠角:后掠角是指机翼与机身轴线的垂线之间的夹角。后掠角又包括前缘后掠角(机翼前缘与机身轴线的垂线之间的夹角,一般用χ0表示)、后缘后掠角(机翼后缘与机身轴线的垂线之间的夹角,一般用χ1表示)及1/4弦线后掠角(机翼1 /4弦线与机身轴线的垂线之间的夹角,一般用χ0.25表示)。如果飞机的机翼向前掠,则后掠角就为负值,变成了前掠角。

根梢比:根梢比是翼根弦长b0与翼尖弦

长b1的比值,一般用η表示,η=b0/b1。

相对厚度:相对厚度是机翼翼型的最大厚

度与翼弦b 的比值。

除此之外,机翼在安装时还可能带有上

反角或者下反角。

上反角是指机翼基准面和水平面的夹角,当机翼有扭转时,则是指扭转轴和水平面的夹角。当上反角为负时,就变成了下反角(Cathedral angle)。

机身

飞机机身的功用主要是装载人员、货物、燃

武器、各种装备和其他物资,它还可用于连

翼、尾翼、起落架和其他有关的构件,并把

连接成为一个整体。 按照机身的功用,首先在使用方面,应要求

有尽可能大的空间,使它的单位体积利用率最

以便能装载更多的人和物资,同时连接必须

可靠。应有良好的通风加温和隔音设备;视

须广调,以利于飞机的起落。

其次在气动方面,它的迎风面积应减小到最小,表面应光滑,形状应流线化而没有和缝隙,以便尽可能地减小阻力。

另外,在保证有足够的强度、刚度和抗疲劳的能力情况下,应使它的重量最轻。对

有气密座舱的机身,抗疲劳的能力尤为重要。

飞机机身的型式一般有机身型、船身型和短舱型,机身型是陆上飞机的机体,水上飞机机体一般采用船身型,至于短舱型则是没有尾翼的机体,它包括双机身和双尾撑。

另外,二战中还有一种侦察/轰炸飞机,

介于双机身和双尾撑形式之间:一侧机

身有座舱,另一侧机身则连接尾翼,这

种不对称布局在飞机上较少见。机身的

外形和发动机的类型、数目及安装位置

有关。例如活塞发动机螺旋桨式飞机的

机身,就与喷气式发动机飞机的机身有

所不同。

从机身外形来看,不外乎侧面形状和剖面形状两种。侧面形状一般为拉长的流线体。现代飞机的侧面形状受到驾驶舱的很大影响。有的驾驶舱平滑地露于气流之中,有的则埋藏在机身之内,前者多用于中小型飞机,后者多用于大型飞机。

现代超音速战斗机根据跨音速飞行的阻力特点,首先采用了跨音速面积律,即安装机翼部位的机身截面适当缩小,形成蜂腰机身;其次它的机头往往做得很尖,或者在头部用空速管作为激波杆,远远地伸出在迎面气流之中。这也有助于削弱激波的强度,减小波阻;第三是随着速度的不断增长,飞机机身的“长细比”不断增大,即用细而长的旋转体作机身。现代超音速飞机机身的长细比已超过10。所谓长细比即是机身长度与机身剖面的最大直径的比值,这一比值越大,则机身越细越长。而且随着速度的提高,飞机机身相对于机翼尺寸也越来越大。

埋藏于机身外形轮廓线之内。这样就使得飞机在

着陆时座舱视界大大恶化。为了改善这种情况,

就将机头做成活动的,着陆时可以下垂。例如“协

和”号超音速旅客机机头就可下垂17.5度。

其机头可有三种状态。超音速飞行时,机头呈流线形;亚音速飞行时,档整流罩放下,以扩大驾驶员的视界;进场和着陆时则全部下垂,驾驶员视界就更扩大了。常用的机身剖面形状有圆、椭圆、方、梯形等,这些形状适用于不同用途及速度范围的飞机。例如低速飞机可用方形,而具有气密座舱的高亚音速大型客机,则多用圆形或椭圆形。喷气式战斗机一般采用不规则的形状。

随着现代航空技术的进步,新的飞行动

力理论的应用,飞机机身的外形也呈现

千姿百态,变化多端,如隐身战斗机所

使用的机翼和机身融为一体的翼身融

合体;除去机身和尾翼的飞翼;除去机

翼的升力体机身;以汽车作为机身的汽

车飞机等等。

起落架

任何人造的飞行器都有离地升空的过程,而且除了一次性使用的

火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆

或回收阶段。对飞机而言,实现这一起飞着陆功能的装置主要就

是起落架。

起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞

机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车

的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够

消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要

作用有以下四个:

* 承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;

* 承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;

* 滑跑与滑行时的制动;

* 滑跑与滑行时操纵飞机。

在过去,由于飞机的飞行速度低,对飞机气动外形的要求不

严格,因此飞机的起落架都是固定的,这样对制造来说不需

很高的技术。当飞机在空中飞行时,起落架仍然暴露在机身之

随着飞机飞行速度的不断提高,飞机很快就跨越了音速的障

由于飞行的阻力随着飞行速度的增加而急剧增加,这时,暴

外的起落架就严重影响了飞机的气动性能,阻碍了飞行速度

一步提高。

因此,人们便设计出了可收放的起落架,当飞机在空中飞行时就将起落架收到机翼身之内,以获得良好的气动性能,飞机着陆时再将起落架放下来。

然而,有得必有失,这样做的不足之处是由于起落架增加了

的收放系统,使得飞机的总重增加。但总的说来是得大于失

此现代飞机不论是军用飞机还是民用飞机,它们的起落架绝

分都是可以收放的,只有一小部分超轻型飞机仍然采用固定

的起落架(如蜜蜂系列超轻型飞机)。

起落架的布置形式是指飞机起落架支柱(支点)的数目和其相对于飞机重心的布置特目前,飞机上通常采用四种起落架形式:

* 后三点式:这种起落架有一个尾支柱和两个主起落架。并且飞机的重心在主起落后。后三点式起落架多用于低速飞机上。

前三点式:这种起落架有一个前支柱和两个主起落架。并且飞机的重心在主起落架之前。前三点式起落架目前广泛应用于高速飞机上。

* 自行车式:这种起落架除了在飞机重心前后各有一个主起落架外,还具有翼下支柱,即在飞机的左、右机翼下各有一个辅助轮。

* 多支柱式:这种起落架的布置形式与前三点式起落架类似,飞

机的重心在主起落架之前,但其有多个主起落架支柱,一般用于

大型飞机上。如美国的波音747旅客机、C-5A(军用运输机(起飞

质量均在350吨以上)以及苏联的伊尔86旅客机(起飞质量206

吨)。显然,采用多支柱、多机轮可以减小起落架对跑道的压力,

增加起飞着陆的安全性。

在这四种布置形式中,前三种是最基本的起落架形式,多支柱式可以看作是前三点式的改进形式。目前,在现代飞机中应用最为广泛的起落架布置形式就是前三点式。

起落架的结构分类

* 构架式起落架

构架式起落架的主要特点是:它通过承力构架将机轮与机翼或机

身相连。承力构架中的杆件及减震支柱都是相互铰接的。它们只

承受轴向力(沿各自的轴线方向)而不承受弯矩。因此,这种结构

的起落架构造简单,质量也较小,在过去的轻型低速飞机上用得

很广泛。但由于难以收放,现代高速飞机基本上不采用。

* 支柱式起落架 支柱式起落架的主要特点是:减震器与承力支柱合而为一,机轮

直接固定在减震器的活塞杆上。减震支柱上端与机翼的连接形式

取决于收放要求。对收放式起落架,撑杆可兼作收放作动筒。扭

矩通过扭力臂传递,亦可以通过活塞杆与减震支柱的圆筒内壁采

用花键连接来传递。这种形式的起落架构造简单紧凑,易于放收,

而且质量较小,是现代飞机上广泛采用的形式之一。

支柱式起落架的缺点是:活塞杆不但承受轴向力,而且承受弯矩,

因而容易磨损及出现卡滞现象,使减震器的密封性能变差,不能

采用较大的初压力。

* 摇臂式起落架

摇臂式起落架的主要特点是:机轮通过可转动的摇臂与减震

器的活塞杆相连。减震器亦可以兼作承力支柱。这种形式的活塞

只承受轴向力,不承受弯矩,因而密封性能好,可增大减震器的

初压力以减小减霞器的尺寸,克服了支柱式的缺点,在现代飞机

上得到了广泛的应用。摇臂式起落架的缺点是构造较复杂,接头

受力较大,因此它在使用过程中的磨损亦较大。

水平尾翼

水平尾翼简称平尾,安装在机身后部,主要用于保持飞机在飞行中的稳定性和控制的飞行姿态。尾翼的内部结构与机翼十分相似,通常都是由骨架和蒙皮构成,但它表面尺寸一般较小,厚度较薄,在构造形式上有一些特点。一般来说,水平尾翼由的水平安定面和可偏转的升降舵组成。

* 水平安定面

安定面的作用是使飞机具有适当的静

稳定性。当飞机在空中作近似匀速直线运动

飞行时,常常会受到各种上升气流或者侧向

风的影响,此时飞机的航行姿态就会发生改

变,飞机会围绕质心左右(偏航)、上下(俯

仰)以及滚转。如果飞机是静不稳定的,就

无法自动恢复到原来的飞行姿态,即如果飞

机受到风的扰动而抬头,那么飞机就会持续

抬头,而且当这股扰动气流消失以后,飞机

就会保持抬头姿态,而无法恢复到原来的姿

态。

飞机的水平安定面就能够使飞机在俯仰方向上(即飞机抬头或低头)具有静稳定性平安定面是水平尾翼中的固定翼面部分。当飞机水平飞行时,水平安定面不会对飞生额外的力矩;而当飞机受到扰动抬头时,此时作用在水平安定面上的气动力就会一个使飞机低头的力矩,使飞机恢复到水平飞行姿态;同样,如果飞机低头,则水定面产生的力矩就会使飞机抬头,直至恢复水平飞行为止。

* 升降舵

上面所说的情况是假设飞机作自由

动,而没有飞行员操纵。当我们需要操

机抬头或低头时,水平尾翼中的升降舵

发生作用。升降舵是水平尾翼中可操纵

面部分,其作用是对飞机进行俯仰操纵

需要飞机抬头向上飞行时,驾驶员就会

升降舵向上偏转,此时升降舵所受到的

力就会产生一个抬头的力矩,飞机就抬

向上了(如上图所示)。反之,如果驾驶员操纵升降舵向下偏转,飞机就会在气动的作用下低头。

随着飞机的不断发展,为了进一步提高飞机的操纵性能,尤其是在超音速飞行时的能力,如今许多超音速飞机(尤其是高性能的战斗机,如俄罗斯的Su -27

、美国的

15“鹰”战斗机等)都将水平尾翼设计成可偏转的整体,称为全动平尾。

全动平尾是将飞机的水平安定面和升降舵合而为一的部件,它通过转轴与机身结合,飞行员可以控制整个平尾偏转,这使得飞机的操纵性能大大提高。根据转轴的安排形式,全动平尾可分为两大类:直轴式全动平尾和斜轴式全动平尾。

直轴式全动平尾的转轴与机身轴线相垂直,

构造比较简单,适用于小展弦比的梯形和三

角形平尾。其缺点是空气动力载荷对转轴的

扭矩较大。

* 斜轴式全动平尾

斜轴式全动平尾的转轴与机身轴线不

垂直,往往带有一定的后掠角,适用于后掠

平尾。斜轴式全动平尾的优点是便于将转轴

安排在平尾翼型最大厚度线附近,也有利于

减小空气动力载荷对转轴的扭矩。其缺点

是:转轴在机身内的安排比较复杂,此外,

如果要在左右转轴连接处用一个摇臂推动

两边的平尾同时偏转,则接头的构造相当复

杂。

垂直尾翼

垂直尾翼简称垂尾,也叫做立尾,安装在机身后部,其功能与水平尾翼类似,也是

保持飞机在飞行中的稳定性和控制飞机的飞行姿态。不同的是垂直尾翼是使飞机在

(偏航)方向具有一定的静稳定性,并控制飞机在左右(偏航)方向的运动。同水

翼一样,垂直尾翼由固定的垂直安定面和可偏转的方向舵组成。

垂直安定面

飞机的垂直安定面的作用是使飞机在偏航方向上(即飞机左转或右转)具有静

性。垂直安定面是垂直尾翼中的固定翼面部分。当飞机沿直线作近似匀速直线运动

时,垂直安定面不会对飞机产生额外的力矩,但当飞机受到气流的扰动,机头偏向

右时,此时作用在垂直安定面上的气动力就会产生一个与偏转方向相反的力矩,使

恢复到原来的飞行姿态。而且一般来说,飞机偏航得越厉害,垂直安定面所产生的

力矩就越大。

方向舵

方向舵是垂直尾翼中可操纵的翼面部分,其作用是对飞机进行偏航操纵。上面

的情况是假设飞机作自由运动,而没有飞行员操纵。当我们需要控制飞机的航向时

行员就可以操纵垂直尾翼中的方向舵达到偏航的目的。

方向舵是垂直尾翼中可操纵的翼面部

分,其作用是对飞机进行偏航操纵。上面所

说的情况是假设飞机作自由运动,而没有飞

行员操纵。当我们需要控制飞机的航向时,

飞行员就可以操纵垂直尾翼中的方向舵达

到偏航的目的。

方向舵的操纵原理与升降舵类似,当飞机需要左转飞行时,驾驶员就会操纵方向舵向左偏转,此时方向舵所受到的气动力就会产生一个使机头向左偏转的力矩,飞机的航向也随之改变。同样,如果驾驶员操纵方向舵向右偏转,飞机的机头就会在气动力矩的作用下向右转。

操纵系统

传递操纵指令、驱动舵面和其他机构以控制飞机飞行姿态的系统称为操纵系统。

根据操纵指令的来源,可分为人工操纵系统(由主操纵系统和辅助操纵系统组成)

和自动控制系统。

主操纵系统用于控制飞机飞行轨迹和姿态,由升降舵、副翼和方向舵的操纵机构

组成。主操纵系统应使驾驶员有位移和力的变化感觉,这是它与辅助操纵系统的

主要差别。辅助操纵系统包括调整片、襟翼、减速板、可调安定面和机翼变后掠

角操纵机构等。它们的操纵只是靠选择相应开关位置,通过电信号接通电动机或

液压作动筒来完成。自动控制系统的操纵指令来自系统的传感器,能对外界的扰

动自动作出反应,以保持规定的飞行状态,改善飞机飞行品质。常用的自动控制

系统有自动驾驶仪、各种增稳系统、自动着陆系统和主动控制系统。自动控制系

统经历了由简单初级到复杂完善的发展过程。先后出现了机械式操纵、可逆、不

可逆助力操纵和电传操纵,并在电传操纵基础上发展了主动控制技术。

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

NG飞机结构与起落架复习资料

NG飞机结构与起落架复习资 料

作者: 日期:

737NG飞机结构与起落架复习资料 一、填空题 1、可用下列标注尺寸在机身上查找部件:机身站位线、机身纵剖线、水线。 2、垂直安定面有四个基准尺寸:垂直安定面站位、垂直安定面前缘站位、方向舵站位、垂直安定面水线 3、飞机有八个主要分区帮助查找并识别飞机部件和零件:100 -下半机身、200 —上半机 身、300 —机尾、400 —动力装置和吊舱支柱、 500 —左机翼、600 —右机翼、700 —起落架和起落架舱门、800 —舱门 4、发动机工作时周围的危险:进气吸力、排气热量、排气速度、发动机噪音。 5、飞行操纵系统包括:主操纵系统、辅助操纵系统。 6、驾驶舱内的主要面板:P宜机长仪表板、PZ中央仪表板、P5前顶板、P5后顶板、P 乙遮光板、P3副驾驶仪表板、P9前电子面板、控制台、P8后电子面板。 7、在控制台上的操纵和指示装置包括以下部件:前油门杆、反推油门杆、速度刹车手 柄、水平安定面配平轮和指示器、停留刹车手柄和指标灯、襟翼手柄、安定面配平切断 电门、起动手柄。 & 737NG 飞机液压动力系统由:主液压系统、地面勤务系统、辅助液压系统、液压指 示系统组成。 9、备用液压系统是一个必备系统,为以下部件提供备用液压动力:方向舵、前缘襟翼和缝翼、两个反推装置 10、备用油箱低油量电门在油箱内油液少于50%时,向位于驾驶舱内飞行操纵面板上的琥珀色备用液压低油量灯发送信号,使灯点亮。 11、当飞行控制面板上的任一盏琥珀色灯亮时,主警告灯和位于系统通告面板( P7) 上的飞行控制灯也会点亮。 12、当油泵压力低于1300 psi时,液压系统A和B的发动机驱动泵(EDP )和电动马达驱动泵(EMDP )的琥珀色油泵低压指示灯会点亮。当液压压力高于1600psi时,琥珀色 低压指示灯熄灭 13、利用地面勤务车为系统增压时,首先必须卸掉液压油箱的压力

(完整word版)飞机起落架基本结构

起落架 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。任何人造的飞行器都有离地升空的过程,而且除了一次性使用的火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆或回收阶段。对飞机而言,实现这一起飞着陆(飞机的起飞与着陆过程)功能的装置主要就是起落架。 基本介绍 起落架就是飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。 概括起来,起落架的主要作用有以下四个:承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;滑跑与滑行时的制动;滑跑 与滑行时操纵飞机。 2结构组成 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。 2.1减震器 飞机在着陆接地瞬间或在不平的跑道上高速滑跑时,与地面发生剧烈的撞击,除充气轮胎可起小部分缓冲作用外,大部分撞击能量要靠减震器吸收。现代飞机上应用最广的是油液空气减震器。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。而油液以极高的速度穿过小孔,吸收大量撞击能量,把它们转变为热能,使飞机撞击后很快平稳下来,不致颠簸不止。 2.2收放系统 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 2.3机轮和刹车系统 机轮的主要作用是在地面支持收飞机的重量,减少飞机地面运动的阻力,吸收飞机着陆和地面运动时的一部分撞击动能。主起落架上装有刹车装置,可用来缩短飞机着陆的滑跑距离,并使飞机在地

飞机基本结构123

飞机基本结构 飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置(主要介绍机翼和机身)。 机翼 薄蒙皮梁式 主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。 多梁单块式 从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。有时为使用、维修的方便,可在展向布置有设计分离面,分离面处采用沿翼盒周缘分散连接的形式将全机翼连成一体,然后整个机翼另通过几个接头与机身相连。 多墙厚蒙皮式(有时称多梁厚蒙皮式,以下统简称为多墙式) 这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚(可从几毫米到十几毫米);无长桁;有少肋、多肋两种。但结合受集中力的需要,至少每侧机翼上要布置3—5个加强翼肋。当左、右机翼连成整体时,与机身的连接与多梁单块式类似。但有的与薄蒙皮梁式类似,分成左右机翼,在机身侧边与之相连,此时往往由多墙式过渡到多梁式,用少于墙数量的几个梁的根部集中对接接头在根部与机身相连。 蒙皮

波音 飞机外形结构说明

B737飞机外部结构说明 ——观察机头整流罩 是否整流罩完好无损,如整流罩头有黑点,表明可能被雷击或静电积累击过。需走近仔细观察,如发现击穿,应要求机务换整流罩;如不能确定,也可让机务搬观察 梯近距离检查。 ——前轮舱整体外观 前电子设备舱: 内有气象雷达天 线。放电造成整流罩上的 烧蚀 雷达罩导电条:6条, 缺失超过1条不放行

——支柱、撑杆是否有裂纹,是否断裂。 ——起落架作动筒、前轮转弯作动筒是否漏液压油(特别是冬天在北方机场过站、长时间停放时,由于橡胶低温易硬化特性,易造成密封圈硬化导致液压油渗漏)。若出现渗漏,应查MEL。 易渗油

。刹车片是否安装好,是否两块 磨损一致(若一多一少,则在 起飞收起落架刹前轮过程中, 会造成机头较大震动;同时造 成两前轮磨损不一致,地面滑 行时飞机可能会向一侧侧滑)。 铆钉是否露出刹车片,若 露出,应更换。 前轮舱观察孔玻璃是否清 洁(300型)起落架放好标致线(两箭 头对齐即放好)

前轮转弯旁通插销:地面 推飞机时,插上此销,旁 通液压A系统,不再给转 弯作动筒加压,令推车能 自由转动前轮。 拖把转弯角度限制线(推 飞机时):最大78°。 滑行灯导线

空地传感器 —NG型:每个起落架都有 轮胎 1、是否磨损见线(基地见线一层以上,外站见线二层以上建议换胎,轮胎总共有12-13层) 2、是否被钉子扎伤: ①、钉子扎入其中,可见一个白色亮点。若不能确定是否石子、尘埃等还是钉子, 可用手或脚轻轻刮几下,若刮不掉,则可能是钉子需进一步仔细确认并请机务 检查。 ②、若见到一个孔,而不见刺入物,可用牙签或木棍等探测一下孔深;若感觉较深, 也需让机务进一步检查确认。

飞机起落架结构及其系统设计_本科毕业论文

本科毕业论文题目:飞机起落架结构及其故障分析专业:航空机电工程 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式 目录 1. 引言 (1)

2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22) 4.4.2 试验结果与使用情况差异分析 (23) 4.5 主起落架机轮半轴失效分析结论 (24) 4.6 主起落架机轮半轴结构设计改进 (24)

飞机结构与系统试题(doc 160页)

M11飞机结构与系统1709+114 1 下列哪个是LOC频率 3 110.20MHz 112.35MHz 110.35MHz 117.30MHz 2 如果左、右两个显示管理计算机(DMC)同时故障,可以通过控制选择开关使显示的结果为: 4 只有机长的PFD和副驾驶的ND显示信息只有机长和副驾驶的PFD显示信息 只有机长和副驾驶的ND显示信息机长和副驾驶的PFD和ND均有显示 3 飞机在进近阶段,自动油门工作在2 N1方式MCP的速度方式拉平方式慢车方式 4 当飞机以恒定的计算空速(CAS)爬升时,真空速(TAS)将() 3 保持不变。减小。增大。先增大后减少。 5 "一架大型运输机在飞行的过程中,如果备用高度表后的气管松脱,那么高度表指示的是( )" 2 飞机的气压高度。外界大气压力所对应的气压高度。 飞机的客舱气压高度。客舱气压。 6 下列关于“ADC压力传感器”的叙述哪个正确? 1 在DADC中,静压和全压使用相同类型的传感器。 在模拟ADC中和DADC中使用相同类型的压力传感器。 在DADC中,仅使用一个传感器来测量静压和全压。 "在DADC中,压力传感器可单独更换。" 7 高度警告计算机的输入信号有:134 大气数据计算机的气压高度信号无线电高度信息 自动飞行方式控制信息襟翼和起落架的位置信息 8 如果EFIS测试结果正常,则显示器上显示的信息有:234 系统输入信号源数字、字母和符号 系统构型(软、硬件件号)光栅颜色 9 在PFD上,当俯仰杆与飞机符号重合时,飞机可能正在()1234 平飞爬升下降加速 10 当ND工作在ILS方式时,显示的基本导航信息有()123 风速和风向飞机的航向地速航道偏差 11当EICAS警告信息多于11条时,按压“取消”电门 4 具有取消A级警告功能具有取消A级和B级警告功能 具有锁定信息功能能取消当前页B级和C级信息,具有翻页功能 12 EICAS计算机的I/O接口接收的信号输入类型,包括 4

飞机基本结构

飞机结构详细讲解 机翼 机翼是飞机的重要部件之一,安装在机 上。其最主要作用是产生升力,同时也 在机翼内布置弹药仓和油箱,在飞行中 收藏起落架。另外,在机翼上还安装有 起飞和着陆性能的襟翼和用于飞机横向 纵的副翼,有的还在机翼前缘装有缝翼 加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架 机翼的纵向骨架由翼梁、纵 樯和桁条等组成,所谓纵向是指沿翼展方 向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它承受 全部或大部分弯矩和剪力。翼梁一般由凸 缘、腹板和支柱构成(如图所示)。凸缘通 常由锻造铝合金或高强度合金钢制成,腹板 用硬铝合金板材制成,与上下凸缘用螺钉或 铆钉相连接。凸缘和腹板组成工字型梁,承 受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在 樯的凸缘很弱并且不与机身相连,其长 时仅为翼展的一部分。纵樯通常布置在 的前后缘部分,与上下蒙皮相连,形成 盒段,承受扭矩。靠后缘的纵樯还可以 襟翼和副翼。 * 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承力,并共同将气动力分布载荷传给翼肋。 二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,

第一章飞机结构与系统复习题手工改进无答案[]

飞机结构与系统复习题 飞机结构 1、飞机结构适航性要求的主要指标: A、强度、刚度、稳定性与疲劳性能 B、动强度与疲劳性能 C、抵抗破坏与变形的能力 D、安全系数与剩余强度 2、下列飞机结构中属于重要结构的是: (1|2|3) A、机身和机翼 B、尾翼和操纵面 C、发动机和起落架 D、发动机整流罩、背鳍与腹鳍 3、飞机结构安全寿命设计建立的基础是: A、充分发挥结构的使用价值 B、尽量减少结构的重量 C、结构无裂纹 D、允许结构有裂纹 4、飞机结构损伤容限设计思想是: A、承认结构在使用前带有初始缺陷 B、在服役寿命期内设有可检裂纹 C、结构的剩余强度随使用时间保持不变 D、设计出多路传力结构和安全止裂结构 5、飞机结构耐久性设计的基本要求是: (2|3|4) A、结构具有抵抗疲劳开裂、腐蚀、磨损能力 B、结构经济寿命必须超过一个设计使用寿命 C、低于一个使用寿命期内不出现功能性损伤 D、飞机经济寿命必须通过分析和试验验证 6、飞机结构经济寿命: A、结构到修不好的使用时间 B、结构出现裂纹的工作时间 C、结构第一个大修周期的时间 D、执行耐久性试验计划结果的工作寿命 7、现代民用运输机结构采用何种设计思想: A、安全寿命设计 B、耐久性设计 C、损伤容限设计思想 D、破损安全设计 8、飞机结构的强度是: A、结构抵抗变形的能力 B、结构抗腐蚀的能力 C、结构抵抗破坏的能力 D、结构的稳定性 9、损伤容限结构的分类 A、裂纹缓慢扩展结构 B、破损安全结构 C、限制损伤结果 D、1、2正确

10、飞机结构的刚度是: A、结构抵抗变形的能力 B、结构抗腐蚀的能力 C、结构抵抗破坏的能力 D、结构的稳定性 11、现代运输机飞行中所受的外载荷有: A、集中载荷、分布载荷与动载荷 B、重力、升力、阻力和推力 C、升力、重力、推力、阻力和惯性力 D、座舱增压载荷与疲劳载荷 12、飞机飞行过载定义为: A、气动力比重力 B、升力比阻力 C、推力比阻力 D、升力比重力 13、操纵n过载飞机左转弯右发动机过载: A、等于飞机过载n B、等于n-Δn C、等于n+Δn D、等于n±Δn 14、飞机结构安全系数定义为: A、P设计/P使用 B、P破坏/P设计 C、P破坏/P使用 D、n使用/n设计 15、运输机水平转弯过载值取决于: A、转弯速度大小 B、转弯升力大小 C、转弯半径大小 D、转弯坡度大小 16、某运输机飞行过载为3表明: A、飞机垂直平面曲线飞行,升力是重力3倍 B、升力为正是重力的3倍 C、飞机水平转弯过载为3g D、飞机着陆下滑重力是升力的3倍 17、飞机速度-过载包线表示: A、飞行中ny≤n使用最大 B、飞行中q≤q最大最大 C、空速与各种过载的组合 D、1和2正确 18、操纵n过载飞机抬头时头部发动机过载: A、等于n+Δn B、等于n-Δn C、等于飞机过载n。 D、等于n±Δn 19、飞机过载n使用表明: A、飞行中的最大过载值

飞机起落架设计

起落架设计 起落架形式的选择 前三点式起落架,采用前三点式起落架,与自行车式后三点式相比前三点式具有结构重量适中,前方视界、地面滑行稳定性、起飞抬前轮、起飞过程中的操作、着陆接地的操作性能好,着陆速度使用的发动机不限的特点。 飞机起落架安装位置的选择

飞机起落架形式的选择 特点:1.受力系统在放下位置借助承力锁来保证几何不变性,该锁将起落架的承力杆或梁直接固定在飞机结构上;2.收放作动筒不是受理系统承力杆;3.这种受力形式的下锁位承受很大的地面载荷,其变形等可能影响锁的可靠性,从而降低起落架收放的可靠性。故用此种形式时,对起落架收放的可靠性应予以充分注意,可靠性设计和试验均应考虑地面载荷。这一类起落架在机体内所占的空间较小。 各参数确定 前三点式起落架的主要几何参数包括:主轮距B、前主轮距b、停机角ψ、着地角φ、防后倒立角γ、起落架高度h (1)停机角ψ的确定: ψ = 0°~ 4°起滑安装按起飞要求,其最佳值应能使 飞机起飞距离最小。 根据经验取:=2° (2)着地角φ的确定着陆安装按着陆迎角确定

(3)防后倒立角γ的确定:应大于着地角

γ= +2°=18° (4)前主轮距b 的确定:Lf=(m) 取b=*L f= (5)起落架高度h 重心位置为LB=( m) 前轮所承受的载荷最佳值为起飞重量的 8~15%的条件及γ =18°来确定 前轮载荷TQ,后轮载荷T H,飞机重量G 对主轮距取矩:TQ× b=G×e 由此得出:e=(8~15%)b 取e== (m) 则h' =e/tanγ =(m) 减震器参数 (1)飞机下沉速度 减震器的行程取决于飞机下沉速度(接地时的垂直速度)、减震材料和接地时机翼升力。不同类型飞机的下沉速度(vV)不同:陆基飞机为3m/s,垂直起落飞机为4.5m/s,舰载飞机为6~7m/s。 (2)起落架过载飞机垂直速度的减速率称为起落架过载,其决定了由起落架传到机体上的载荷的大小,影响结构重量和乘员/ 旅客的舒适性。不同类型飞机,起落架过载(ng)不同:大型轰炸机为2~3,商用飞机为~3,通用航空飞机为3,空军战斗机为3~4,海军战斗机为5~6。 (3)减震器行程计算

飞机结构与系统思考题

飞机结构与系统思考题 一. 概述 1. 该型飞机基本机体(机身机翼尾翼)概况?从几个方面概括? 2. 飞机起落架、系统和座舱等概况? 3. 该型发动机概况?推力大小? 4. 飞机武器装备及机载设备概况? 5. 该型飞机的基本几何参数?(机长、翼展、机高、长径比、进气道直径、机翼面积、前缘后掠角、副翼最大偏转角、襟翼最大放下角度、调节锥最大伸出量、水平尾翼向上下偏转角、后掠角、垂直尾翼面积、后掠角、方向舵最大偏转角、空机重量、最大起飞重量、最大使用M数、静升限、实用升限、上升率、最大航程、最大续航时间、离地速度、着陆速度、起飞滑跑距离(加力状态,带副油箱)、着陆滑跑距离(放着陆减速伞、不放着陆减速伞)、最大使用过载) 二. 第一章机体 1. 机体组成、机翼组成? 2. 翼梁的组成、材料、承载特点、与机身的连接方式? 3. 翼肋的组成、材料、作用、结构? 4. 蒙皮的厚度与安装位置? 5. 整体壁板的构造、安装位置、作用?什么是化学铣切? 6. 机翼油箱的构成? 7. 机翼与机身的连接方法与连接点? 8. 机翼设备与座舱的分布? 9. 襟翼的作用、构造、与机翼连接方法与动作传递方法? 10. 副翼的作用、构造、与机翼连接方法及动作传递方法? 11. 尾翼组成、垂直尾翼组成、水平尾翼组成? 12. 垂直安定面的构造、承载特点、翼尖安装的部件及与机身的连接? 13. 方向舵的构造及与垂直安定面的连接方法? 14. 水平尾翼的构造、与机身连接方法、活动方法? 15. 水平尾翼转轴的构造与连接方法? 16. 机身的组成、机身前段的构造? 17. 隔框的作用、机身前段隔框的构造、作用? 18. 机身前段梁的作用与构造? 19. 机身前段蒙皮与长桁的作用与构造? 20. 机头罩的构造与材料? 21. 调节锥的调节方法与构造? 22. 机身后段的基本构造? 23. 机身后段为什么没有梁? 24. 机身各舱位的布局?

起落架系统结构及工作原理

起落架系统结构及工作原理 起落架用来支撑飞机和便于飞机在地面运动。飞机在着陆接地和地面运动时,会与地面产生不同程度的撞击,起落架应能减缓这种撞击,以减小飞机的受力。同时,起落架还应保证飞机在地面运动时,具有良好的稳定性和操纵性。 Cessna172R飞机起落架的配置形式为前三点式。与后三点式起落架相比,这种配置形式能保证飞机在地面运动时的稳定性较好,但前起落架的载荷比较大,构造也比较复杂,同时着陆滑跑时,飞机迎角较小,不能很好地利用气动阻力来缩短滑跑距离。 前起落架构件材料为4130、6150合金钢和7075-T73铝合金锻件。 3.1 主起落架构造及维护 Cessna172R飞机主起落架支柱由6150合金弹簧钢管和高强度的7075-T73 铝合金锻造连接件构成,用螺栓固定在机身底部,为不可收放式。每个支柱下部外侧连接了一个铸铝机轮组件和园盘式刹车系统。 主起落架维护程序包括支柱和悬臂拆卸/安装说明,主机轮校装程序,机轮和轮胎维护,以及刹车维护程序。 3.1.1 主起落架拆卸/安装 A.拆卸主起落架(见图1)。 (1)拆下前排座椅到达机身地板。 (2)拉起地毯拆下地板检查盖板(231AT)接近机身地板下部的起落架组件。 (3)顶起飞机。 (4)拆下机身整流罩与机身的连接螺钉。 (5)拆下机身整流罩结合部分螺钉。 (6)从支柱整流罩上拆下机身整流罩。 (7)从支柱上的刹车管路放泄液压油。 (8)脱开从机身蒙皮露出的接头处液压刹车管。 (9)在脱开的接头处放置盖帽或堵塞。 (10)拆下管状支柱后部内与起落架内部隔框接头处连接的螺帽,垫片和螺 栓。 (11)从接头和衬套处拉出管状支柱。 注意:管状支柱是压缩装配在起落架外部锻件衬套内。 B.安装主起落架(见图1)。 (1)安装所有从支柱上拆下的部件。 (2)使用Dow Corning 混合物 DC-7在管状支柱上部末端大约11英寸。 (3)移动管状支柱穿过衬套进入外部支柱接头和内部支柱接头。 (4)校准管状支柱与内部接头的螺栓孔。

飞机结构与系统(看几遍,背背就过)

飞机的外载荷 飞行时,作用在飞机上的外载荷主要有:重力、升力、阻力和推力 分类: 1.飞机水平直线飞行时的外载荷 2.飞机做机动飞行时的外载荷(垂直平面、水平平面) 3.飞机受突风作用时的外载荷(垂直突风、水平突风) 飞机的重心过载 过载:作用在飞机某方向的除重力之外的外载荷与飞机重量的比值,称为飞机在该方向的飞机重心过载。 飞机的结构强度主要取决于y轴方向的过载n y=Y/G 过载的意义 通过过载值可求出飞机所受的实际载荷大小与其作用方向,便于设计飞机结构,检验其强度、刚度是否满足要求。标志着飞机总体受外载荷的严重程度。 过载与速压 最大使用过载:设计飞机时所规定的最大使用过载值,称为最大使用过载。 ●飞机在飞行中的过载值n y表示了飞机受力的大小。通常把飞机在飞行中出现的过载值 ny称为使用过载。 ●最大使用过载是在设计飞机时所规定的,它主要由飞机的机动飞行能力、飞机员的生理 限制和飞行中因气流不稳定而可能受到的外载荷等因素确定的。 在某一个特定的高度,由于发动机的推力有限,所以所能达到的速度有限,因此所能达到的速压也就有限。 使用限制速压:通常规定某一高度H0上对应的最大q值为使用限制速压。 最大允许速压:飞机在下滑终了时容许获得的最大速压,称为最大允许速压(强度限制速压)。最大允许速压比使用限制速压更加重要。飞机飞行中不能超过规定的速压值,否则,飞机会由于强度、刚度不足而使蒙皮产生过大的变形或者撕离骨架,有时还可能引起副翼反效,机翼、尾翼颤振现象。 速压和过载的意义 过载的大小——飞机总体受力外载荷的严重程度 速压的大小——飞机表面所承受的局部气动载荷的严重程度 ●因此,由最大使用过载和最大允许速压所确定的飞机强度和刚度,反映了飞机结构的 承载能力。 飞行包线 一系列飞行点的连线。以包络线的形式表示允许航空器飞行的速度、高度范围。 同一翼型,机翼的迎角与升力系数一一对应。要确定飞机的严重受载情况,就要同时考虑过载ny、速压q和升力系数Cy的大小。 ●以飞行速度Vd为横坐标、飞机过载ny为纵坐标的坐标轴,以飞机过载ny、速压q和 升力系数Cy为基本参数,画出机动飞行的飞机包线。 P11 OA:正失速线,表示在相应的当量速度下,飞机能达到的最大正过载值,超过这条曲线,飞机就会失速。(Cy的限制) OD:负失速线,表示在相应的当量速度下,飞机能达到的最大负过载值,超过这条曲线,飞机就会失速。(Cy的限制) AA’:最大正过载 DD’:最大负过载 A’D’:最大速度(限制当量速度) 机身的分类 构架式、硬壳式、半硬壳式 机翼的外载荷 作用在机翼上的外载荷有:空气动力、机翼结构质量力、部件及装载质量力。 空气动力

飞机起落架设计

。 起落架设计 起落架形式的选择 前三点式起落架,采用前三点式起落架,与自行车式后三点式相比前三点式具有结构重量适中,前方视界、地面滑行稳定性、起飞抬前轮、起飞过程中的操作、着陆接地的操作性能好,着陆速度使用的发动机不限的特点。 飞机起落架安装位置的选择

飞机起落架形式的选择 特点:1.受力系统在放下位置借助承力锁来保证几何不变性,该锁将起落架的承力杆或梁直接固定在飞机结构上;2.收放作动筒不是受理系统承力杆;3.这种受力形式的下锁位承受很大的地面载荷,其变形等可能影响锁的可靠性,从而降低起落架收放的可靠性。故用此种形式时,对起落架收放的可靠性应予以充分注意,可靠性设计和试验均应考虑地面载荷。这一类起落架在机体内所占的空间较小。 各参数确定 前三点式起落架的主要几何参数包括:主轮距B 、前主轮距b 、停机角ψ、着地角φ、防后倒立角γ、起落架高度 h (1)停机角ψ的确定: ψ = 0°~ 4° 按起飞要求,其最佳值应能使飞机起飞距离最小。 根据经验取:ψ=2° (2)着地角φ的确定 按着陆迎角确定 φ=16° (3)防后倒立角γ的确定:应大于着地角 安装起滑ααψ-=安装着陆αψαφ--=

γ= +2°=18° (4)前主轮距b的确定: L=(m) f L= 取b=*f (5)起落架高度h 重心位置为B L=(m) 前轮所承受的载荷最佳值为起飞重量的8~15%的条件及γ=18°来确定 前轮载荷Q T,后轮载荷H T,飞机重量G 对主轮距取矩:Q T×b=G×e由此得出: e=(8~15%)b 取e== (m) 则h’=e/tanγ=(m) 减震器参数 (1) 飞机下沉速度 减震器的行程取决于飞机下沉速度(接地时的垂直速度)、减震材料和接

飞机构造之结构

第一章 飞机结构 1.1 概 述 1.2 飞机载荷 1.3 载荷、变形和应力的概念 1.4 机翼结构 1.5 机身结构 1.6 尾翼和副翼 1.7 机体开口部位的构造和受力分析 1.8 定位编码系统

1.1.概述 固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。 直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。 机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。飞机各部件由不同构件构成。飞机各构件用来传递载荷或承受应力。单个构件可承受组合应力。 对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。 1.2.飞机载荷 飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。 1.2.1.平飞中的受载情况 飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。 即: Y = G P = X 图 1 - 1 平飞时飞机的受载

减速。由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。翼型越接近对称形,机翼上下表面的局部气动载荷就越大。所以,如果机翼蒙皮刚度不足,在高速飞行时,就会被显著地吸起或压下,产生明显的鼓胀或下陷现象,影响飞机的空气动力性能。 1.2.2. 飞机在垂直平面内作曲线飞行时的受载情况 飞机在垂直平面内作曲线飞行的受载情况如图1-2所示。这时,作用于飞机的外力仍是飞机的重力、升力、阻力和发动机的推力。但是,这些外力是不平衡的。 曲线飞行虽是一种受力不平衡的运动状态,但研究飞机在曲线飞行中的受载情况时,为了方便起见,可以假设飞机上还作用着与向心力大小相等、方向相反的惯性离心力。这样,就可以把受力不平衡的曲线飞行作为受力平衡的运动状态来研究。 飞机在垂直平面内作曲线飞行时,升力可能大大超过飞机重量。飞机在曲线飞行中所受的载荷可能比平飞时大得多。可以推导出如下公式:其中r 为飞机机动飞行的曲率半径,v 为飞行速度。 Y -Gcos = m r v 2 由于飞机在每一位置的θ角不同,而且飞行速度和曲率半径也不可能一样,所以,飞机在垂直平面内做曲线飞行时,飞机的升力也是随时变化的。 图 1 - 2 飞机在垂直平面内的曲线飞行 N (惯性离心力)

飞机结构重要资料全

单选 1. 直升机尾浆的作用是 B A:提供向前的推力 B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力 D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为 D A:降低飞行速度 B:开启座舱增压设备 C:打开襟翼 D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是 A A:上下蒙皮表面均受吸(易鼓胀) B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压 D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为 C A:蒙皮上表面受压,下表面受吸 B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压 D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了 C A:飞机和空气的相对速度 B:飞机的姿态 C:飞机的迎角 D:飞机的地速 6. 水平尾翼的控制飞机的 A A:俯仰操纵和俯仰稳定性 B:增升 C:偏航操纵和稳定性 D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用 C A:飞行扰流板 B:侧高速副翼 C:机翼外侧低速副翼 D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼 B:副翼 C:飞行扰流板 D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速 B:横滚操纵 C:俯仰操纵 D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力 B:飞机的临界迎角 C:飞机的强度 D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零 B:飞机的速度不等于零 C:部件安装位置不在飞机重心上 D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼 B:整体式机翼 C:双梁式机翼 D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁 B:腹板式 C:整体式 D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式 B:布质蒙皮式 C:硬壳式 D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂 B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通 D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩 B:机翼上表面 C:机翼、尾翼的尖端和后缘 D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力 B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好 D:抗剥离强度低、工作温度低

飞机起落架结构及其系统设计

飞机起落架结构及其系统设计 本科毕业论文 题目:飞机起落架结构及其故障分析 专业: 航空机电工程 姓名: 指导教师: 职称: 完成日期: 2013 年 3 月 5 日 飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收 撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自 动刹车装置。同时起落架又具有空气动力学原理和功能,因此人们便设计出了可 收放的起落架,当飞机在空中飞行时就将起落架收到机翼或机身之内,以获得良 好的气动性能,飞机着陆时再将起落架放下来。 关键词:起落架工作系统凸轮机构前轮转弯收放形式 3 目录 1. 引

言 ................................................................. . (1) 2. 起落架简 述 ................................................................. . (1) 2.1 减震 器 ................................................................. (1) 2.2 收放系 统 ................................................................. ............................................... 1 2.3 机轮和刹车系 统 ..................................................................... . (2) 2.4 前三点式起落 架 ................................................................. .. (2) 2.5 后三点式起落 架 ................................................................. .. (3) 2.6 自行车式起落 架 ................................................................. .. (5) 2.7 多支柱式起落

《飞机结构与系统》各章复习要点

《飞机结构与系统》各章复习要点 第一章 1.组成机体的典型构件有:翼梁、隔框、桁条、肋、纵墙和大梁,其中属于横向构件的有哪些?属于纵向构件的有哪些? 2.机翼结构中的主梁、长桁、翼肋和机身结构中的隔框的主要功用是什么? 第二章 1.简述减震支柱是如何减小撞击力和减弱颠簸的。 2.画出油气式减震支柱气体和油液共同工作的工作特性曲线。并说明:油量正常、气压不足和气压过大时各易出现什么样的不良后果。 3.试说明转轮机构、凸轮机构、转动套筒和减摆器的功用各是什么? 4.圆盘式刹车装置是如何工作的。 第三章 1.主液压系统和助力液压系统的功用各是什么? 2.蓄压器在液压系统中发挥什么作用。 3.液压系统中哪些地方用到了液压锁、钢珠锁、卡环锁,请举例说明。 4.请结合图3-67说明放起落架时液压油路的工作情况。 5.请结合图3-67说明收起落架时液压油路的工作情况。 第四、五章 1.操纵系统中载荷感觉器的功用是什么? 2.副翼操纵系统中,载荷感觉器的活动杆在安装时伸出过多将对驾驶杆和副翼的中立位置产生何种影响?载荷感觉器的活动杆在安装时缩进过多又会对驾驶杆和副翼的中立位置产生何种影响? 3.调整片效应机构是如何卸去杆力的?其活动杆安装位置伸出过多时对驾驶杆和平尾的中立位置将产生何种影响?缩进过多时又会对驾驶杆和平尾的中立位置将产生何种影响? 4.左ZL-5的主配油柱塞卡在前极限位置时,对驾驶杆、左右副翼的中立位置有何影响?左右压杆时,杆力大小将有何变化?主配油柱塞卡在中立位置时,对前述部位中立位置和杆力又有何影响?

第七章 1.根据图6-8说明,歼七-Ⅱ飞机的刹车部分由哪些附件组成?各附件的功用是什么? 2.正常刹车时,从50减压器来的冷气,用于控制刹车压力的冷气先后流经哪些附件?用于执行刹车的冷气先后流经哪些附件? 第八章 1.歼七-Ⅱ飞机的油箱是如何分组的?并请按照飞行过程中,各组油箱燃油消耗完的先后顺序进行排序。 2.试简述控制管路的基本工作原理。 第九章 1.根据图8-1说明,座舱空调系统中,通往供气开关前单向活门的冷、热两路空气是如何形成的?以上通路中,包含哪些附件,各附件的功用是什么? 2.座舱的增压压力随高度变化的规律是什么? 第十章 1.在座舱外部时是如何打开座舱盖的? 2.抛盖时,有几个角度可以将座舱盖抛掉? 3.弹射时,弹射的方法有哪些? 4.弹射过程中,作为动力来源的有:A、人椅分离器打火机构、B、燃爆器; C、抛盖燃爆机构; D、射伞枪中的延时弹; E、座椅弹射机构; F、JD-1火药拉紧机构; G、弹射火箭。请按各火药机构燃爆的先后顺序排序。(以A→B的形式表示)

飞机起落架的减震系统

8.6 起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型

相关主题
文本预览
相关文档 最新文档