当前位置:文档之家› 光伏并网发电系统的分类及其结构资料

光伏并网发电系统的分类及其结构资料

光伏并网发电系统的分类及其结构资料
光伏并网发电系统的分类及其结构资料

光伏并网发电系统

并网太阳能光伏发电系统是由光伏电池方阵并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。并网太阳能光伏发电系统相比离网太阳能光伏发电系统省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。值得申明的是,并网太阳能光伏发电系统很大一部分用于政府电网和发达国家节能的案件中。并网太阳能发电是太阳能光伏发电的发展方向,是21世纪极具潜力的能源利用技术。

并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,因而没有太大发展。而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。

概述

太阳能发电是传统发电的有益补充,鉴于其对环保与经济发展的重要性,各发达国家无不全力推动太阳能发电工作,如今中小规模的太阳能发电已形成了产业。太阳能发电有光伏发电和太阳能热发电 2 种方式,其中光伏发电具有维护简单、功率可大可小等突出优点,作为中、小型并网电源得到较广泛应用。并网光伏发电系统比离网型光伏发电系统投资减少25 %。将光伏发

电系统以微网的形式接入到大电网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,并网光伏发电系统的运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。

特点及必要条件

在微网中运行,通过中低压配电网接入互联特/超高压大电网,是并网光伏发电系统的重要特点。并网光伏发电系统的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。

分类

1、有逆流并网光伏发电系统

有逆流并网光伏发电系统:当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供

太阳能并网发电系统安装图片(2张)

电(卖电);当太阳能光伏系统提供的电力不足时,由电能向负载供电(买电)。由于向电网供电时与电网供电的方向相反,所以称为有逆流光伏发电系统。

2、无逆流并网光伏发电系统

无逆流并网光伏发电系统:太阳能光伏发电系统即使发电充裕也不向公共电网供电,但当太阳能光伏系统供电不足时,则由公共电网向负载供电。

3、切换型并网光伏发电系统

所谓切换型并网光伏发电系统,实际上是具有自动运行双向切换的功能。一是当光伏发电系统因多云、阴雨天及自身故障等导致发电量不足时,切换器能自动切换到电网供电一侧,由电网向负载供电;二是当电网因为某种原因突然停电时,光伏系统可以自动切换使电网与光伏系统分离,成为独立光伏发电系统工作状态。有些切换型光伏发电系统,还可以在需要时断开为一般负载的供电,接通对应急负载的供电。一般切换型并网发电系统都带有储能装置。

4、有储能装置的并网光伏发电系统

有储能装置的并网光伏发电系统:就是在上述几类光伏发电系统中根据需要配置储能装置。带有储能装置的光伏系统主动性较强,当电网出现停电、限电及故障时,可独立运行,正常向负载供电。因此带有储能装置的并网光伏发电系统可以作为紧急通信电源、医疗设备、加油站、避难场所指示及照明等重要或应急负载的供电系统。

系统组成及功能

太阳能板

太阳能电池板是太阳能发电系统中的核心部分,太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一,其转换率和使用寿命是决定太阳电池是否具有使用价值的重要因素。组件设计:按国际电工委员会IEC:1215:1993标准要求进行设计,采用36片或72片多晶硅太阳能电池进行串联以形成12V和24V各种类型的组件。该组件可用于各种户用光伏系统、独立光伏电站和并网光伏电站等。

原材料特点:电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。玻璃:采用低铁钢化绒面玻璃(又称为白玻璃),厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有较高的透光率和抗老化能力。TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、

耐腐蚀、不透气等基本要求。边框:所采用的铝合金边框具有高强度,抗机械冲击能力强。也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

逆变器

太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

交流配电柜

其在电站系统的主要作用是对备用逆变器的切换功能,保证系统的正常供电,同时还有对线路电能的计量。

形式

并网光伏发电系统有 2 种形式:集中式并网和分散式并网。

集中式并网:特点是所发电能被直接输送到大电网,由大电网统一调配向用户供电,与大电网之间的电力交换是单向的。适于大型光伏电站并网,通常离负荷点比较远,荒漠光伏电站采用这种方式并网。

分散式并网:又称为分布式光伏发电并网,特点是所发出的电能直接分配到用电负载上,多余或者不足的电力通过联结大电网来调节,与大电网之间的电力交换可能是双向的。适于小规模

光伏发电系统,通常城区光伏发电系统采用这种方式,特别是于建筑结合的光伏系统。

可调度式与不可调度式

目前常见的光伏并网发电系统,根据其系统功能可以分为两类:一种为不含蓄电池的“不可调度式光伏并网发电系统”;另一种为系统包括蓄电池组作为储能环节的“可调度式光伏并网发电系统”。两者的系统配置示意图如图1和图2所示。可调度式并网光伏系统设置有储能装置,兼有不间断电源和有源滤波的功能,而且有益于电网调峰。但是,其储能环节通常存在寿命短、造价高、体积笨重以及集成度低的缺点,因此,目前这种形式的应用较少。

可调度式光伏并网发电系统与不可调度式相比,最大的不同是系统中配有储能环节,通常采用铅酸蓄电池组,其容量可根据实际需要进行配置。在功能上,可调度式系统有一定扩展和提高,主要包括:

(1)系统控制器中除了并网逆变器部分外,还包括蓄电池充放电控制器,根据系统功能要求进行蓄电池组能量管理。

(2)在交流电网断电时,可调度式系统可以实现不间断电源(Uninterruptible Power Supply,UPS)的功能,为本地重要交流负载供电。

(3)较大容量的可调度式光伏并网发电系统还可以根据运行需要控制并网输出功率,实现一定的电网调峰功能。

图.1 不可调度式光伏并网发电系统配置示意图

图.2调度式光伏并网发电系统配置示意图

虽然在功能上优于不可调度式光伏并网系统,但由于增加了储能环节,可调度式光伏并网系统存在着明显的缺点。这些缺点是目前限制可调度式光伏并网系统广泛应用的主要原因,包括:(1)增加蓄电池组导致系统成本增加。

(2)蓄电池的寿命较短,远低于系统其他部件寿命:目前免维护铅酸蓄电池在合理使用下寿命通常为 3 到 5 年,而光伏阵列一般可以稳定工作 20 年以上。

(3)废弃的铅酸蓄电池必须进行回收处理,否则将造成严重的环境污染。

二.集中式发电与分布式发电

根据光伏并网发电系统的规模和集中程度,可以将其分为集中式发电系统和分布式发电系统。集中式发电系统可以看作一个太阳能发电站,其峰值功率可以达到上兆瓦,输出电压等级也较高,可以直接连入中压或高压输电网。例如上世纪 90 年代在西班牙托莱多建成的兆瓦级太阳能电站,以及 1999 年在德国慕尼黑建成的与建筑集成的兆瓦级太阳能电站。截止 2005 年,世界上最大的太阳能电站是安装在德国 Espenhain 的太阳能电站,装机容量 5.5MWP,由约33,500 个太阳能电池组件组成,于 2004 年 9 月开始正式运行。

图.3位于德国 Espenhain 的 5.5MWP太阳能电站单个分布式光伏并网系统容量较小,一般在几个千瓦以下,目前在美国、欧洲和日本得到广泛应用的户用光伏并网系统(太阳能屋顶系统)都可以归入此类。20 世纪 90 年代以来,美国先后制定和出台了包括国家光伏发展计划、百万太阳能屋顶计划、光伏先锋计划在内的众多光伏发展计划。其中比较著名的是1997 年提出的“百万太阳能屋顶计划”。它规划到 2010 年为

100 万个美国家庭安装太阳能屋顶,每个光伏屋顶将有3kWP-5kWP 的光伏并网系统。在日本,截止 2004 财年底安装太阳能屋顶的住宅已经达到 20 万户,其中仅 2004 财年内就安装了超过 5 万套户用光伏并网系统。

在光伏并网系统的早期应用阶段,其并网发电的主要形式是集中式发电。即通过数量很多的太阳能电池串联、并联后,达到较高的电压和功率等级,然后使用一个较大容量的并网逆变器将电能输送到电网。这种方法带来一些弊端:

(1)需要耐直流高压的电缆连接光伏阵列和并网逆变器。

(2)各组串联的太阳能电池的特性差异影响集中式太阳能电池最大功率点跟踪的效果。

(3)太阳能阵列上串联二极管所带来的损耗。

例如,当串联的太阳能电池组件中某一组件被阴影覆盖,这一组件不但不能输出功率,还会成为回路的负载,影响效率的同时还会引起太阳能电池的局部过热。工作中的太阳能电池,某一组件被阴影完全覆盖会导致其内部温度高于环境温度 70℃以上,而其他正常工作的组件温度仅高于环境温度 22℃左右(环境温度为 12℃时),过热会严重影响太阳能电池的寿命。

同样,并联的太阳能电池阵列中,某一被阴影覆盖的太阳能电池组件也会影响太阳能电池阵列的整体效率。虽然它本身仍在输出电能,但是整个并联输出的直流电压会被拉低很多。

为了解决直接串并联组成光伏阵列引起的匹配问题,研究人

员提出了一种方案,该方案中,每个太阳能电池组件都由一个能量控制电路(Generation Control Circuit, GCC)来控制,这种控制方法减小了发生局部过热的可能。

光伏并网系统的另一种代表性技术方案是“串联型逆变器”(String-Inverter)。即逆变器的输入端为一组串联的太阳能电池组件,从而可以达到较高输入电压。但是,串联的太阳能电池组件内部的局部过热现象仍可能存在。好处是减小了并联情况下二极管上的压降损耗。

模块化是上述问题的一个较好的解决方法。将逆变电路与太阳能电池组件集成到一起。这样可以完全消除光伏阵列与并网逆变器之间可能的不匹配。由于每个太阳能电池组件都搭配了自己的逆变电路,局部过热问题得到了很好的解决,从而可以达到相对较高的效率。基于该方案的模块化结构,如果集成逆变电路的太阳能电池组件能够实现“即插即用”和热插拔功能,那么系统的扩展和局部调整将会十分安全简便,这也给光伏并网系统的广泛应用带来了方便。

三.根据逆变器的拓扑结构和控制方式

光伏并网发电系统中的并网逆变器的基本功能是相同的,即当光伏阵列输出在较大范围内变化时,能始终以尽可能高的效率将其输出的低压直流电转化成与电网匹配的交流电流送入电网。光伏阵列输出的大范围变动,主要原因是白天太阳辐照度的变化,范围在 200W/m2到 1000W/m2之间。

大部分并网逆变器都采用了全桥结构的主回路拓扑。换相方式主要有两种,分别是采用以电网 2 倍频率切换的并网换相(grid-commutated)方法和使用高频逆变电路的自换相(self-commutated)方法,如图 4 所示。

图.4并网逆变器的两种换相方式并网换相需要在逆变全桥之前电流波形已经整形成正弦半波;自换相方式则一般采用 PWM 调制或 Bang-Bang 控制。并网换相的优点是逆变环节几乎不产生开关损耗。但是,由于前一级直流变换器需要能输出正弦半波波形的电流,因此也可以看作将逆变环节的开关损耗转移到了直流变换环节。

含变压器的并网逆变器又分为工频变压器和高频变压器两类。工频变压器的缺点比较明显,笨重、价格高、绕制麻烦。现在使用较多的是高频变压器,最新的设计已经能将高频变压器磁芯和绕组集成在印制电路板上,甚至可以不用磁性元件。

并网逆变器拓扑设计除了要方便实现最大功率点跟踪外,还必须考虑以下其他问题:

(1)成本低。

(2)效率高。

(3)寿命达到 25 年左右(太阳能电池组件的一般平均寿命)。

光伏并网发电系统的拓扑结构可以大致分为以下几种:

1.式并网逆变器拓扑

考虑光伏阵列输出电压较低的情况,单级式并网逆变器必须能在一个功率变换环节实现升压、最大功率点跟踪、DC/AC 逆变以及光伏阵列和电网之间的电隔离。因此这种拓扑结构必须包括有变压器。

图5给出了一种单级式并网逆变器的实现方式,称为“双向回扫逆变器”(Bi-Directional Fly-Back inverter,BDFB)。由于主回路具有双向电流导通能力,该逆变器可以保持输出电流的连续状态。

图.5单级并网逆变器拓扑结构:Bi-Directional Fly-Back inverter

这种拓扑的缺点在于,电网频率为 50Hz 时,相比两级和多级拓扑,光伏阵列输出直流母线电容上的 100Hz 纹波电压较大,

而减小这些纹波就需要更大的母线电容容值。

还有一类单级并网逆变器拓扑,采用全桥逆变后通过工频变压器直接接电网。由于使用了工频变压器,而且太阳能电池母线和电网之间没有能量解耦环节,一般认为这种拓扑的效率较低。可能的解决方案是串联多个太阳能电池组件以达到足够的直流输出电压,通过全桥逆变和滤波后直接连接到电网,如图 6 所示:

图.6无工频变压器的单级式光伏并网系统拓扑结构

2.级式并网逆变器拓扑

两级式并网逆变器拓扑是采用较多的主回路拓扑结构。如果逆变器是自换相的,通过在 DC/DC 变换后高压直流母线上并联一个电容,可以很好的实现能量解耦。主回路两级一般包括软开关 DC/DC 变换环节和自换相或电网换相的DC/AC 逆变环节,如图7所示。

图.7两级式并网逆变器拓扑结构框图图8给出了一种两级式并网逆变器,其拓扑与图7基本相同,不同处在于逆变桥除了 4 个开关管外,还增加了两个二极管,串联在桥臂中。这种拓扑有两个优点:第一,夜间光伏阵列没有输出时,电网的交流电压不能通过逆变全桥上的反并联二极管整流到直流母线电容上,消除了夜间并网逆变器的待机损耗;第二,逆变全桥两个桥臂工作在不同频率,其中左桥臂为20kHz-80kHz,起正弦波调制作用,右桥臂为 2 倍电网频率,即 100Hz,起换相作用,这样可以把开关损耗降低一半。

图.8一种改进的两级式并网逆变器拓扑

3. 多级式并网逆变器拓扑

多级拓扑设计会增加并网逆变器的复杂程度和成本,但这也给同时实现多种功能带来可能,包括:逆变桥低开关频率(100Hz);DC/DC 变换器正弦半波输出;光伏阵列与电网之间的能量解耦。因此多级拓扑设计可以在降低损耗的同时达到很好的最大功率点跟踪特性。

一种多级拓扑的并网逆变器拓扑结构如图9所示:

图.9种多级拓扑的光伏并网逆变器结构原理图

该光伏并网逆变器有以下一些特点:

(1)功率点跟踪由辅助电路实现,通过切换开关每 2s 接通辅助电路200us。

(2) BUCK 电路输出已经整形成为正弦半波。

(3)半桥升压电路为固定占空比(略小于 50%)驱动,无需外加控制。

(4)工作频率为 100Hz,只起换相作用。

它的缺点也比较明显,由于采用的是简化的最大功率点跟踪,不是真正的闭环控制,因此温度变化范围大时最大功率点跟踪效果相对较差,影响效率。

如图10所示一种多级式拓扑的并网逆变器。第一级的BOOST 电路起升压作用。它将太阳能电池输出电压升高到 200V 左右,同时还实现最大功率点跟踪。BOOST 电路中电感上还有一个绕组为辅助电源电路(Auxiliary Power upply Unit,APSU)供电。第二级推挽电路控制输出电流波形为正弦半波,同时也实现电网和光伏的电隔离。最后一级为 100Hz 逆变器,起换相作

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

关于光伏储能系统的四种类型

关于光伏储能系统的四 种类型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

关于光伏储能系统的四种类型 自从能源局5月31号发布新的政策,分布式光伏只安排10G左右的补贴规模,而在6月1号之前,全国分布式光伏的安装规模已经突破了10GW,因此2018年6月后,分布式光伏可能已没有国家补贴,如果没有补贴,全额上网的项目,自用比例较少的项目,电价较低的地区,收益将大幅下降,没有投资价值。纯光伏项目投资收益下降,于是人们将目光投向光伏加储能,希望在这个领域有报突破,给公司增加新收益。 光伏储能,和并网发电不一样,要增加蓄电池,以及蓄电池充放电装置,虽然前期成本要增加20-40%,但是应用范围要宽广很多。根据不同的应用场合,太阳能光伏储能发电系统分为离网发电系统、并离网储能系统、并网储能系统和多种能源混合微网系统等四种。 一、光伏离网发电系统 光伏离网发电系统,不依赖电网而独立运行,应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统由光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。 图1、离网发电系统示意图 光伏离网发电系统是专门针对无电网地区或经常停电地区场所使用的,是刚性需求,离网系统不依赖于电网,靠的是“边储边用”或者“先储后用”的工作模式,干的是“雪中送炭”的事情。对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性,目前光伏离网度电成本约元,相比并网系统要高很多,但相比燃油发电机的度电成本元,还是更经济环保。 二、并离网储能系统 并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价贵很多、波峰电价比波谷电价贵很多等应用场所。 图2、并离网发电系统示意图 系统由太阳电池组件组成的光伏方阵、太阳能并离网一体机、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控

最新小型光伏发电系统4KW的设计

小型光伏发电系统4K W的设计

南京信息职业技术学院 毕业设计论文 作者陈德清学号 31041P03 系部中认新能源技术学院 专业光伏发电技术及应用 题目小型独立光伏发电系统(4KW)的设计 指导教师程超 评阅教师张渊 完成时间: 2013年 5 月 2 日

毕业设计(论文)中文摘要

毕业设计(论文)外文摘要

目录 1 引言 (5) 2 独立光伏发电系统概述 (7) 2.1 独立光伏发电系统的概念 (7) 2.2.1 结构 (8) 2.2.2 工作原理 (9) 3 独立光伏发电系统的设计 (9) 3.1 系统的设计原则、步骤和内容 (9) 3.1.1 系统设计原则 (9) 3.1.2 设计步骤和内容 (9) 3.2 系统容量的设计 (10) 3.2.1 数值计算值 (10) 3.3 太阳能电池组件及方阵的设计 (12) 3.3.1 光伏组件方阵需要考虑的问题 (12) 3.3.2 太阳能电池组件(方阵)的方位角与倾斜角 (12) 3.3.3 一般设计方法 (13) 3.4 直流接线箱的选型 (16) 3.5 光伏控制器的选型 (18) 3.6 光伏逆变器的选型 (19) 4 结论 (20) 5 致谢 (21) 6参考文献 (21)

1 引言 自人类社会诞生以来,能源一直是人类生存和发展的重要物质基础。随着社会的发展,能源在社会发展中的重要性越来越突出,尤其是近年来各国日益呈现出来的能源危机问题更加明显地把能源置于社会发展的首要地位。 根据《BP世界能源统2005》的统计数据,以目前的开采速度计算,全球石油储量可供生产40 多年,天然气和煤炭则分别可以供应67年和164年。而我国的能源资源储量情况更是危机逼人,按2000 年底的统计,探明可开发能源总储量约占世界总量的10.1%.我国能源剩余可开采总储量的结构为原煤占58.8%,原油占3.4%,天然气占1.3%,水资源占36.5%。我国能源可开发剩余可采储量的资源保证程度仅为129.7年。 目前世界大部分国家能源供应不足,不能满足经济发展的需要,各国纷纷出台各种法规支持开发利用新能源和可再生能源,使得新能源和可再生能源在全球升混。20世纪90年代以来,以欧盟为代表的地区集团,大力开发利用可再生能源,连续1 0 年可再生能源发电的年增长速度都在15%以上。以德国、西班牙为代表的一些国家通过立法方式,促进可再生能源的发展,1999 年以来可再生能源年均增长速度均达到3日%以上。四班牙2003 年风力发电装机占到全机总量的4% ,德国在过去11年间,风力发电增长21倍,2003年占全的3.1%,瑞典和奥地利的生物质能源在其能源消费结构中高达15%以上。 近年来,光伏产业迅速发展,世界太阳电池年产量在最近十年内保持了30%以上的增速,2007 年年增长率达到了50% ,2008 年年增长率甚至达到了100% ,年产量达到6.5GW ,大阳电池产量迅速增加的动力来自于世界对太阳能等清洁能源持续增长的需求,2008 年世界光伏系统新装机容量达到5.95

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

太阳能光伏系统的分类

太阳能光伏系统的分类 目录 内容提要 (2) 引言 (2) 1.小型太阳能供电系统(SmallDC) (3) 2.简单直流系统(SimpleDC) (3) 3.大型太阳能供电系统(LargeDC) (3) 4.交流、直流供电系统(AC/DC) (3) 5.并网系统(UtilityGridConnect) (4) 6.混合供电系统(Hybrid) (4) 7.并网混合供电系统(Hybrid) (7)

太阳能光伏系统的分类详细介绍 关键词: 光伏系统独立系统混合系统 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(SmallDC);简单直流系统(SimpleDC);大型太阳能发电系统(LargeDC);交流、直流供电系统(AC/DC);并网系统(UtilityGridConnect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(SmallDC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(SimpleDC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别 的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

光伏支架类型及常见问题

光伏支架类型及常见问题 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。

2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 平顶屋面条形混凝土基础支架 a.地脚螺栓连接 b. 直接嵌入基础 平顶屋面独立混凝土基础支架 平顶屋面混凝土基础支架安装方式优点为抗风能力好,可靠性强,不破坏屋面防水结构;缺点为需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。

2)平顶屋面-混凝土压载支架 混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间,但其抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 平顶屋面混凝土压载支架 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。施工工艺都是先开孔,然后放入钢筋和混凝土,经养护凝固后与支架连接。其中现浇混凝土桩基础可以通过埋设地脚螺栓与支架支撑柱连接,可以直接将支撑柱嵌入混凝土,浇注锚杆基础不需成桩。现浇钢筋混凝土基础开挖土方量少,混凝土钢筋用量小,造价较低、施工速度快。但施工易受季节和天气等环境因素限制,施工要求高,一旦做好后无法再调节。 a.直接嵌入基础 b.地脚螺栓连接 c.浇注锚杆 现浇钢筋混凝土基础

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

太阳能光伏并网发电系统

太阳能光伏并网发电系统 摘要:随着经济的发展、社会的进步,电能的消耗越来越大,传统的火电需要燃烧煤、石油等化石燃料,一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。针对上述问题人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。太阳能是一种干净的可再生的新能源,越来越受到人们的亲睐,在人们生活、工作中有广泛的作用,其中之一就是将太阳能转换为电能。本文将对太阳能光伏并网发电系统这个新产品进行体系的构建和市场分析,运用产品开发与管理的知识对新产品进行可行性分析,材料分析以及工艺性分析。 关键词:太阳能发电系统产品体系构建市场分析可行性分析 一、产品体系的构建 产品体系由战略层面的文化以及策略层面的价格、包装等一系列要素构成,是企业从操作性角度对产品的审视[1]。 1、产品与文化 文化是产品的一个重要组成部分,属于产品附加利益这一层次。产品文化,是以企业生产的产品为载体,反应物质及精神追求的各种文化要素的总和,是产品价值和文化价值的统一。随着知识经济时代的到来,企业生产的产品决不仅仅是为了满足人们的某种物质生活需要,而是越来越多地考虑人们的精神生活需要,越来越重视产品文化附加值的开发,努力为顾客提供实用的、情感的、心理的等多方面的享受,努力把使用价值和审美价值融为一体,突出产品中的人性化因素[1]。 结合自身的产品,不仅要发掘尽可能多的使用价值,更多的是体现太阳能光伏并网发电系统的文化价值。本产品推崇的太阳不仅仅给世界带来了温暖和光照,即太阳能光伏并网系统结合自身的特点所体现出的文化价值。在当前能源短缺的大环境下,太阳能蕴藏丰富不会枯竭,是理想的清洁能源。由于其安全、干净,不会威胁人类和破坏环境,比传统的煤燃料更环保,所以太阳能更值得推广。对于顾客的情感方面,近阶段,国家电网的供电大多是采用火力发电,势必造成

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

光伏电站与土地性质

光伏电站与土地性质 办理大型地面电站、渔光互补、农光互补等涉及到征地、土地租赁等事项的光伏电站手续时,最先需要考察的就是土地性质。到看好的地块考察结束后,需要到当地国土局查询最新的土地利用政策、土地性质现状以及土地利用规划,以确定是否符合政策、规划等要求。那么,首先需要弄清楚土地性质分类,涉及到渔光互补、农光互补项目,尤其要弄清楚涉农土地的相关政策。 一、土地利用规划分类体系

1.什么是农用地? 按照《土地管理法》和国土资源部颁布的《土地分类》的规定,农用地是指用于农业生产的土地,包括耕地、园地、林地、牧草地及其他农用地。农用地分为下列五种:耕地;园地;林地;牧草地;其他农用地。 2.什么是耕地? 按照规定,耕地是指种植农作物的土地,包括熟地、新开发整理复垦地、休闲地、轮歇地、草田轮作地;以种植农作物为主,间有零星果树、桑树或其他树木的土地;平均每年能保证收获一季的已垦滩地和海涂。耕地中还包括南方宽小于一米,北方宽小于两米的沟、渠、路和田埂。 耕地又可分为三种: ①水田,指有水源保证和灌溉设施,在一般年景能正常灌溉,用于种植水生作物的耕地,包括灌溉的水旱轮作地; ②水浇地,指水田、菜地以外,有水源保证和灌溉设施,在一般年景能正常灌溉的耕地; ③旱地,指无灌溉设施,靠天然降水种植旱作物的耕地,包括没有灌溉设施,仅靠引洪淤灌的耕地; 3.什么是基本农田? 基本农田,是指按照一定时期人口和社会经济发展对农产品的需求,依据土地利用总体规划确定的不得占用的耕地。与之相对应的是一般农用地。 基本农田是耕地的一部分,而且主要是高产优质的那一部分耕地。一般来说,划入基本农田保护区的耕地都是基本农田。老百姓称基本农田为“吃饭田”、“保命田”。 农用地的范围要大于耕地,耕地大于基本农田。基本农田仅指受国家特别保护的耕地。 农用地经法定程序可以转为建设用地;而基本农田经依法确定后,任何单位和个人不得改变或占用,除非是国家能源、交通、水利、军事设施等重点建设项目选址确实无法避开基本农田保护区的,才能占用,并必须经国务院批准。 4.什么是农用地转用? 农用地转用,是指将土地利用现状调查确定的农用地依据土地利用总体规划、土地利用年度计划以及国家规定的审批权限报批后转变为建设用地的行为。 农用地转用又称为农用地转为建设用地。

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

太阳能光伏控制器知识大全

太阳能光伏控制器知识大全 太阳能光伏控制器*概述 太阳能控制器是太阳能光伏系统中重要的组成部分, 能自动防止蓄电池组过充电和过放电并具有简单测量功能的电子设备。由于蓄电池组被过充电或过放电后将严重影响其性能和寿命,充放电控制器在光伏系统中一般是必不可少的。它在很大程度上决定了太阳能光伏系统的可靠性。控制器的任务主要是实现太阳能对蓄电池的充电并保护光伏系统中的蓄电池。 太阳能光伏控制器*原理 单路并联型充放电控制器: 并联型充放电控制器充电回路中的开关器件T1是并联在太阳电池方阵的输出端,当蓄电池电压大于“充满切离电压”时,开关器件T1导通,同时组成。A1为过压检测控制电路,A1的同相输入端由W1提供对应“过压切离”的基准电压,而反相输入端接被测蓄电池,当蓄电池电压大于“过压切离电压”时,A1输出端G1为低电平,关断开关器件T1,切断充电回路,起到过压保护作用。当过压保护后蓄电池电压又下降至小于“过压恢复电压”时,A1的反相输入电位小于同相输入电位,则其输出端G1由低电平跳变至高电平,开关器件T1由关断变导通,重新接通充电回路。“过压切离门限”和“过压恢复门限”由W1和R1配合调整。 A2为欠压检测控制电路,其反相端接由W2提供的欠压基准电压,同相端接蓄电池电压(和过压检测控制电路相反),当蓄电池电压小于“欠压门限电平”时,A2输出端G2为低电平,开关器件T2关断,切断控制器的输出回路,实现“欠压保护”。欠压保护后,随着电池电压的升高,当电压又高于“欠压恢复门限”时,开关器件T2重新导通,恢复对负载供电。“欠压保护门限”和“欠压恢复门限”由W2和R2配合调整。 太阳能光伏控制器*产品特点 1、光伏控制器采用高频开关隔离结构,具有转换效率高,调节范围大,体积小,重量轻。 2、光伏控制器采用铁基纳米晶磁性材料,导磁率高,损耗小,节能效果好。 3、电源瞬态响应特性好,纹波小。 4、光伏控制器主要原器件采用进口并经筛选、老化,严格生产工艺和检测手段保证产品的高可靠性。 5、优化电路设计使产品同时具有整流及监控充电功能,不需另加监控设备。

家用小型太阳能光伏发电系统设计

专科生毕业论文(设计)题目:家用小型太阳能光伏发电系统设计 系(部)光伏发电及应用 专业光伏发电及应用 学号 201111120**** 姓名王 * 指导教师龚** 1

20 13年 10 月 6 日 摘要 太阳能是最普遍的自然资源,也是取之不尽的可再生能源。为解决边远的农牧地区、偏僻的山区、孤立的岛屿等地方人们日常生活、生产用电的需要,改善人们的生活水平,进行了家用太阳能光伏发电系统的设计。根据当地的气象、环境状况及具体用电情况,给出了系统的设计方法及施工要求,包括蓄电池容量的计算、控制器的选择、逆变器功率的选择、太阳能电池组件的选择和布置等。安装运行以来,系统工作稳定正常,验证了设计的正确性。 关键词:太阳能光伏发电;太阳能电池组件;系统设计。 Abstract:Solarenergyisthemostcommonformofnaturalresources,itisalsotheinexhaustiblerenewab leenergy.Aimingatsolvingthepeople'sdailylifeandproductionelectricityneedsinremotefarming,m ountainandislands,ahomeusesolarphotovoltaicgenerationsystemwasdesigned.Accordingtolocal weather,environmentalconditionsandspecificcasewithelectricity,thedesignmethodandconstructi onrequirementweredeveloped,includingthecalculationofthebatterycapacity,theselectionofthecon troller,thechoiceofinverterpower,theselectionandlayoutofthesolarcellmodules,etc..Theresultsind icatethatthesystemrunsstabilityandnormal,theaccuracyofthede-signisverified.

光伏电站中各种类型的支架及安装方式分析

光伏电站中各种类型的支架及安装方式分析 光伏零部件来源:王淑娟作者:王淑娟2014/8/28 13:46:28 我要投稿 北极星太阳能光伏网讯:光伏电站的运行方式大致有五种: 最佳倾角固定式(目前应用最广泛); 平单轴跟踪式; 斜单轴跟踪式; 双轴跟踪式; 固定可调式。 不同的运行方式,最根本的区别就在于它们的发电量差异。当然,初始投资和运行维护成本也会有差别。 一、不同运行方式的发电量提高 2010年的时候,我开始关注不同运行方式的比较,从某个支架厂家那里获得了一些实测的数据,完成下图。 从上图可以看出,与最佳倾角的固定式安装相比,水平单轴跟踪的发电量提升了17%~30%,倾斜5°单轴跟踪的发电量提升了21%~35%,双轴跟踪的发电量提升了35%~43%。但不同纬度下,各种运行方式的发电量提高率显然是不一样的。大致有几个规律: 1)最佳倾角固定式(以下简称“方式一”) 在低纬度地区,由于最佳倾角较小,所以发电量提高很少(如在8°时,几乎是不变的);在高纬度地区,最佳倾角大,发电量提高明显(如在50°时,提高了约25%)。 2)平单轴跟踪式(以下简称“方式二”) 这种运行方式跟踪了太阳一天之内入射角的变化,其对发电量的提高率,在低纬度地区要明显优于高纬度地区。一般认为,这种运行方式更适合在纬度低于30°的地区使用,相对于“方式一”,可以提高20%-30%的发电。当然在高纬度地区,相对“方式一”也能提高接近20%。

3)斜单轴跟踪式(以下简称“方式三”) 这种运行方式显然是结合了“方式一”和“方式二”的优点。如同“方式一”不适合低纬度地区一样,这种运行方式在低纬度地区的表现并不比“方式二”好多少。因此,更适合高纬度地区。 这种方式下,阵列两侧的支撑结构(支架、转动轴)受力肯定是不一样的。由于高纬度地区的最佳 倾角较大,如果采用“最佳倾角斜单轴”,则两侧受力不均衡就会很大。因此,工程中一般会采用一个较 小的倾角。 4)双轴跟踪式(以下简称“方式四”) 由于跟踪了太阳一天之内、一年之内的入射角的变化,这种方式对发电量的提高显然是最高的。 5)固定可调式(以下简称“方式五”) 这种运行方式是根据太阳一年之内入射角的变化调整支架倾角,从而实现发电量的提高。从去年开 始比较流行,下文会着重说明。 那不同运行方式是如何提高发电量的呢?来两个实际数据做的图(说明:图片来自于王斯成老师ppt)。 各种运行方式一年之内各月发电量差异 从上图可见,相对于水平面辐射: 固定式提高了春、秋、冬三季的发电量,而牺牲了夏季的发电量; 单轴跟踪的曲线与水平面曲线几乎是完全平行的; 双轴跟踪相对与单轴跟踪,提高了春、秋、冬三季的发电量。

小型光伏发电系统设计

小型光伏发电系统设计 摘要:本文对小型光伏发电系统设计进行了详细阐述,主要包括:太阳能光伏发电系统结构、太能能光伏发电系统容量的选择与计算、太阳能电池组件功率和方阵的设计与计算、蓄电池 容量的设计与计算、控制器和逆变器的选型等内容,最后本文给出了一个装机容量为3kW 的小型光伏发电系统的典型配置。 关键词:小型光伏发电设计;成本分析;小型光伏系统典型配置 一、引言 2013 年以来,中国各地持续加重的雾霾天气,一再引发人们对环境的关注。 2014 年伊始,我国中东部地区因雾霾天气造成中重度空气污染,严重影响了公众的健康,不仅成为社会关注的焦点,而且也已经成为严重的社会问题。治理雾霾已成为政府工作的重中之重,继国务院出台《大气污染防治行动计划》后,相关部门陆续出台大气治理措施。当前,以光伏发电为代表的清洁能源为治理雾霾提供了破解路径,并得到了国家高度重视。 然而,当前由于大型光伏电站投资成本过高、对大型光伏发电站的成本测算、 预期投资回收期以及运营费用等各方面的研究还不成熟,导致资本不敢贸然投资光伏发电,当前看似如火如荼进展的光伏发电站则主要还是依赖政府补贴,大型光伏发电站真正进入市场还有较长一段路要走。 小型光伏发电系统相对而言具有投资成本小、技术瓶颈低、成本回收期短等 优势。在当前各投资资本对大型光伏发电产业持观望态度时期,小型光伏发电系 统无疑会成为各资本进入光伏产业的探路石。 在此背景下,本文提出一种小型光伏发电系统的设计,并对该系统中的各关 键问题进行研究分析。 二、小型光伏发电系统的基本设计思路 太阳能光伏发电系统的负载大小有别、用途各异、发电系统所处的地理位置、

光伏发电系统-毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈

光伏储能系统的四种类型

关于光伏储能系统的四种类型 自从能源局5月31号发布新的政策,分布式光伏只安排10G左右的补贴规模,而在6月1号之前,全国分布式光伏的安装规模已经突破了10GW,因此2018年6月后,分布式光伏可能已没有国家补贴,如果没有补贴,全额上网的项目,自用比例较少的项目,电价较低的地区,收益将大幅下降,没有投资价值。纯光伏项目投资收益下降,于是人们将目光投向光伏加储能,希望在这个领域有报突破,给公司增加新收益。 光伏储能,和并网发电不一样,要增加蓄电池,以及蓄电池充放电装置,虽然前期成本要增加20-40%,但是应用范围要宽广很多。根据不同的应用场合,太阳能光伏储能发电系统分为离网发电系统、并离网储能系统、并网储能系统和多种能源混合微网系统等四种。 一、光伏离网发电系统 光伏离网发电系统,不依赖电网而独立运行,应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统由光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。

图1、离网发电系统示意图 光伏离网发电系统是专门针对无电网地区或经常停电地区场所使用的,是刚性需求,离网系统不依赖于电网,靠的是“边储边用”或者“先储后用”的工作模式,干的是“雪中送炭”的事情。对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性,目前光伏离网度电成本约元,相比并网系统要高很多,但相比燃油发电机的度电成本元,还是更经济环保。 二、并离网储能系统 并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价贵很多、波峰电价比波谷电价贵很多等应用场所。

小型光伏发电系统(4KW)的设计

南京信息职业技术学院 毕业设计论文 作者陈德清学号 31041P03 系部中认新能源技术学院 专业光伏发电技术及应用 题目小型独立光伏发电系统(4KW)的设计 指导教师程超 评阅教师张渊 完成时间: 2013年 5 月 2 日

毕业设计(论文)中文摘要

毕业设计(论文)外文摘要

目录 1 引言 (5) 2 独立光伏发电系统概述 (7) 2.1 独立光伏发电系统的概念 (7) 2.2.1 结构 (8) 2.2.2 工作原理 (9) 3 独立光伏发电系统的设计 (9) 3.1 系统的设计原则、步骤和内容 (9) 3.1.1 系统设计原则 (9) 3.1.2 设计步骤和内容 (9) 3.2 系统容量的设计 (10) 3.2.1 数值计算值 (10) 3.3 太阳能电池组件及方阵的设计 (12) 3.3.1 光伏组件方阵需要考虑的问题 (12) 3.3.2 太阳能电池组件(方阵)的方位角与倾斜角 (12) 3.3.3 一般设计方法 (13) 3.4 直流接线箱的选型 (16) 3.5 光伏控制器的选型 (18) 3.6 光伏逆变器的选型 (19) 4 结论 (20) 5 致谢 (21) 6参考文献 (21)

1 引言 自人类社会诞生以来,能源一直是人类生存和发展的重要物质基础。随着社会的发展,能源在社会发展中的重要性越来越突出,尤其是近年来各国日益呈现出来的能源危机问题更加明显地把能源置于社会发展的首要地位。 根据《BP世界能源统2005》的统计数据,以目前的开采速度计算,全球石油储量可供生产40 多年,天然气和煤炭则分别可以供应67年和164年。而我国的能源资源储量情况更是危机逼人,按2000 年底的统计,探明可开发能源总储量约占世界总量的10.1%.我国能源剩余可开采总储量的结构为原煤占58.8%,原油占3.4%,天然气占1.3%,水资源占36.5%。我国能源可开发剩余可采储量的资源保证程度仅为129.7年。 目前世界大部分国家能源供应不足,不能满足经济发展的需要,各国纷纷出台各种法规支持开发利用新能源和可再生能源,使得新能源和可再生能源在全球升混。20世纪90年代以来,以欧盟为代表的地区集团,大力开发利用可再生能源,连续1 0 年可再生能源发电的年增长速度都在15%以上。以德国、西班牙为代表的一些国家通过立法方式,促进可再生能源的发展,1999 年以来可再生能源年均增长速度均达到3日%以上。四班牙2003 年风力发电装机占到全机总量的4% ,德国在过去11年间,风力发电增长21倍,2003年占全的3.1%,瑞典和奥地利的生物质能源在其能源消费结构中高达15%以上。 近年来,光伏产业迅速发展,世界太阳电池年产量在最近十年内保持了30%以上的增速,2007 年年增长率达到了50% ,2008 年年增长率甚至达到了100% ,年产量达到 6.5GW ,大阳电池产量迅速增加的动力来自于世界对太阳能等清洁能源持续增长的需求,2008 年世界光伏系统新装机容量达到 5.95 GW ,比200 7年增长了110%。按照目前光伏组件4.5 $/W的价格计算,世界光伏市场规模接近三百亿美元. 新能源是国家“十二五”规划重点要求发展的产业,政策对其扶持力度很大。2009年3月,由科技部、国家发改委等部门联合举办的2009年中国国际节能和新能源科技博览会上集中展示了节能减排和新能源科技的重大成果,引起了国内外的广泛关注。2009年5月全国财政新能源与节能减排工作会议指出,国家财政要全力支持新能源发展和节能减排工作,重点加快启动国内光伏发电市场、开

相关主题
文本预览
相关文档 最新文档