当前位置:文档之家› MATLAB在模糊数学教学中应用示例

MATLAB在模糊数学教学中应用示例

MATLAB在模糊数学教学中应用示例
MATLAB在模糊数学教学中应用示例

摘要:作者探讨了在模糊数学教学中运用matlab软件来辅助课程教学的方法,并以示例积极推进可视化教学,提高了教学质量,其结果表明教学效果明显.

关键词: matlab 模糊数学教学效果

自1965年扎德(l.a.zadeh)提出“模糊集合”的概念,模糊数学便作为一门新的数学学科诞生了.近五十年来,它的发展非常迅速,应用十分广泛.其理论和应用涉及社会科学、自然科学和思维科学诸多领域.在上世纪九十年代,国外应用模糊数学原理研制和推出了首批模糊家用电器,而现在,模糊洗衣机、模糊吸尘器、模糊电饭煲、模糊空调机等已进入了国外千家万户,部分产品进入我国国内,由此可见,其应用前景是举世瞩目的.所以,学生学好模糊数学十分重要.另外,模糊数学在培养学生辩证唯物主义的认识论、方法论,教学素养和应用能力等方面也有着良好的教育功能.由于模糊数学本身是系统化的,涉及的知识深广,使不少学生感到理论太复杂,太抽象,对所学内容难把握,易产生畏难情绪,仅仅通过板书讲授方式难以达到理想的教学效果.因而,加强实践教学是必不可少的一个重要环节.随着高校教学手段的改革,多媒体辅助教学法越来越受师生的欢迎,据统计,60%以上的高校都愿接受,其中数学软件matlab是评价最高的有效的数值和工程计算的软件.针对本科生课程的特点,结合matlab语言所独具的优势,本文着重介绍matlab在模糊数学中的实际应用示例,从而积极推进和改善可视化教学,强化教学效果.下面给出详细示例.

一、利用matlab建立隶属度函数的辅助教学

隶属度是模糊集的基本概念,也是模糊控制的应用基础,由此,正确构造隶属度函数是用好模糊控制的关键之一,而此概念对学生而言是一个抽象的概念,在授课过程中,将基本概念及原理给学生讲透的同时,充分利用计算机的表现能力会将抽象的东西具体化、形象化.

例1.设某污染河水中酚的含量t=0.0012mg/l,给定酚的水质分级标准为:

试建立各级水的隶属度函数.

二、利用matlab来计算λ―截矩阵的辅助教学

在模糊数学中模糊聚类分析法是将事物根据一定的特征,并按某种特定要求或规律分类的一种方法,在分类过程中不是仅仅考虑事物之间有无关系,而是考虑事物之间的深浅程度,λ―截矩阵在该分析法中是一个很重要的概念.其定义和计算如下:

三、利用matlab求解模糊线性规划

普通线性规划其约束条件和目标函数都是确定的,但在一些实际问题中,约束条件可能带有弹性,必须借助模糊集的方法来处理.模糊线性规划是将约束条件和目标函数模糊化,引入隶属函数,从而导出一个新的纯属规划问题,它的最优解称为原问题的模糊最优解.求解模糊线性规划需要分别求出三个普通的线性规则,从而加上伸缩率后的普通线性规划进而添加新变量入和新的约束条件,求解模糊线性规划的具体方法如下:

结果:最优解为z=33.2,此时z=14.93.

以上示例仅是模糊数学中常见的一些问题求解,从中可以观察出,matlab在解决这些问题时简洁、灵活的特点,增强了学生对复杂问题了解时的直观性,缓解了教学课时偏少及当前实验室跟不上教学需求的困境;也让学生在课程学习的同时,轻松地学会一些编程问题,加深、加强了编程能力,使学生更能产生学习matlab及模糊数学的欲望,积极推进模糊数学的教学,使之更高效、更具利用价值.

参考文献:

[1]张驰.试论模糊数学的教育功能[j].数学教育学报,1997,6,(4):90-93.

[2]周维.高校“模糊数学”选修课教法初探[j].淮南工业学院学报(社会科学版),

2002,2,(2):94-96.

[3]王立新.模糊系统与模糊控制教程[m].北京:清华大学出版社,2003:1-141.

[4]阮沈勇.matlab程序设计[m].北京:电子工业出版社,2004:89-23.

[5]李柏年.模糊数学及其应用[m].合肥:合肥工业大学出版社,2007.

[6]任景英等.利用matlab辅助“信号与系统”课程的教学和实验[j].中国电力教育,2009,(s3):84-85.

[7]杨纶标,高英仪.模糊数学原理及应用(第五版)[m].广州:华南理工大学出版社,2011:12-93.

基金项目:淮南师范学院校级教学研究项目(no.hsjy201016)。

matlab、lingo程序代码14-模糊聚类(聚类分析)

模糊聚类 function c=fuz_hc(a,b) %模糊矩阵的合成运算程序 %输入模糊矩阵a,b,输出合成运算结果c m=size(a,1);n=size(b,2);p=size(a,2); %错误排除 if size(a,2)~=size(b,1) disp('输入数据错误!');return; end %合成运算 for i=1:m for j=1:n for k=1:p temp(k)=min(a(i,k),b(k,j)); end c(i,j)=max(temp); end end disp('模糊矩阵a与b作合成运算后结果矩阵c为:'); c % 求模糊等价矩阵 function r_d=mhdj(r) [m,n]=size(r); for i=1:n for j=1:n for k=1:n r1(i,j,k)=min(r(i,k),r(k,j)); end r1max(i,j)=r1(i,j,1); end end for i=1:n for j=1:n for k=1:n

if r1(i,j,k)>r1max(i,j) r1max(i,j)=r1(i,j,k); end end r_d(i,j)=r1max(i,j); end end %模糊聚类程序 function f=mujl(x,lamda) %输入原始数据以及lamda的值 if lamda>1 disp('error!') %错误处理 end [n,m]=size(x); y=pdist(x); disp('欧式距离矩阵:'); dist=squareform(y) %欧氏距离矩阵 dmax=dist(1,1); for i=1:n for j=1:n if dist(i,j)>dmax dmax=dist(i,j); end end end disp('处理后的欧氏距离矩阵,其特点为每项元素均不超过1:'); sdist=dist/dmax %使距离值不超过1 disp('模糊关系矩阵:'); r=ones(n,n)-sdist %计算对应的模糊关系矩阵 t=mhdj(r); le=t-r; while all(all(le==0)==0)==1 %如果t与r相等,则继续求r乘以r r=t; t=mhdj(r); le=t-r;

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

模糊聚类matlab程序

function julei(data) %%%%%%%%%%%%%%%模糊聚类%%%%%%%%%%%%%%%%%%%%%%% DATAFORCLUS=data; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%基于模糊等价关系的模糊 聚类%%%%%%%%%%%%%%%%%%%%%% %----------构造相似关系-----------% numrows=size(DATAFORCLUS,1); numcols=size(DATAFORCLUS,2); disp('请选择对象之间相似性统计量的方式: '); disp('<1-相关系数法|2-夹角余弦法>'); wayforr_ij=input('请输入: '); switch wayforr_ij case 1, %-----------------------------------相关系数法 for i=1:numrows, for j=1:numrows, meani=mean(DATAFORCLUS(i,:));meanj=mean(DATAFORCLUS(j,:)); simiR(i,j)=sum((DATAFORCLUS(i,:)-meani).*(DATAFORCLUS(j,:)-meanj))/... (sqrt(sum((DATAFORCLUS(i,:)-meani).^2))*sqrt(sum((DATAFORCLUS(j,:)-meanj).^2))); end end case 2, %-----------------------------------夹角余弦法 for i=1:numrows, for j=1:numrows, simiR(i,j)=sum(DATAFORCLUS(i,:).*DATAFORCLUS(j,:))/... (sqrt(sum(DATAFORCLUS(i,:).*DATAFORCLUS(i,:)))*sqrt(sum(DATAFORCLUS(j,: ).*DATAFORCLUS(j,:)))); end end end %-------改造成等价关系----------% sign=0; numselfmul=1; simiRk=eye(numrows); equi_tem=simiR; while sign==0, for i=1:numrows, for j=1:numrows, for c=1:numrows, rij_temp(c)=min([equi_tem(i,c) equi_tem(c,j)]); end

模糊聚类分析

目录 1引言: (3) 2 理论准备: (3) 2.1 模糊集合理论 (3) 2.2模糊C均值聚类(FCM) (4) 2.3 加权模糊C均值聚类(WFCM) (4) 3 聚类分析实例 (5) 3.1数据准备 (5) 3.1.1数据表示 (5) 3.1.2数据预处理 (5) 3.1.3 确定聚类个数 (6) 3.2 借助clementine软件进行K-means聚类 (7) 3.2.1 样本在各类中集中程度 (8) 3.2.2 原始数据的分类结果 (8) 3.2.3结果分析 (9) 3.3模糊C均值聚类 (10) 3.3.1 数据集的模糊C划分 (10) 3.3.2 模糊C均值聚类的目标函数求解方法 (10) 3.3.3 MATLAB软件辅助求解参数设置 (11) 3.3.4符号表示 (11)

3.3.5代码实现过程 (11) 3.3.6 FCM聚类分析 (11) 3.4 WFCM算法 (14) 3.4.1 WFCM聚类结果展示 (14) 3.4.2样本归类 (16) 3.4.3归类代码实现 (16) 4.结论 (17) 5 参考文献 (18) 6 附录 (18)

模糊聚类与非模糊聚类比较分析 摘要: 聚类分析是根据样本间的相似度实现对样本的划分,属于无监督分类。传统的聚类分析是研究“非此即彼”的分类问题,分类结果样本属于哪一类很明确,而很多实际的分类问题常伴有模糊性,即它不仅仅是属于一个特定的类,而是“既此又彼”。因此为了探究模糊聚类与非模糊聚类之间聚类结果的差别,本文首先采用系统聚类方法对上市公司132支股票数据进行聚类,确定比较合理的聚类数目为11类,然后分别采用K-means聚类与模糊聚类方法对股票数据进行聚类分析,最终得出模糊聚类在本案例中比K-means聚类更符合实际。 关键字:模糊集合,K-means聚类,FCM聚类,WFCM聚类 1引言: 聚类分析是多元统计分析的方法之一,属于无监督分类,是根据样本集的内在结构,按照样本之间相似度进行划分,使得同类样本之间相似性尽可能大,不同类样本之间差异性尽可能大。传统的聚类分析属于硬化分,研究对象的性质是非此即彼的,然而,现实生活中大多数事物具有亦此亦彼的性质。因此传统的聚类分析方法往往不能很好的解决具有模糊性的聚类问题。为此,模糊集合理论开始被应用到分类领域,并取得不错成果。 本文的研究目的是通过对比传统聚类和模糊聚类的聚类结果,找出二者之间的不同之处,并说明两种聚类分析方法在实例中应用的优缺点。 2理论准备: 2.1 模糊集合理论 模糊集合定义:设U为论域,则称由如下实值函数μA:U→ [ 0,1 ],u →μ ( u )所确定的集合A 为U上的模糊集合,而称μA为模糊集合A 的隶A 属函数,μ A ( u)称为元素u 对于A 的隶属度。若μA(u) =1,则认为u完全属于A;若μA(u) =0,则认为u完全不属于A,模糊集合是经典集合的推广。

MATLAB在自动控制原理中的应用

本论文主要研究如何根据用户要求的性能指标进行自动控制系统的串联校正设计,而此设计又具有很重要的现实意义。对于给定的线性定常系统,我们通常通过加入串联超前、滞后或超前滞后综合校正装置,以达到提高系统的精度和稳定性的目的。本文将给出基于频率特性法串联校正的具体设计方法,同时对该课题中的控制系统模型进行仿真。本设计可实现如下功能:对一个线性定常系统,根据需求的性能指标,通过本设计可给出系统的串联校正网络,从绘制出的各种响应曲线可以直观地将校正前后的系统进行比较,而仿真实例结果也进一步表明了此设计方法有效性和实用性。 关键词:串联校正;根轨迹;频率特性法;MATLAB 1.1研究目的 在实际工程控制中,往往需要设计一个系统并选择适当的参数以满足性能 指标的要求,或对原有系统增加某些必要的元件或环节,使系统能够全面满足 性能指标要求,此类问题就称为系统校正与综合,或称为系统设计。 当被控对象给定后,按照被控对象的工作条件,被控信号应具有的最大速 度和加速度要求等,可以初步选定执行元件的形式、特性和参数。然后,根据 测量精度、抗扰能力、被测信号的物理性质、测量过程中的惯性及非线性度等 因素,选择合适的测量变送元件。在此基础上,设计增益可调的前置放大器与 功率放大器。这些初步选定的元件以及被控对象适当组合起来,使之满足表征 控制精度、阻尼程度和响应速度的性能指标要求。如果通过调整放大器增益后 仍然不能全面满足设计要求的性能指标,就需要在系统中增加一些参数及特性 可按需要改变的校正装置,使系统能够全面满足设计要求,这就是控制系统设 计中的校正问题。系统设计过程是一个反复试探的过程,需要很多经验的积累。MATLAB为系统设计提供了有效手段。 1.2相关研究现状 系统仿真作为一种特殊的实验技术,在20世纪30-90年代的半个多世纪中经历了飞速发展,到今天已经发展成为一种真正的、系统的实验科学。自动控制系统仿真是系统仿真的一个重要分支,它是一门设计自动控制理论、计算机数学、计算机技术、系统辩识以及系统科学的综合性新型学科。它为控制系统的分析、计算、研究、综合设计以及自动控制系统的计算机辅助教学等提供了快速、经济、

模糊聚类分析报告例子

1. 模糊聚类分析模型 环境区域的污染情况由污染物在4个要素中的含量超标程度来衡量。设这5个环境区域的污染数据为1x =(80, 10, 6, 2), 2x =(50, 1, 6, 4), 3x =(90, 6, 4, 6), 4x =(40, 5, 7, 3), 5x =(10, 1, 2, 4). 试用模糊传递闭包法对X 进行分类。 解 : 由题设知特性指标矩阵为: * 80106250164906464057310124X ????????=???????? 数据规格化:最大规格化' ij ij j x x M = 其中: 12max(,,...,)j j j nj M x x x = 00.8910.860.330.560.1 0.860.671 0.60.5710.440.510.50.11 0.1 0.290.67X ????????=?? ?????? 构造模糊相似矩阵: 采用最大最小法来构造模糊相似矩阵55()ij R r ?=, 1 0.540.620.630.240.5410.550.700.530.62 0.5510.560.370.630.700.5610.380.240.530.370.381R ?? ??? ???=?? ?????? 利用平方自合成方法求传递闭包t (R ) 依次计算248,,R R R , 由于84R R =,所以4()t R R =

2 10.630.620.630.530.6310.560.700.530.62 0.5610.620.530.630.700.6210.530.530.530.530.531R ?? ??????=?? ??????, 4 10.630.620.630.530.6310.620.700.530.62 0.6210.620.530.630.700.6210.530.53 0.530.530.531R ????????=?? ?????? =8R 选取适当的置信水平值[0,1]λ∈, 按λ截矩阵进行动态聚类。把()t R 中的元素从大到小的顺序编排如下: 1>0.70>0.63>062>053. 依次取λ=1, 0.70, 0.63, 062, 053,得 11 000001000()0 010******* 0001t R ????? ? ??=?? ??????,此时X 被分为5类:{1x },{2x },{3x },{4x },{5x } 0.7 1000001010()001000101000001t R ?????? ??=?? ??????,此时X 被分为4类:{1x },{2x ,4x },{3x },{5x } 0.63 1101011010()001001101000001t R ?????? ??=?? ??????,此时X 被分为3类:{1x ,2x ,4x },{3x },{5x } 0.62 1111011110()11110111100 0001t R ?????? ??=?? ?????? ,此时X 被分为2类:{1x ,2x ,4x ,3x },{5x }

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

matlab在机械控制中的应用

Matlab在机械工程控制中的应用 姓名:xxx 学号:2010232 专业:机械制造及其自动化

Matlab在机械工程控制中的应用 摘要:MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 一、机械工程控制简介 机械控制工程是研究控制论在机械工程中应用的科学。它是一门跨控制论和机械工程的边缘学科。随着工业生产和科学技术的不断向前发展,机械工程控制论这门新兴学科越来越为人们所重视。他不仅满足今天自动化技术高度发展的需要,同时也与信息科学和系统科学紧密相关,更重要的是它提供了辩证的系统分析方法,即不但从局部,而且从整体上认识和分析机械系统,改进和完善机械系统,以满足科技的发展和工业生产的实际需要。 1.1机械工程控制论的研究对象与任务 机械工程控制论的研究对象是机械工程技术中广义系统的动力学问题。具体地讲,机械控制路是研究系统及其输入、输出三者之间的动态关系,也就是研究机械工程广义系统在一定的外界条件下,从系统的一定初始条件出发,所经历有内部的固有属性所决定的整个动态历程。就系统及其输入、输出三者之间动态关系而言,机械工程控制论的任务主要研究一下几方面的为题: (1)当系统已定,输入已知时,求出系统的输出(响应),并通过输出来研究系统本身的有关为题,称系统分析。 (2)当系统已定,系统的输出也已给定是,要确定系统的输出尽可能符合给定的最佳要求,称系统的最优控制。 (3)当输入已知输出也一给定时,要确定系统,使其可能符合给定的最佳要求,称最优设计。 (4)当输入和输出均已知时,求系统的结构参数,即建立系统的数学模型,称系统的便是或系统识别。 (5)当系统已定输出已知时,要识别输出输出输入的有关信息,成滤波与预测。

matlab模糊聚类程序

3.数据标准化 (1) 数据矩阵 设论域12345678910,1112U={,,,,,,,,,,}x x x x x x x x x x x x 为被分类的对象,每个 对象又由指标123456789Y={,,,,,,,,}y y y y y y y y y 表示其性状即12345678910,1112x ={,,,,,,,,,,}i i i i i i i i i i i i i x x x x x x x x x x x x (i=1,2,…,12)于是得到原是数据矩阵 7 5 2 5 0 1 3 4 2 12 17 8 21 9 2 38 4 37 83 29 59 65 37 20 54 13 26 53 13 31 36 21 A= 23 12 18 14 178 69 112 78 104 36 94 31 47 23 25 36 11 12 11 24 6 16 101 32 53 52 86 52 41 38 94 28 6 7 8 8 2 0 3 29 169 51 58 72 49 30 48 37 146 327 91 126 92 89 69 79 29 49 93 27 54 64 24 17 23 11 49 18 7 9 5 1 2 18 3 8 ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? (2) 数据标准化 将模糊矩阵的每一个数据压缩到[0,1]上,采用平移.极差变换进行数据标准化 1i n 1i n 1i n A(i,k)-{A(i,k)}B(i,k)={A(i,k)}-{A(i,k)} min max min ≤≤≤≤≤≤ (k=1,2,…,m) 运用matlab 编程由函数F_jisjbzh.m 【见附录3.4】的标准化矩阵是 附录3.4 function [X]=F_JISjBzh(cs,X) %模糊聚类分析数据标准化变换 %X 原始数据矩阵;cs=0,不变换;cs=1,标准差变换 %cs=2,极差变换 if(cs==0) return ;end [n,m]=size(X);% 获得矩阵的行列数 if(cs==1) % 平移极差变换 for(k=1:m) xk=0; for(i=1:n) xk=xk+X(i,k);end xk=xk/n;sk=0; for(i=1:n) sk=sk+(X(i,k)-xk)^2;end sk=sqrt(sk/n);

模糊数学在聚类分析中的作用(matlab代码)

function [M,N] = Example8_11 X=[1.8 2.1 3.2 2.2 2.5 2.8 1.9 2.0; 95 99 101 103 98 102 120 130; 0.15 0.21 0.18 0.17 0.16 0.20 0.09 0.11]; X=X' %X=[80 10 6 2;50 1 6 4;90 6 4 6;40 5 7 3;10 1 2 4] [M,N]=fuzzy_jlfx(4,5,X); end %% function [M,N]=fuzzy_jlfx(bzh,fa,X)%得到聚类结果 [X]=F_JlSjBzh(bzh,X);%数据标准化 [R]=F_JlR(fa,X);%建立相似矩阵 [A]=fuzzy_cdbb(R);%得到传递闭包矩阵 [Alamd]=fuzzy_lamdjjz(A);%得到lamdf截矩阵从而得到聚类结果[M,N]=F_JlDtjl(R);%动态聚类并画出聚类图 %% function [M,N]=F_JlDtjl(R) %clc; [A]=fuzzy_cdbb(R); U=unique(A); L=length(U); M=1:L; for i=L-1:-1:1 [m,n]=find(A==U(i)); N{i,1}=n; N{i,2}=m; A(m(1),:)=0; mm=unique(m); N{i,3}=mm; len=length(find(m==mm(1))); depth=length(find(m==mm(2))); index1=find(M==mm(1)); MM=[M(1:index1-1),M(index1+depth:L)]; % index2=find(MM==mm(2)); M=M(index1:index1+depth-1); M=[MM(1:index2-1),M,MM(index2:end)]; end M=[1:L;M;ones(1,L)]; h=(max(U)-min(U))/L; figure text(L,1,sprintf('%d',M(2,L))); text(L+1,1-h,sprintf('%d',L)); text(0,1,sprintf('%3.2f',1)); text(0,(1+min(U))/2,sprintf('%3.2f',(1+min(U))/2)); text(0,min(U),sprintf('%3.2f',min(U))); hold on for i=L-1:-1:1 m=N{i,2};

Matlab笔记-模糊聚类分析原理及实现

23. 模糊聚类分析原理及实现 聚类分析,就是用数学方法研究和处理所给定对象,按照事物间的相似性进行区分和分类的过程。 传统的聚类分析是一种硬划分,它把每个待识别的对象严格地划分到某个类中,具有非此即彼的性质,这种分类的类别界限是分明的。 随着模糊理论的建立,人们开始用模糊的方法来处理聚类问题,称为模糊聚类分析。由于模糊聚类得到了样本数与各个类别的不确定性程度,表达了样本类属的中介性,即建立起了样本对于类别的不确定性的描述,能更客观地反映现实世界。 本篇先介绍传统的两种(适合数据量较小情形,及理解模糊聚类原理):基于择近原则、模糊等价关系的模糊聚类方法。 (一)预备知识 一、模糊等价矩阵 定义1设R=(r ij )n ×n 为模糊矩阵,I 为n 阶单位矩阵,若R 满足 i) 自反性:I ≤R (等价于r ii =1); ii) 对称性:R T =R; 则称R 为模糊相似矩阵,若再满足 iii) 传递性:R 2 ≤R (等价于1 ()n ik kj ij k r r r =∨∧≤) 则称R 为模糊等价矩阵。

定理1设R 为n 阶模糊相似矩阵,则存在一个最小的自然数k (k

Matlab在自动控制中的应用教学内容

M a t l a b在自动控制中 的应用

MATLAB在控制理论中的应用 摘要:为解决控制理论计算复杂问题,引入了MATLAB。以经典控制理论和现代控制理论中遇到的一些问题为具体实例,通过对比的手法,说明了MATLAB在控制理论应用中能节省大量的计算工作量,提高解题效率。 引言:现代控制理论是自动化专业一门重要的专业基础课程,内容抽象,且计算量大,难以理解,不易掌握。采用MATLAB软件计算现代控制理论中的问题可以很好的解决这些问题。自动控制理论分为经典控制理论和现代控制理论,在控制理论学习中,经常要进行大量的计算。这些工作如果用传统方法完成,将显得效率不高,额误差较大。因此。引用一种借助于计算机的高级语言来代替传统方法就显得十分必要。MATLAB集科学计算,可视化,程序设计于一体,对问题的描述与求解较为方便,在控制理论的学习中是一种备受欢迎的软件。 MATLAB简介:MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 1、MATLAB在系统的传递函数和状态空间模型之间的相互转换的应用:例1:求以下状态空间模型所表示系统的传递函数: 解:执行以下的M-文件:

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin) % LLJULEIFENXI MATLAB code for lljuleifenxi.fig % LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing % singleton*. % % H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to % the existing singleton*. % % LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LLJULEIFENXI.M with the given input arguments. % % LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help lljuleifenxi % Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ... 'gui_OutputFcn', @lljuleifenxi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lljuleifenxi is made visible. function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB

FCMClust(模糊c均值聚类算法MATLAB实现)

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options) % FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类 % 用法: % 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options); % 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster); % 输入: % data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值 % N_cluster ---- 标量,表示聚合中心数目,即类别数 % options ---- 4x1矩阵,其中 % options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0) % options(2): 最大迭代次数(缺省值: 100) % options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5) % options(4): 每次迭代是否输出信息标志(缺省值: 1) % 输出: % center ---- 聚类中心 % U ---- 隶属度矩阵 % obj_fcn ---- 目标函数值 % Example: % data = rand(100,2); % [center,U,obj_fcn] = FCMClust(data,2); % plot(data(:,1), data(:,2),'o'); % hold on; % maxU = max(U); % index1 = find(U(1,:) == maxU); % index2 = find(U(2,:) == maxU); % line(data(index1,1),data(index1,2),'marker','*','color','g'); % line(data(index2,1),data(index2,2),'marker','*','color','r'); % plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个 error('Too many or too few input arguments!'); end data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数 in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度 % 默认操作参数 default_options = [2; % 隶属度矩阵U的指数 100; % 最大迭代次数 1e-5; % 隶属度最小变化量,迭代终止条件

MATLAB在控制系统中应用

MATLAB在控制系统中应用 部门: xxx 时间: xxx 制作人:xxx 整理范文,仅供参考,可下载自行修改

MATLAB在控制系统中的应用 [摘要]:MATLAB具有编程简单直观,开放性强等优点,能有效提高 控制系统的工作效率,是控制系统中一种很好的工具。MATLAB 除了 传统的交互式编程之外,还提供丰富可靠的矩阵运算、图形绘制、 数据处理、方便的Windows 编程等便利工具,出现了各种以MATLAB 为基础的实用工具箱, 广泛地应用于自动控制、图像信号处理、生 物医学工程、语音处理、雷达工程、信号分析、振动理论、时序分 析与建模、化学统计学、优化设计等领域。并显现出一般高级语言 难以比拟的优势。 关键词:MATLAB 应用软件;控制系统设计;离散系统设计;仿 真;应用 一、控制系统的主要内容 <1)线性控制系统的数学模型 目前大部分控制系统分析设计的算法都需要假设系统的模型已知,而获得数学模型有两种方法:其一是从已知的物理规律出发,用数学推导的方法建立起系统的数学模型,另外一种方法是由实验数据拟合系统的数学模型。一般线性系统控制理论科学和研究中,经常将控制系统分为连续系统和离散系统,描述线性连续系统常用的描述方式是传递函数和状态方程,相应地离散系统可以用离散传递函数和离散状态方程表示。除了这两种描述方法以外,还常用零极点形式来表示连续线性系统模型。b5E2RGbCAP <2)线性系统的传递函数模型

连续动态系统一般是由微分方程来描述的,而线性系统又是以线性常微分方程来描述的。当系统用传递函数表示如下所示时:p1EanqFDPw 在MATLAB 中可以分别表示完分子和分母多项式后,再利用控制系统工具箱的tf<)函数就可以用一个变量表示传递函数G :DXDiTa9E3d >>];,,...,,[121+=m m b b b b num ]; ,,,...,,[132,1+=n n a a a a a den );,(den num tf G = <3)线性系统的状态方程模型 当系统是用状态方程描述时,MATLAB 要用到另一种表示函数的方法,例如系统用状态方程的表示如下所示: )()()(t Bu t Ax t x += )()()(t D t Cx t y += 此系统的状态方程模型可以用下面的语句直接建立起来:),,,(D C B A ss G = <4)线性系统的零极点模型 零极点模型实际上是传递函数的另一种表现形式,对原系统传递函数的分子和分母分别进行分解因式处理,则可得到系统的零极点模型为RTCrpUDGiT ))...()(() )...()(()(2121n m p s p s p s z s z s z s K s G ------= 在MATLAB 下表示零极点模型的方法很简单,先用向量的形式输入系统的零点和极点,然后调用zpk<)函数就可以输入这个零极点模型了。5PCzVD7HxA ]; ;...;;[21m z z z z =>> ]; ;...;;[21n p p p p = 1 231211 121......)(+--+-+++++++++=n n n n n m m m m a s a s a s a s a b s b s b s b s G

相关主题
文本预览
相关文档 最新文档