当前位置:文档之家› Temperature-dependent absolute refractive index measurements of synthetic fused silica

Temperature-dependent absolute refractive index measurements of synthetic fused silica

Temperature-dependent absolute refractive index measurements of synthetic fused silica
Temperature-dependent absolute refractive index measurements of synthetic fused silica

Temperature-dependent absolute refractive index measurements

of synthetic fused silica

Douglas B. Leviton* and Bradley J. Frey

NASA Goddard Space Flight Center, Greenbelt, MD 20771

ABSTRACT

Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA’s Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of ±1 x 10-5. Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the ±2 x 10-8/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature. Keywords: Cryogenic, refractive index, fused silica, CHARMS, infrared, Sellmeier, Kepler Photometer, James Webb Space Telescope, NIRCam

1. INTRODUCTION

High quality, refractive optical designs depend intimately on accuracy of refractive index data of constituent optical materials. Since absolute refractive index is generally a function of both wavelength and temperature, it is important to know refractive indices at the optical system’s design operating temperature. Further, for large, refractive, optical components, spatial variation of both a material’s refractive index and its thermo-optic coefficient (dn/dT) can be potentially detrimental to optical system performance, so spatial knowledge of dn/dT is also important.

The refractive index of fused silica and its dependence on temperature have been studied by a number of investigators using various techniques, both above and below room temperature. In 1965, Malitson reported on the room temperature interspecimen variability in refractive index of optical quality fused silica from three manufacturers using the method of minimum deviation in air from the near ultraviolet to 3.37 microns with a reported error of ±0.5 x 10-5 for the visible to ±2 x 10-5 in the infrared. He also developed a dispersion relation for fused silica which has been well-trusted since that time.1 In 1969, Wray and Neu measured refractive index of Corning 7940 synthetic fused silica in vacuum with a reported error of ±2 x 10-4 from 300-1100 K from the near ultraviolet to 3.37 microns also using the method of minimum deviation.2 In 1971, Waxler and Cleek measured changes in refractive index by observing shifts in Fizeau interference fringes with temperature in a plate of fused silica from room temperature to 81 K for 10 visible lines.3 They calculated refractive index by offsetting room temperature data of Malitson by their measured index changes. While their measurements were made in vacuum, their results are reported in air. In 1991, Matsuoka et al. measured refractive index of Type III silica glass (Nippon Seiki Glass Company) in vacuum with a reported precision of ±3 x 10-6 from 108-356 K at 10 lines from the near ultraviolet to the mid-visible, using the method of minimum deviation.4

We have conducted a thorough study of the absolute refractive index of Corning 7980 synthetic fused silica by the method of minimum deviation using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at GSFC.5,6,7 This paper contains two discussions of the cryogenic refractive index of fused silica based on recent

* doug.leviton@https://www.doczj.com/doc/6710473849.html,, phone 1-301-286-3670, FAX 1-301-286-0204

measurements. The first discussion pertains to the dedicated study of five prisms made from core sections cut from around the perimeter of a one meter sized optical blank used for the Schmidt corrector plate for the photometer telescope for NASA’s Kepler mission over a wavelength and temperature range applicable to the photometer in flight. Our refractive index and dn/dT data are compared to independent measurements commissioned by the Kepler Project from Precision Measurements and Instruments Corporation (PMIC) in Corvallis, Oregon, of twin specimens taken from those same core sections. The second discussion documents a more general study of the material from the visible out to the strong absorption feature at 2.75 microns in the infrared from room temperature down to about 30 K – the lowest temperature achievable with this material in CHARMS. Our refractive index data, which extend the ranges of wavelength and temperature coverage beyond those of investigations listed in the previous paragraph, will be compared with those from the latter where they overlap.

Already, to date, in addition to their use for the Kepler mission, these refractive index values have been employed in the designs of several other cryogenic optical systems for NASA, including the weak lenses for the fine phasing system for the primary mirror segments on the James Webb Space Telescope (JWST), the pupil imaging lenses for the JWST Near Infrared Camera (NIRCam), and the refractive phase plates for the cryogenic optical verification stimulus for NIRCam.

2.STUDY FOR KEPLER PHOTOMETER

The Kepler mission is designed to detect the presence of Earth-like planets around other stars by doing extremely precise photometry of stellar systems over time to find variations in their light output which would indicate the presence of orbiting planets. Invariance of the Kepler telescope’s point spread function (PSF) at each field position is a crucial performance aspect of the telescope as temporal variations in the PSF might be mistaken for variation in stellar system light output. As such, spatial variations in the refractive index of the telescope’s Schmidt corrector, whether intrinsic or induced in some other way such as through a temperature gradient, are intolerable for mission success.

When the roughly 1 m diameter optical blank for the corrector, made of Corning 7980 fused silica, was prepared, five cores 51 mm in diameter and 51 mm thick were also taken from around the perimeter of the blank, evenly spaced in angle every 72°. The Kepler Project became concerned whether variations in refractive index with gradients in temperature in the corrector would compromise the constancy of the telescope’s PSF and commissioned measurements of spatial thermo-optic coefficient using the various core samples over the cryogenic operating temperature range of the photometer at both the CHARMS facility and at PMIC. Each core was cut in two and from the two pieces, test specimens were prepared for each facility: a prism for minimum deviation refractometry in CHARMS, and a plate form for interferometric study at PMIC. Each specimen was tagged with its angular position in degrees around the blank using the following serial numbers: 72, 144, 216, 288, and 360.

The prisms used in CHARMS had a nominal apex angle of 59°, refracting face length of 38.1 mm, and height of 28 mm. (The choice of 59° is preferable to 60° only in that when measuring the apex angle using an autocollimator, confusion can come about over which autocollimator return is which with an equilateral or isosceles right prism due to internal reflections. This confusion is avoided with a 59° isosceles prism.) The test specimens for PMIC’s interferometric study were 51 mm in diameter, and 25 mm thick polished plates.

The Kepler Photometer’s spectral coverage extends from 413 – 914 nm, and its operating temperature range is from -110 to –45 C or 163 to 228 K. At PMIC, only changes in refractive index with temperature are measured using a fringe counting interferometric technique employing a HeNe laser of 0.6328 microns wavelength. PMIC can also measure at 1.064 microns using a Nd:YAG laser, but only data at 0.6328 microns is used in this comparison. Because the physical thickness of a specimen changes with temperature, PMIC actually calculates changes in index, dn, from a combination of fringe counting data and direct measurements of the coefficient of thermal expansion (CTE) of the specimen over the same temperature range. PMIC’s measurements covered the temperature range from roughly 155 to 295 K.

In CHARMS, absolute refractive index, n, was directly measured for all five prisms over the temperature range 135 to 305 K at the following wavelengths: 0.4, 0.45, 0.5, 0.55, 0.6, 0.6328, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.064, 1.10, and 1.15 microns. The laser wavelengths 0.6328 and 1.064 microns were included in the list to allow direct comparison of dn from CHARMS with that from PMIC. Thermo-optic coefficient from CHARMS measurements is simply taken as the derivative of n(T) with respect to temperature. The light source for CHARMS was a quartz tungsten

halogen (QTH) lamp feeding a monochromator with a calibrated wavelength accuracy of 0.2 nm. Uncertainty in measured refractive index in CHARMS depends on wavelength and temperature-dependent dispersion and thermo-optic coefficient of the sample material as well as knowledge of wavelength and temperature, respectively. Worst case uncertainties in refractive index for our measurements on fused silica are listed in Table 1 for representative wavelengths and temperatures. Larger values of uncertainty in n beyond a wavelength of 2 microns are due to a dramatic increase in dispersion in the material approaching the deep absorption feature at 2.75 microns. Peak deviation of dn/dT for any given sample compared to the global values of dn/dT averaged over all five samples is 5 x 10-8/K over the wavelength and temperature range considered in this study, while noise in dn/dT for a given sample is of the order of ±2 x 10-8/K.

Table 1 – uncertainty in measured refractive index of fused silica in CHARMS for representative wavelengths and temperatures.

wavelength [um]30 K80 K150 K250 K295 K

0.50.0000110.0000110.0000110.0000100.000010

1.00.0000080.0000090.0000090.0000080.000007

1.50.0000090.0000100.0000100.0000090.000008

2.00.0000140.0000150.0000140.0000140.000014

2.50.0000170.0000180.0000170.0000170.000017

An initial check of the reasonableness of our measurements of absolute refractive index using CHARMS involves comparing our measured values at room temperature to the well-accepted dispersion law for synthetic fused silica in air of Malitson which is known to be based at least in part on Corning 7940 material.1 In order to compare our absolute measurements to the dispersion law, we adjust the dispersion law to vacuum assuming the index of air at room temperature to be 1.00027. Our measurements agree with that dispersion law to generally well less than 1 x 10-5 and typically to less than ±5 x 10-6 until the absorption feature starting at about 2 microns is reached. The departure of the two fits beyond the level of our stated uncertainties past 2.25 microns is explainable through differences in purity of the materials available now and back in 1965 as well as in the way refractometers of different construction treat materials in wavelength regions where materials are absorbing.

In most cases, our in-process check of raw refractive index data from CHARMS involves fitting measured index at each wavelength to a second order polynomial with temperature. This was done for the raw index data for each of the five prisms over the stated temperature range. That the residuals for any such fit for the five samples – <2 x 10-6 rms, < 2 x 10-6 on an absolute average basis, and +9/-6 x 10-6 on a peak-to-valley basis – are so small indicates that variation of index with temperature at a given wavelength is in fact quadratic over the temperature range considered. Figure 1 shows a plot of every index measurement at 633 nm for each of the prisms compared to a global quadratic fit over all measurements (over 5000 of them) for the five prisms. The peak departure of any single measurement from the global fit is 1 x 10-5 while the rms departure from the global fit is 4 x 10-6. Therefore, we conclude that the samples are indistinguishable in refractive index at any temperature to within our stated uncertainty for a single measurement. Figure 2 is a plot of PMIC’s measurements of changes in index, dn, with temperature for four of the five specimens provided. Specimen 360 was apparently tested in four separate runs, while specimen 72 was temperature cycled several times during one run. Specimens 216 and 288 were temperature cycled once, while we have no data for specimen 144. There is a significant spread of measured dn’s across samples and even for the one sample which was cycled numerous times. There also seem to be two knees in each dn(T) curve (one at -70 C and one at -35 C) of unknown origin. These presumably have something to do with the method by which PMIC combines measured fringe counts and CTE data. Table 2 compares PMIC’s measurements of changes in index n with temperature to measurements using CHARMS for the same samples. To compare, we first computed average values of dn with respect to room temperature for all samples using PMIC’s fits of dn(T) for each sample for several temperatures in the Kepler Photometer’s operating temperature range. We then derived values of n at those temperatures based on PMIC’s average dn’s assuming the value of n at room temperature from CHARMS was correct. We then took the difference in index, ?n, at each temperature (in parts per million) between those derived values and values from the global fit of CHARMS index data shown in Figure 1.

One can see that PMIC’s values depart monotonically from those from CHARMS as temperatures get lower and lower. Meanwhile, one can see that those departures are covered by the spread in PMIC’s dn values across samples, which are

Figure 1 – individual index measurements in CHARMS for five fused silica prisms compared to global fit over all measurements

Figure 2 – PMIC’s measurements of dn(T) for four fused silica specimens

typically of the order of 5 x 10-5 – about an order of magnitude larger than the rms spread in dn values from CHARMS. It is not entirely surprising that PMIC’s data show greater spread as PMIC measures two separate physical phenomena and combines them in some fashion into one interpretation for dn.

A comparison of measured thermo-optic coefficient at 633 nm as a function of temperature for PMIC and CHARMS is shown in Figure 3. PMIC’s value is everywhere higher than that from CHARMS, but the difference between the two shrinks to lower temperatures as dn/dT itself shrinks. Also shown is the spread of values of dn/dT across samples at each facility. The spread in PMIC’s values is smallest around 265 K (15 x 10-8/K) and is larger at lower temperatures (up to 150 x 10-8/K). The spread in CHARMS’s values is nowhere larger than 9 x 10-8/K for this wavelength.

Table 2 – differences in measured dn between PMIC and CHARMS facilities for fused silica

over the operating temperature range for the Kepler Photometer

Figure 3 – average thermo-optic coefficient at 633 nm for five fused silica specimens from 140 – 305 K from PMIC and CHARMS

3. REFRACTIVE INDEX OF FUSED SILICA FROM 30 - 310 K AND 0.4 – 2.6 MICRONS

All five prisms used in the study were found to be identical in refractive index over the temperature range of interest to the Kepler Photometer to within our ability to tell. Thus, we selected two of the five arbitrarily for study over the expanded wavelength and temperature range accessible to CHARMS. Although fused silica transmits in the infrared between about 2.9 to about 3.75 microns (longward of the absorption feature centered at 2.75 microns), we anticipated few practical applications of the material in that wavelength range and decided to forego measurements in that range to spare the cost of such measurements. Meanwhile, we had previously made some measurements in that range with a single commercial, off-the-shelf fused silica prism we believe to have been Corning 7940 and found its measured indices agreed well with Malitson’s dispersion law (corrected to vacuum) in that wavelength range at room temperature.

Once all refractive indices have been measured over the desired wavelength and temperature range, we use a computer program we call the CHARMS Data Cruncher (CDC) to examine raw data from the refractometer and reduce it to the point where resulting measured index values can be fit to a Sellmeier equation. In order to get in-process assessments of data quality during CDC runs, measured index values for each wavelength are fit piecewise to second order polynomials in temperature of the form n(T) = a ?T 2 + b ?T + c above and below some selected crossover temperature. In order to compute spectral dispersion, first a table of index values is computed on a regular wavelength and temperature grid from these piecewise quadratic fits. From that table, a new table of spectral dispersion, dn/d λ, is computed by dividing differences in index value, n, by corresponding differences in wavelength, λ, for each temperature. Thermo-optic coefficient, dn/dT, is simply the first derivative of n(T) with respect to T or dn(T)/dT = 2a ?T + b . CDC produces a table of thermo-optic coefficients on the same regular wavelength and temperature grid described above.

CDC also produces a table of estimated index errors for different wavelength and temperature combinations as seen in Table 1 for fused silica A partial index error dn is computed for each of four factors (based on presumably known uncertainties in those factors), and the four resulting dn’s are combined in quadrature to produce a net index error estimate. The four partial dn’s are computed using: 1) worst case uncertainty in calibrated wavelength, d λ, along with computed dn/d λ; 2) worst case uncertainty in measured temperature, dT, along with computed dn/dT; 3) worst case uncertainty in measured apex angle, d α, along with analytically derived dn/d α; and 4) worst case uncertainty in measured beam deviation angle, d δ, along with analytically derived dn/d δ.

To obtain a useful dispersion law for the material at hand, we fit raw measured indices for each material to a three term temperature-dependent Sellmeier model of the form:

=λ?λλ?=?λ3

1i 2

i 22i 2

)T ()T (S 1)T ,(n

where,

==?λ=λ?=40j j ij i 4

0j j

ij

i T )T (T S )T (S

where S i would be the strengths of the resonance features in the material at wavelengths λi , over all wavelengths and temperatures measured. When dealing with a wavelength interval between wavelengths of physical resonances in the material, the summation may be approximated by typically only three terms. In such an approximation, resonance strengths S i and wavelengths λi no longer have direct physical significance but are rather parameters used to generate an adequately accurate fit to empirical data. The Sellmeier model is our best statistical representation of the measured data over the complete measured ranges of wavelength and temperature. The coefficients of the resulting Sellmeier model for Corning 7980 fused silica are tabulated in Table 3.

Table 3 – coefficients for the three term Sellmeier model with 4th order temperature dependence for Corning 7980 fused silica

Absolute refractive indices of Corning 7980, based on the three term, temperature-dependent Sellmeier fit described in Table 3, are tabulated in Table 4 and plotted in Figure 4 for selected temperatures and wavelengths. Spectral dispersion is tabulated in Table 5 and plotted in Figure 5. Thermo-optic coefficient is tabulated in Table 6 and plotted in Figure 6.

Table 4 – absolute refractive index, n, of Corning 7980 fused silica at selected wavelengths and temperatures

wavelength 30 K 40 K 50 K 60 K 80 K 100 K 120 K 160 K 200 K 240 K 275 K 295 K 300 K

0.4 microns 1.46899 1.46902 1.46905 1.46907 1.46912 1.46918 1.46926 1.46948 1.46974 1.47005 1.47036 1.47054 1.470590.5 microns 1.46129 1.46131 1.46133 1.46135 1.46140 1.46146

1.46154 1.46175 1.46199 1.46228 1.46257 1.46275 1.462790.6 microns 1.45704 1.45706 1.45708 1.45710 1.45715 1.45721

1.45729 1.45748 1.45773 1.45801 1.45829 1.45846 1.458500.7 microns 1.45432 1.45433 1.45435 1.45437 1.45442 1.45448

1.45456 1.45475 1.45499 1.45527 1.45554 1.45571 1.455750.8 microns 1.45236 1.45237 1.45239 1.45240 1.45245 1.45252 1.45259 1.45278 1.45302 1.45329 1.45356 1.45373 1.453770.9 microns 1.45080 1.45081 1.45083 1.45085 1.45090 1.45096 1.45104 1.45122 1.45146 1.45173 1.45200 1.45216 1.452201.0 microns 1.44947 1.44948 1.44950 1.44952 1.44957 1.44963 1.44970 1.44989 1.45012 1.45039 1.45066 1.45082 1.450861.2 microns 1.44711 1.44713 1.44714 1.44716 1.44721 1.44727 1.44735 1.44753 1.44776 1.44803 1.44829 1.44845 1.448501.5 microns 1.44369 1.44370 1.44372 1.44374 1.44379 1.44385 1.44392 1.44411 1.44433 1.44460 1.44486 1.44502 1.445071.6 microns 1.44250 1.44251 1.44252 1.44254 1.44259 1.44265 1.44272 1.44291 1.44314 1.44340 1.44367 1.44383 1.443871.8 microns 1.43995 1.43996 1.43998 1.44000 1.44004 1.44010 1.44018 1.44036 1.44059 1.44086 1.44112 1.44128

1.44132

2.0 microns 1.43716 1.43717 1.43718 1.43720 1.43725 1.43731 1.43738 1.43757 1.43779 1.43806 1.43833 1.43849

1.43853

2.2 microns 1.43407 1.43408 1.43410 1.43411 1.43416 1.43422 1.43430 1.43448 1.43471 1.43498 1.43524 1.43541

1.43545

2.4 microns 1.43065 1.43067 1.43068 1.43070 1.43074 1.43081 1.43088 1.43107 1.43129 1.43156 1.43183 1.43200

1.43204

2.5 microns 1.42881 1.42882 1.42884 1.42885 1.42890 1.42896 1.42904 1.42922 1.42945 1.42972 1.42999 1.43016 1.430212.6 microns 1.42688 1.42688 1.42690 1.42692 1.42696

1.42703

1.42710 1.42729 1.42752 1.42779 1.42806 1.42823

1.42828

Table 5 – spectral dispersion, dn/d λ, in Corning 7980 fused silica at selected wavelengths and temperatures in units of 1/microns w 3045681112220.-----------avelength

K 0 K 0 K 0 K 0 K

00 K 20 K 60 K 00 K 40 K 75 K 295 K 300 K 45 m icrons 0.07720.07720.07720.07720.07720.07720.07720.07740.07750.07770.0779-0.0780-0.07800.5 m icrons -0.0561-0.0561-0.0561-0.0561-0.0562-0.0562-0.0562-0.0563-0.0564-0.0565-0.0566-0.0567-0.05670.6 m icrons -0.0338-0.0338-0.0338-0.0338-0.0338-0.0338-0.0338-0.0339-0.0339-0.0340-0.0341-0.0341-0.03410.7 m icrons -0.0228-0.0228-0.0228-0.0228-0.0228-0.0228-0.0228-0.0228-0.0229-0.0229-0.0229-0.0230-0.02300.8 m icrons -0.0173-0.0173-0.0174-0.0174-0.0174-0.0174-0.0174-0.0174-0.0174-0.0174-0.0175-0.0175-0.01750.9 m icrons -0.0142-0.0142-0.0142-0.0142-0.0142-0.0142-0.0142-0.0142-0.0142-0.0142-0.0143-0.0143-0.01431.0 m icrons -0.0127-0.0127-0.0127-0.0127-0.0127-0.0127-0.0127-0.0127-0.0127-0.0127-0.0128-0.0128-0.01281.2 m icrons -0.0114-0.0114-0.0114-0.0114-0.0114-0.0114-0.0114-0.0114-0.0114-0.0114-0.0114-0.0115-0.01151.5 m icrons -0.0118-0.0118-0.0118-0.0118-0.0117-0.0117-0.0117-0.0117-0.0117-0.0118-0.0118-0.0118-0.01181.6 m icrons -0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.0123-0.01231.8 m icrons -0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.0133-0.01332.0 m icrons -0.0147-0.0146-0.0146-0.0146-0.0146-0.0146-0.0146-0.0146-0.0146-0.0146-0.0147-0.0147-0.01472.2 m icrons -0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.0162-0.01622.4 m icrons -0.0178-0.0178-0.0178-0.0178-0.0178-0.0178-0.0178-0.0178-0.0178-0.0178-0.0177-0.0177-0.01772.5 m icrons

-0.0191-0.0191-0.0191-0.0191-0.0191-0.0191-0.0191-0.0191-0.0191-0.0190-0.0190-0.0190-0.0190

wavelength 30 K 40 K 50 K 60 K 80 K 100 K 120 K 160 K 200 K 240 K 275 K 295 K 300 K 0.4 microns 1.25E-06 1.60E-06 1.95E-06 2.30E-06 3.00E-06 3.70E-06 4.67E-06 6.02E-067.11E-068.20E-069.16E-069.70E-069.84E-060.5 microns 1.28E-06 1.61E-06 1.95E-06 2.28E-06 2.94E-06 3.60E-06 4.47E-06 5.69E-06 6.70E-067.72E-068.61E-069.12E-069.25E-060.6 microns 1.22E-06 1.55E-06 1.88E-06 2.20E-06 2.86E-06 3.51E-06 4.35E-06 5.52E-06 6.51E-067.50E-068.36E-068.86E-068.98E-060.7 microns 1.26E-06 1.58E-06 1.89E-06 2.20E-06 2.83E-06 3.46E-06 4.27E-06 5.43E-06 6.40E-067.36E-068.21E-068.69E-068.81E-060.8 microns 1.16E-06 1.48E-06 1.80E-06 2.13E-06 2.77E-06 3.42E-06 4.23E-06 5.36E-06 6.32E-067.28E-068.12E-068.60E-068.72E-060.9 microns 1.17E-06 1.49E-06 1.81E-06 2.13E-06 2.76E-06 3.40E-06 4.21E-06 5.33E-06 6.27E-067.22E-068.05E-068.52E-068.64E-061.0 microns 1.07E-06 1.40E-06 1.74E-06 2.07E-06 2.73E-06 3.39E-06 4.21E-06 5.30E-06 6.24E-067.18E-068.01E-068.48E-068.60E-061.2 microns 8.86E-07 1.26E-06 1.64E-06 2.01E-06 2.76E-06 3.52E-06 4.29E-06 5.25E-06 6.19E-067.12E-067.94E-068.40E-068.52E-061.5 microns 9.92E-07 1.34E-06 1.69E-06 2.04E-06 2.73E-06 3.43E-06 4.19E-06 5.22E-06 6.18E-067.13E-067.97E-068.45E-068.57E-061.6 microns 9.31E-07 1.30E-06 1.66E-06 2.02E-06 2.75E-06 3.48E-06 4.27E-06 5.23E-06 6.14E-067.05E-067.84E-068.29E-068.41E-061.8 microns 9.16E-07 1.27E-06 1.62E-06 1.98E-06 2.68E-06 3.39E-06 4.19E-06 5.22E-06 6.16E-067.09E-067.91E-068.38E-068.50E-062.0 microns 8.22E-07 1.17E-06 1.51E-06 1.85E-06 2.54E-06 3.22E-06 4.03E-06 5.14E-06 6.13E-067.12E-067.98E-068.48E-068.60E-062.2 microns 1.01E-06 1.37E-06 1.73E-06 2.09E-06 2.82E-06 3.54E-06 4.35E-06 5.28E-06 6.12E-06 6.96E-067.69E-068.11E-068.22E-062.4 microns 1.14E-06 1.45E-06 1.77E-06 2.08E-06 2.71E-06 3.34E-06 4.12E-06 5.21E-06 6.15E-067.08E-067.91E-068.38E-068.49E-062.5 microns 1.06E-06 1.40E-06 1.74E-06 2.08E-06 2.77E-06 3.46E-06 4.08E-06 5.10E-06 6.17E-067.24E-068.18E-068.71E-068.85E-062.6 microns 1.03E-06 1.38E-06 1.72E-06 2.07E-06 2.76E-06 3.45E-06 4.22E-06 5.25E-06 6.20E-067.16E-068.00E-068.48E-068.60E-06

Table 6 – thermo-optic coefficient, dn/dT, of Corning 7980 fused silica at selected wavelengths and temperatures in units of 1/K

Figure 4 – measured absolute refractive index, n, of Corning 7980 fused silica at selected wavelengths and temperatures

Figure 5 – spectral dispersion, dn/dλ, in Corning 7980 fused silica at selected temperatures

Figure 6 – thermo-optic coefficient, dn/dT, of Corning 7980 fused silica at selected temperatures

4. COMPARISON WITH PREVIOUS INVESTIGATIONS

In this section, we compare the results of our absolute refractive index study on fused silica with those listed in the second paragraph of Section 1. Figure 7 illustrates the wavelength and temperature coverage of the various studies. Not shown in the chart are studies which extended to wavelengths shortward of the near ultraviolet near room temperature conducted by a number of investigators including ourselves.

Figure 7 – wavelength and temperature coverage of this study and of other investigations on the refractive index of fused silica We have already compared our results to Malitson’s results in Section 2. The measurements of Wray and Neu are outside the temperature range considered in this study but have been put on this map to show their context to those of other investigators. Fortunately, we are in a position to compare our results to those of Waxler and Cleek (W&C) and to those of Matsuoka et al. who did perform measurements at cryogenic temperatures albeit by different means. Remember that W&C used an interferometric technique – similar in principle to that used by PMIC for the Kepler program – to measure only changes in refractive index with respect to room temperature appealing to room temperature data of Malitson (which are in air) and to CTE values for fused silica from other investigators to compute values of index at temperatures within their measurement range. Although our measured wavelength range overlaps only from mid-visible through violet wavelengths with that of Matsuoka et al., the latter measurements were made using essentially the same technique we use – the minimum deviation method – which does not appeal to external databases on physical properties, and so we feel make for a more valid and interesting comparison.

Table 7 compares W&C’s index measurements to the measurements in CHARMS. In order to do this comparison, we first calculate refractive index using our Sellmeier model at the wavelengths and temperatures used by W&C. We then correct W&C’s measurements to be in vacuum, and then take the difference between adjusted W&C and CHARMS indices. Near room temperature, there is good agreement as expected since W&C used Malitson’s data to anchor their

indices at room temperature. However, curiously W&C’s data are lower than those from CHARMS by several parts in the fifth decimal place of index at temperatures below 160 K, just as were those from PMIC who used a similar measurement technique and manipulation of CTE data to derive refractive index.

Table 8 compares absolute refractive index measurements of Matsuoka et al. to measurements in CHARMS. Matsuoka’s indices agree with indices from CHARMS to within about twice our stated uncertainty of 0.00001. CHARMS indices appear to be systematically higher than those of Matsuoka by 1 to 2 parts in the fifth decimal place of index. This is most likely explainable through differences in source of supply of the materials measured.

Table 7 – adjusted refractive indices of Waxler and Cleek for fused silica minus refractive indices from CHARMS wavelength [microns]73 K123 K173 K223 K273 K293 K

0.668-0.00004-0.00006-0.00006-0.000020.000000.00000

0.644-0.00001-0.00008-0.000050.000000.00001-0.00001

0.588-0.00004-0.00006-0.00005-0.000010.000000.00000

0.509-0.00005-0.00006-0.00004-0.000010.000000.00000

0.502-0.00008-0.00006-0.00004-0.000010.000000.00001

0.480-0.00004-0.00006-0.00004-0.000020.000000.00000

0.471-0.00005-0.00006-0.000030.000000.000010.00001

0.468-0.00003-0.00006-0.000030.000000.000010.00001

0.436-0.00005-0.00003-0.000010.000030.000030.00001

0.405-0.00002-0.00005-0.000030.000010.000020.00002

Table 8 – absolute refractive indices of Matsuoka et al. for fused silica minus refractive indices from CHARMS

wavelength [microns]108 K162 K230 K276 K294 K

0.546-0.00002-0.00002-0.00002-0.00002-0.00002

0.436-0.00002-0.00002-0.00001-0.00001-0.00001

0.405-0.00001-0.00002-0.000010.000000.00000

6. SUMMARY

Using CHARMS, we made over 7600 individual, direct measurements of absolute refractive indices of modern synthetic fused silica (Corning 7980) from 30 to 300 K to an accuracy level of 1 part in the fifth decimal place of index across the visible spectrum and through the infrared out to the strong absorption in the material at 2.75 microns wavelength, greatly expanding the wavelength and temperature coverage for measurements of this material, especially to cryogenic temperatures. Spectral dispersion appears to be a very weak function of temperature. We demonstrated that five different specimens taken from around the perimeter of a 1 m diameter optical blank for the Schmidt telescope corrector for the Kepler Photometer share the same index to within our ability to measure it at all temperatures measured. Our cryogenic measurements compare favorably to sparse measurements from previous investigations.

ACKNOWLEDGEMENTS

The authors wish to Charles Sobeck at NASA/Ames and Don Byrd/Ball Aerospace Corporation for providing the test samples and the comparison dn/dT data from the sister investigation at PMIC to enhance the completeness of this study.

REFERENCES

1. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., 55(10), 1205-1209, October (1965)

2. J.H. Wray, J.T. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am., 59(6), 774-776, (1969)

3. R.M. Waxler, G.W. Cleek, “Refractive indices of fused silica at low temperatures,” J. Res. NBS, 75A(4), 279-281, (1971)

4. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,”

J. Non-Crystalline Solids, 135, 86-89, (1991)

5. D.B. Leviton, B.J. Frey, “Cryogenic, High-Accuracy, Refraction Measuring System – a new facility for cryogenic infrared through far-ultraviolet refractive index measurements,” SPIE 5494. 492-504, (2004)

6. B.J. Frey, D.B. Leviton, “Automation, operation, and data analysis in the cryogenic, high accuracy, refraction measuring system (CHARMS),” SPIE 5904, 212-221, (2005)

7. D.B. Leviton, B,J. Frey, “New refractometer system gives high-accuracy, cryogenic, refractive-index measurements,” SPIE On-line Newsroom, https://www.doczj.com/doc/6710473849.html,/x810.xml?highlight=x541

绝对伏特加:传奇是如何广告与营销的

绝对伏特加:传奇是如何广告与营销的? 第一部分:传奇三部曲 百年的王者 1879年,瑞典实业家拉尔斯?奥尔森?史密斯(Lars Olsson Smith)发展出一个完善的酿造方法——蒸馏法,一改过去瑞典酿酒工艺粗糙的历史,通过多组蒸馏柱将整个酿酒工艺过程中出现的杂质去掉,酿制出一种前所未见的纯净烈酒,史密斯将之命名“绝对净化伏特加酒”( Absolot Rent Branvin)。这一创举使得拉尔斯?奥尔森?史密斯被冠以“伏特加酒之王”的称号,享誉欧洲。 过了将近100年,Lars Lindmark从祖先手里接过了接力棒。他成为瑞典酒业公司总裁,开始对这家公司进行革新。1975年,根据史密斯的原有构想,再加上现代科技,利用精挑细选的瑞典南部谷物,蒸馏出一种纯度更高的烈酒,命名为Absolute Pure Vodka,专家分析显示,其纯度在市场上可谓无出其右。 Absolute Pure Vodka就是后来享誉百年的ABSOLUT VODKA,它被认为是现代蒸馏工艺所能制造的最好的伏特加酒。 古老的药瓶 1979年,是Absolute Rent Branvin酒的一百周年华诞,Lindmark决定出口这种新的Absolute Pure Vodka,并在北美市场开展行销活动。此前进行了20多种不同的酒瓶设计,但却迟迟未能定案。有一天,广告人Gunnar Broman在斯德哥尔摩的古董店看到一个老式药瓶,当时眼前一亮,没错,就是它! 根据考证,这个老式药瓶跟伏特加就关系密切,早在十五世纪瑞典就出现伏特加这种蒸馏烈性酒,最初它装在透明的罐子里,主要是医疗用途,可舒缓瘟疫造成的急性腹绞痛等症状。而这只古老药瓶的造型,不仅透明、单纯,而且能结合瑞典历史,这无疑是给绝对伏特加增添了一种类于宿命的传奇色彩。 当然为了追求完美,绝对伏特加销售团队邀请了诸多瑞典设计师进一步改良这个药瓶的设计。最终决定不使用任何标签,以显示水晶般透明的纯净酒质。同时决定使用蓝色作为最醒目的颜色。 最后设计师们还对瓶子的设计作了一些修改——加入了拉尔斯?奥尔森?史密斯的徽章,象征着这种酒的尊贵与历史文化传统,同时加长了瓶颈。 就这样,短颈圆肩的水晶瓶,独创性地将所有标注文字信息用彩色粗体字体直接印在瓶身。透过完全透明的酒瓶,消费者感触到的是纯正、净爽、自信的绝对伏特加酒。 这个酒瓶很快出现在众多广告作品里。瓶形成为所有广告创作的基础和源泉,包括平面、网络、电影和其他形式的广告。对于所有参与创作的艺术家,都只有一个要求:那就是伏特加酒瓶必须出现在作品里。

市场营销十大经典案例

市场营销案例:想想小的好处 背景:1960年代,大众汽车旗下的甲壳虫品牌销量不佳。DDB广告公司开创了一种前所未有的运作模式:让一名文案和美术指导搭档,展开这项广告运动。于是,“想想小的好处”(Think Small)这一大众汽车史上革命性的广告便出台了,一辆小小的汽车停在广告画面的中央,周围是广阔的空间,还有一句引人遐想的“我们的小汽车”。 突破:以小搏大。美国圣地亚哥州立大学市场营销学教授迈克尔·贝尔奇(Michael Belch)如此评价:“打破传统,往往意味着一种文化的创新。”曾在《广告时代》担任编辑的约拿·布鲁姆(Jonah Bloom)认为,“小也是性感的一种表现,它意味着有坚持特立独行的胆量。” 贡献:充分相信自己的产品。简单真诚以及适当的冒险,能够产生以小搏大的效应。Avis租车公司“因为是第二名,所以我们更加努力”的广告运动,与这个有异曲同工之妙。 市场营销案例:美腿裤袜 背景:为了帮助恒适公司(Hanes)推广其美腿裤袜(Beauty Mist pantyhose),Mullen广告公司邀请著名的橄榄球四分卫运动员乔·拿马斯 (Joe Namath)担任代言人。拍摄于1974年的电视广告中出现了两条穿着裤袜的美腿(看起来活像拿马斯的腿),配有这样的旁白:“我不穿美腿裤袜,但如果它能够让我的腿这么好看,想想将能够给你们带来多少美丽!”广告片播出后不久,美国市场裤袜的销量首次超过了长袜。 突破:名人效应。拿马斯不是第一个做广告的名人,但这种反差极大的名人代言活动,为广告赢得了成功。 贡献:开启了运动员代言的时代。拳击手乔治·福尔曼(George Foreman)、篮球巨星迈克尔·乔丹(Michael Jordan)等运动员,都身兼多项代言。 市场营销案例:绝对伏特加 背景:绝对伏特加酒(Absolut Vodka)与市场上的其他竞争品牌在口感等方面的差别并不大,但是该公司的广告代理公司TBWA匠心独运,在酒瓶的形状及品牌名称上下功夫,创造了一系列令人惊艳的广告,带来了绝对伏特加的销售井喷。这个广告运动沿用了30多年,直到今天依然颇具生命力。 突破:完完全全来自广告的力量。这些广告让数以百万计的美国消费者,在口感辨识度较低的情况下,依然购买并忠诚于这个品牌。布鲁姆认为,“这也证实了广告能够在市场竞争中创造真正的价值。” 贡献:占位非常重要。这个广告运动为品牌赢来了极大的光环,绝对伏特加公司依然延续这个营销举措,并不断推陈出新。

绝对伏特加平面广告赏析(DOC)

绝对伏特加平面广告赏析 绝对伏特加平面广告的创意要领都以怪状瓶子的特写为中心,下方加一行两个词的英文,是以“ABSOLUT”为首词,并以一个表示品质的词居次,如“完美”或“澄清”。没有必要讲述任何产品的故事。该产品的独特性由广告产生的独特性准确地反映出来。把瓶子置于中心充当主角当然很可能吸引顾客,但更重要的是,与视觉关联的标题措词与引发的奇想赋予了广告无穷的魅力和奥妙。 绝对伏特加广告分成10个系列:瓶形广告、抽象广告、城市广告、口味广告、季节广告、电影/文学、艺术广告、时尚广告、话题广告和特制广告。 绝对伏特加的广告被公认为艺术品。其广告以艺术品为内容,广告消融了其印刷载体的功能,已经与艺术品融为一体,跨越成为了艺术品。 一、绝对口味 1、纯伏特加 金色的包装、黑色的背景给人一种高贵、耀眼的感觉,加上适度的光线效应使得画面颜色对比比较强烈。 2、苹果梨味绝对伏特加 从内容上看:绝对伏特加是极度充满魅力的,如此酒与苹果梨完美交融的感性魅力,散发丝丝诱惑,恰似欲望之果,令人无法抵挡。 从设计上看:瓶身设计方面,绝对苹果梨将一贯经典的瓶形与苹果梨外形完美融合,细致的瓶身线条显现出水果的柔和,绿色的瓶身散发着新鲜优雅的气息。宣传海报上,绿蛇缠绕在酒瓶周围,蛇身中段的苹果梨轮廓清晰可见,带来强烈视觉冲击力,更宛如一场“新魅惑味蕾盛宴”。

发型做成绝对伏特加的经典瓶身形状,颜色采用黑莓的颜色,既简单又新意、又创意。 将柠檬的高光、果仁采用绝对伏特加独特的酒瓶形状,再配上“ABSOLUT CITRON(绝对

柠檬)”,简单明了。而且,主体的颜色也与酒瓶包装上的字体颜色是一致的,都是柠檬黄。 二、绝对城市 毕加索曾说过:“从艺术的观点来看,没有具体的形式或抽象的形式,只有令人信服的程度或大或小的谎言的形式。”而这种形式就是一种表现,绝对伏特加的广告重点就体现在一种表现上,是注意,而不是创意。诸如城市系列,创意可能只有一个,就是通过当地的特色事物来表现绝对伏特加的酒瓶,而出彩的是每一幅广告的元素不同,致使表现不同。 1、绝对洛杉矶 这幅广告是1987年,TBW A广告公司为了感谢加州消费者对伏特加的青睐,并庆祝绝对伏特加在加州的热销而创作的。令人始料未及的是广告一经推出便受到大力的追捧,美国的许多城市都要求TBWA公司为自己也创作一幅这样的广告,于是城市系列广告应运而生。蓝色的游泳池,绿色的草、树,柔和的光线,给人一种春暖花开的感觉,突出了洛杉矶四季如春的特色,是名副其实的“天使之城”。

绝对伏特加营销案例分析

案例四:绝对伏特加打造绝对文化 【背景】: 1879年,绝对伏特加诞生于瑞典。1078年,美国的卡瑞朗公司准备将绝对伏特加引入美国,但当时美国每年消费掉的伏特加有超过80%的都是本土酒厂生产的。 经过几年发展,绝对伏特加在同类产品中以每年平均高达20%~30%的增长率,领先于所有伏特加酒品牌成为美国市场上占有率第一的伏特加品牌。而一句“绝对完美”的广告语伴随伏特加酒的不断壮大,成为美国市场家喻户晓的广告经典。 2002年,福布斯奢侈品品牌排行榜上,绝对伏特加独占鳌头。 【分析】:绝对伏特加最伟大的成功是创造了世独一无二的“绝对文化”,并把它的这种文化以“绝对”的形式传播向全世界。 大胆的定位和创新 按照惯例,营销活动正式开始之前,卡瑞朗公司请人做了一项专门的市场调查,最后得出的结论是:绝对伏特加,绝对失败! 然而,卡瑞朗公司的总裁米歇尔·鲁却坚信自己的直觉,抛开调查结果,坚决杀入美国市场。 绝对伏特加的酒瓶设计独特,酒瓶上没有纸质标签,字体和图案直接刻印在玻璃瓶身上,整体都是透明的。酒吧侍者抱怨说,顾客根本就看不见酒柜上的绝对伏特加,而且认为它瓶颈极短,难以倒取。 面对现状,卡瑞朗公司的总裁Michel Roux觉得绝对伏特加与众不同的酒瓶设计则成为区别一般伏特加的特色,所以尽管市场调查不如人意,他还是坚定使用绝对伏特加的酒瓶,并决定用强劲的广告赋予品牌个性。 面对传统市场调查的失败分析和周围对酒瓶的否定,科瑞朗公司的大胆决定和坚持是绝对伏特加营销成功的前提。

创意的延续和坚持 伏特加的第一个广告就是呈现了一个绝对伏特加的酒瓶,光晕打底,文案就仅仅是简单的“绝对完美”。 “绝对完美”成了一个样板,在随后几年的广告设计中,其创意人员始终遵循着“统一与变化”的原则进行。画面是不同背景或者视觉效果衬托下的酒瓶特写,瓶子始终与醒目的光晕同时出现;文案在瓶子下方,开头永远是“ABSOLUT”,后面跟着一个表示品质的词。 从而形成了绝对伏特加独特的“绝对”系列。 在最初的创意元素上进行更改和延续,对于消费者接受绝对伏特加的形象有持续的影响力,对于形成品牌形象和品牌影响力有很大的作用。 艺术和时尚元素的加入增加其附加值 1985年,在多年成功的广告攻势后,卡瑞朗公司决定开始创造绝对伏特加的附加价值,其总裁提出了一个新的创意,让一位画家画出绝对伏特加的瓶子,如果能找到合适的画家,则表明绝对伏特加品牌不但能站在现代文化时尚的最前沿,还具有深刻的文化内涵。 当时没过最受欢迎的艺术家安迪·沃霍尔所画的“绝对沃霍尔”系列和年轻涂鸦艺术家凯斯·哈林的“绝对哈林”系列使绝对伏特加踏上了已是旅程,更是招致了各种艺术行为家的纷纷加入。 而且,在瑞典离北极圈200公里处,绝对伏特加用冰雪建了一座旅馆,入口形状是一个绝对伏特加酒瓶。1997年,时装大师范思哲在这个并血管上演了一场时装秀,出场的全部是世界顶级模特,而摄影师则是著名的大牌HerbRitts。活动中最应人瞩目的是一个名模被潜入到一个高2.4米的Absolut冰雕酒瓶中。此活动引起了全球各大媒体的关注,给绝对伏特加又穿上了一件时尚的外衣。 “绝对城市”系列将“绝对文化”带向世界

弄巧成拙 盘点那些失败的广告营销策划案例

弄巧成拙!盘点那些失败的广告营销策划案 例 成功的广告有各种各样,出其不意型、时事热点型、幽默搞笑型......它们总是用自身的亮点抓住受众的眼球,对品牌的成长和发展起着至关重要的作用。那失败的广告呢?如果细细总结一下,就会发现它们失败的原因不过那么几样,但总有些品牌,兜兜转转就是绕不出这个圈子.... 丰田的“霸道”营销 崎岖的山路上,一辆行驶在路上的丰田“霸道”引来路旁一只石狮的垂首侧目,另一只石狮还抬起右爪敬礼,文案为“霸道,你不得不尊敬”。另外一张广告是一辆丰田“陆地巡洋舰”迎坡而上,后面的铁链上拉着一辆看起来笨重的中国产“东风”大卡车; 当年丰田这两则广告刚一露面,就在读者中引起了轩然大波。

“这是明显的辱华广告!” “石狮子有象征中国的意味,这则广告却让它们向一辆日本品牌的汽车鞠躬敬礼!”

“考虑到卢沟桥、石狮子、抗日三者之间的关系,更加让人愤恨”。而另一则广告中,卡车是国产东风汽车,绿色的东风卡车与我国的军车非常相像,很多人有污辱中国军车之嫌。 在舆论的强大压力下,丰田公司和负责制作此广告的盛世长城广告公司先后公开向中国读者致歉。 美国维珍移动 2012年美国维珍移动投放了一个在线网络广告,广告中中年男子用手蒙住了女子的眼睛,而另一只手拿着一个包好的礼物,看起来很欢乐和谐,但是当你一看到广告语,便会惊掉下巴,“充满惊喜的圣诞礼物,是项链还是迷药?” 不要告诉我这只是个飞机稿...... necklace: n.项链;

chloroform: n.迷药; 虽然不知道是哪只幼稚混球能想出的,但维珍的用户急不可耐地表达了他们的愤慨,就连集团的创始人理查德.布兰森都指责了此条广告,简直是猪一样的队友。 索尼白色版PSP 说起公司无谓地激起种族分歧,索尼白色版的PSP广告真实失误得很搞笑。这个投放在荷兰的广告牌,上面是一个白衣白人模特,凶狠地抓住一个畏缩的黑人模特的脸。

改变世界的10大创意营销案例

【摘要】权威媒体日前评出“改变世界的10大营销案例”,用创业眼光向人们展示了几十年来令人印象深刻的创意广告,其中还包括了美国总统奥巴马的竞选策略。 【正文】广告业的基石是那些天才的创意。创意的灵感则来自生活的方方面面,但同时我们必须认识到:即使最伟大的创意也可能稍纵即逝。 但在时间的长河中,却不乏这样的亮点:有些营销活动不仅在当时激起了巨大的口碑效应,并极大地提升了产品销量,而且历久弥新,潜移默化地融入社会文化生活中,甚至影响未来世界的营销规则。 美国密歇根州立大学广告学系教授伯格认为,出现这类创意的几率并不高,因为“好的创意与氛围、创意执行人、一定的技巧以及好运气息息相关”。在天时地利人和都具备的情况下,突破性的创意才有可能产生。 在经济大萧条的时候售卖钻石、将一种市场区隔度并不大的伏特加酒卖出更好的价钱、把一辆小小的车包装得大红大紫……媒体评选出了改变世界的10大营销创意,它们的时间跨度长达70年。 钻石恒久远,一颗永流传 背景:1938年,钻石的价格急剧下降,戴比尔斯公司向广告代理公司寻求援助,希望扭转这种颓势。1939年,后者推出了“钻石恒久远,一颗永流传”的广告语,成功地将钻石包装**们的婚礼必备品,让这种亮闪闪的饰品赢得无数新人的欢心。如何让两个月的薪水持续一生。购买一颗钻石吧!

突破:广告运动诞生了流行金句。美国南加州大学传播学教授科迪表示,“它为这个产品赋予了一种情感意义,让人们产生共鸣。”这个句子如此浑然天成,足以让人们忽略它背后的商业目的。 贡献:开启了情感营销的先河,后来者如耐克主张“想做就做”(Just Do It),万事达卡诉求“万事皆可达,唯有情无价”。 万宝路牛仔 背景:很难想象,几十年前万宝路竟然是一种女士过滤嘴香烟。1955年,当李奥贝纳广告公司接手这个品牌时,一切发生了戏剧性的改变。该公司重新对万宝路品牌进行了定位,并引入了一个极具阳光色彩的形象:美国牛仔。 突破:品牌形象广告。科迪认为,这个广告运动将万宝路牛仔塑造成一个成功的“代言人”,不仅如此,这场广告运动还是第一个品牌形象广告。“它的贡献不仅体现在对产品销量的提升上,更唤起了男人们对阳刚的男子气概的追求。”万宝路由此而成为最畅销的香烟品牌。贡献:开启了年轻人的品牌意识 是她,不是她? 背景:1957年,FCB广告公司创造了“伊卡璐女孩”这个形象。一个看起来非常阳光健康的女孩,但她却藏着一个惊人的秘密:她头发的颜色可能是假的!随后染发剂的广告铺天盖地,都附有醒目的一问一答:“是她,不是她?”(Does she … or doesn"t she?)(“只有她的美发师知道”。) 突破:惊骇广告(shock ad)。《广告时代》杂志专栏作家鲍勃·加菲

十大经典市场营销案例

十大经典市场营销案例 市场营销案例1:钻石恒久远,一颗永流传 背景:1938年,钻石的价格急剧下降,戴比尔斯公司(DeBeers)向广告代理公司N.W.Ayer&Son寻求援助,希望扭转这种颓势。1939年,后者推出了“钻石恒久远,一颗永流传”(Adiamondisforever)的广告语,成功地将钻石包装**们的婚礼必备品,让这种亮闪闪的饰品赢得无数新人的欢心。如何让两个月的薪水持续一生?购买一颗钻石吧! 突破:广告运动诞生了流行金句。美国南加州大学传播学教授迈克尔·科迪(MichaelCody)表示,“它为这个产品赋予了一种情感意义,让人们产生共鸣。”这个句子如此浑然天成,足以让人们忽略它背后的商业目的。 贡献:开启了情感市场营销案例的先河,后来者如耐克主张“想做就做”(JustDoIt),万事达卡诉求“万事皆可达,唯有情无 价”(Priceless)。 市场营销案例2:万宝路牛仔 背景:很难想象,几十年前万宝路竟然是一种女士过滤嘴香烟。1955年,当李奥贝纳广告公司接手这个品牌时,一切发生了戏剧性的改变。该公司重新对万宝路品牌进行了定位,并引入了一个极具阳光色彩的形象:美国牛仔。 突破:品牌形象广告。科迪认为,这个广告运动将万宝路牛仔(MarlboroMan)塑造成一个成功的“代言人”,不仅如此,这场广告运动还是第一个品牌形象广告。“它的贡献不仅体现在对产品销量的提升上,更唤起了男人们对阳刚的男子气概的追求。”万宝路由此而成为最畅销的香烟品牌市场营销案例。 贡献:开启了年轻人的品牌意识 市场营销案例3:是她,不是她?

背景:1957年,FCB广告公司创造了“伊卡璐女 孩”(Clairolgirl)这个形象。一个看起来非常阳光健康的女孩,但她却藏着一个惊人的秘密:她头发的颜色可能是假的!随后染发剂的广告铺天盖地,都附有醒目的一问一答:“是她,不是 她?”(Doesshe…ordoesn'tshe?)(“只有她的美发师知道”。) 突破:惊骇广告(shockad)。《广告时代》杂志专栏作家鲍勃·加菲尔德(BobGarfield)称之为“惊骇广告”的鼻祖,用“性”诉求激起口碑效应。它所产生的效果惊人,10年后,其染发剂产品的销售额达到1.6亿美元。 贡献:性诉求有不错的市场营销案例效应。它为后来的多个性感广告出炉扫平了道路。比如,波姬·小丝(BrookShields)那充满挑逗意味的CK牛仔裤广告:“我和我的CK牛仔裤之间,什么也没有”。 市场营销案例4:想想小的好处 背景:1960年代,大众汽车旗下的甲壳虫品牌销量不佳。DDB广告公司开创了一种前所未有的运作模式:让一名文案和美术指导搭档,展开这项广告运动。于是,“想想小的好处”(ThinkSmall)这一大众汽车史上革命性的广告便出台了,一辆小小的汽车停在广告画面的**,周围是广阔的空间,还有一句引人遐想的“我们的小汽车”。 突破:以小搏大。美国圣地亚哥州立大学市场营销学教授迈克尔·贝尔奇(MichaelBelch)如此评价:“打破传统,往往意味着一种文化的创新。”曾在《广告时代》担任编辑的约拿·布鲁姆(JonahBloom)认为,“小也是性感的一种表现,它意味着有坚持特立独行的胆量。” 贡献:充分相信自己的产品。简单真诚以及适当的冒险,能够产生以小搏大的效应。Avis租车公司“因为是第二名,所以我们更加努力”的广告运动,与这个有异曲同工之妙。 市场营销案例5:美腿裤袜

平面广告案例赏析

平面广告案例赏析 瑞典ABSOLUTE VODKA 绝对伏特加 一、主体介绍 平面广告吸引力的形成因素是多方面的,作为其中重要因素之一的有深度、有内涵的图形创意起着非常重要的作用。图形创意赋予平面广告以美的特质,使其更为准确、有效地向受众传达信息,充分发挥“广而告之”的作用。而瑞典绝对伏特加正是因为对广告图像的创新性、个性化搭配组合,使得absolute vodka广告一鸣惊人,使之跻身世界十大名酒之一。 二、广告介绍 广告画面四周是漆黑的背景,中间是聚光灯照射着桌子上一瓶瓶子透明的造型怪异的白酒,酒瓶口上浮现出代表天使的光环。瓶身和画面上写着“absolute vodka”。绝对伏特加酒永恒的个性化包装:短颈圆肩的水晶瓶,独创性地将所有标注Absolut Vodka伏特加酒的文字信息用彩色粗体字体直接印在瓶身。放弃传统的纸质酒标以完全透明度使消费者对Absolut Vodka伏特加酒的酒质放心。他的包装以个性赢得消费者的认同,并很快传播到世界各地。 三、案例分析 1背景简介 听到伏特加人们自然的想到这是俄罗斯的特产,只有俄罗斯生产的伏特加才是正宗的伏特加。而绝对伏特加是瑞典的品牌,怎样才能让人们认识并接受瑞典制造的伏特加呢?绝对伏特加是一家瑞典酒厂VIN&spirit公司的伏特加品牌,早在1859年就已问世,可算是老牌的伏

特加了,但就是因为人们对伏特加的刻板印象,使得绝对伏特加在拓展全球市场上倍受困扰。该公司在美国市场上做了一次消费者调查,结果反馈:“1酒名太难发音2瓶子形状很特别,太像药罐子3产地问题4瓶身应该有标签。”市场调查机构建议绝对伏特加退出美国市场。但是美国酒商迈克劳斯明知山有虎偏向虎山行,1980年推出第一张平面作品“absolute vodka” 2画面创意 这张平面稿打破了以往伏特加等烈酒广告惯用的“醇酒美人“模式,整张平面以绝对伏特加瓶身造型为主体,塑造出清新活力的品牌形象。经典的绝对伏特加酒瓶它的设计灵感源自瑞典一种古老药瓶,与大多数酒瓶长颈宽肩的酒瓶不同,它颈短肩圆,所有标注品牌的文字信息用彩色粗字体直接印在全透明的玻璃酒瓶上。完全透明的酒瓶 之中,纯正、净爽的绝对伏特加熠熠生辉,成为最纯粹、最唯 美的装饰。剔除了奢华、繁缛,美反而被发挥到了极致。透明的酒瓶还传达出一种自信的品牌理念:因为对自己的酒质有信心,才敢放弃传统的纸质酒标,使消费者可以直接透过酒瓶感受绝对伏特加的酒质。个性化的包装设计成为绝对伏特加最具显象意义的标签,使其在终端货架上能够轻易地被识辨,节省了品牌认知教育成本。 TBWA巴黎分公司曾推出一组结合各地著名景观及文化风俗的“欧洲城市”系列广告,使绝对牌成为与城市环境和谐一体的美妙景观。举个例子,在"绝对布鲁塞尔"篇中,我们可以看到绝对伏特加酒瓶撒尿的景观,寓意不言自明,象征那个在关键时刻拯救布鲁塞尔的小男孩用

从绝对伏特加广告策略看商业广告发展

从绝对伏特加广告策略看商业广告发展 罗姗姗地理与资源科学学院地理科学10.2 20101541050 摘要广告在经济全球化的今天扮演着十分重要的角色。绝对伏特加(ABSOLUT VODKA)诞生于15世纪,是享誉世界的三大烈酒之一。在各种名酒品牌中,只有绝对伏特加的宣传能够以其精湛的传播策略与艺术紧密结合。而众所周知,绝对伏特加酒瓶,则成为了绝对广告系列中的主角,这只酒瓶能很好的诠释商业广告的符号文化发展趋势。本文通过对绝对伏特加酒瓶牌和其广告符号的应用以及广告呈现的符号意义的研究,从符号学得角度对绝对伏特加广告进行分析,并与现代商业广告的发展现状结合,在浅谈商业广告的符号化趋势的同时,分析其发展趋势下面临的问题。 Abstract advertising in today's economic globalization plays an important role. Absolute Vodka was born in the 15th century, is world-renowned one of the three spirits. Brands in a variety of wines, the publicity can only Absolut Vodka's communication strategy for its exquisite and artistic closely. And we all know, absolute vodka bottle, which became the absolute protagonist of the campaign, this bottle can be a good interpretation of the cultural symbols of commercial advertising trends. Based on absolute vodka bottle brand and its advertising signs and advertising show the application of symbolic significance of the study was from the perspective of semiotic analysis of the Absolut Vodka ads and commercials with the current development of the modern combination of commercial advertising in On while symbolic tendency to analyze the development trend of problems. 关键词绝对伏特加商业广告符号 一.绪论 广告是人际传播的产物,是为了满足某种特定需求利用媒体向公众进行宣传的一种

广告创意与案例分析笔记

第一节广告创意的概念及本质 主要内容:①创意是什么②广告创意的实质 一、什么是创意? Creation 最广泛认同的中文创意来源 Idea 美国创意大师詹姆斯·韦伯·扬广告名著中的被广泛采纳 1、广义上的创意可以定义为一切具有创造性的意念和想法。 在中国传统美学中,“意”是一种使人感受、领舞、玩味无穷却难以言却。 2、创意最大的特点是“新”,即新颖、新奇、新鲜。因为创新性、是创意区别于一般的意念和想法之处。 二、广告创意的定义: 1、教材:(最精辟的定义)旧的元素,新的组合。 ------詹姆斯·韦伯·扬 广告创意是综合运用各种天赋能力和专业技术,由现有素材中求得新概念,新表现,新手法的过程。 案例:成长难免有创伤-----邦迪 2、广告策划与广告创意: 广告策划和广告创意都属于广告活动的要素之一,而广告创意属于广告表现的核心要素之一。 广告策划解决的是广告活动的方向对与错的问题,广告创意解决的是目标受众对广告产品喜欢。 案例:没有愈合不了的伤口-----邦迪 3、广告创意定义:(必须要记) 广告创意是广告创意人员根据商品(品牌)的整体传播策略,对抽象的商品(品牌)的诉求概念加以提炼,成为物质层面的功能特征或精神层面的价值观念,并将之转换为具象的视觉符号以求达成理想的传播效果的创造性的形象思维活动。 4、如何理解广告创意的定义? (1)广告创意是创造性的思维活动 (2)广告创意的前提是科学地调查和分析 (3)广告创意就是要善于将抽象的诉求概念转换为具象的、艺术性的表现形式 现代广告策划和设计的实质就是创意,创意是广告的灵魂。 5、走出广告创意的误区: (1)广告创意不仅是表现手段,也是策略。(例:麦当劳,我就喜欢:我就喜欢动刀子系列) (2)广告创意重在影响而不是说服。[影响是说服前提,说服是影响的最终归宿](例:CANAL+“衣橱篇”——绝不要低估好故事的力量) (3)广告创意中少有绝对的新与旧,多是旧元素的新组合。(例:Rose内衣广告) 6、广告创意的实质: 创意的实质就是具有颠覆性的,值得拥有的好点子。(例:百事可乐贩卖机,柜员机。) 第二节广告创意的任务 一、广告创意的作用 1.有助于广告活动达成预期目标。 [绝对伏特加创意广告(TBWA 李岱艾日本)①心电图②酒杯弯曲] 2.有助于广告进行告知活动。[中兴百货] 3.有益于广告进行劝服活动。[“百事瘦身”平面广告] 视觉元素(视觉符号)→文字/语言(符号) 4.有益于产品在消费者心目中保持较高的地位。[意大利贝纳通服装系列广告] 5.有助于广告进行提示活动。[NIKE平面广告] 6.为广告增添“轰动”的效应。 二、广告创意的任务 1.确定创意的概念 ①用同一个产品可以有多个产生吸引力的点,同一个好的概念也可以用在不同产品上。 ②确定创意的概念最基本的方法是从产品的基本功能出发。 ③确定创意的概念,还可以以产品的基本功能为出发点,发掘更深层次的意义。 [例:KOOKAI女权主义系列广告] 2.寻找好的表现形式 ①表现形式包括素材和手法 ②广告的创意概念和表现形式都是广告创意的重要要素之一,二者在表现水平上要相互协调,表现一致。 3.是概念和表现形式服务于营销策略

绝对伏特加(经典-绝对城市篇)

绝对伏特加——瑞典威恩仕集团旗下品牌。 伏特加酒起源于俄罗斯(一说是波兰),但在《福布斯》的奢侈品牌排行榜上,位居前列的绝对伏特加(Absolut Vodka)却是来自瑞典的佳酿,它全部产自人口仅有一万的瑞典南部小镇奥胡斯。 1879年,瑞典酒业传奇人物拉斯·奥尔松·史密斯创造了连续蒸馏法,这种新工艺改变了以往瑞典酿酒工艺粗糙的历史,将整个酿酒过程中出现的小麦渣滓和水中杂质去掉,使酿出的酒温润、纯净。1904年,一个伏特加酒厂在奥胡斯小镇建立,它沿用了连续蒸馏工艺,并发扬光大。 为确保伏特加酒品质的纯良,奥胡斯酒厂在1975年按照拉尔松·史密斯的方法,再加上现代技术手段,利用精挑细选的瑞典南部谷物,蒸馏出一种纯度更高的烈酒,被命名为“绝对伏特加”。技术分析显示,这种绝对伏特加的纯度在酒类当中无出其右。多年来,绝对伏特加坚持选用当地冬小麦,并完全利用原产地小镇的天然深井水酿造,从而保证每一滴酒都质量上乘,口感独特而纯净。这也是绝对伏特加的最主要卖点。 1980年代起,绝对伏特加家族不断扩大,陆续增加了辣椒、柠檬、黑加仑、柑橘、香草、红莓等多种口味,并依然保持了绝对伏特加的优异品质。 绝对伏特加的酒瓶圆肩短颈,很有特点,是受一种瑞典药瓶的启发设计成的。它的创新之处还在于将酒的说明直接印刷在全透明的玻璃瓶上,而不像之前的酒瓶那样,把产品说明用纸标签贴在瓶身上。今天,每一瓶绝对伏特加的瓶身上,还贴着奥尔松·史密斯的头像徽章。 绝对伏特加上世纪90年代初开始进军美国。最初在人们心目中,只有产自俄罗斯的伏特加酒才是正宗,其他的只是仿制品,定位于瑞典文化传统的绝对伏特加也不可避免地遭到排斥。在这种情况下,绝对伏特加展开了一场轰轰烈烈的广告宣传运动,并成功地通过广告,创造了绝对伏特加品牌的个性化。 绝对伏特加的广告被认为是最经典、最成功的广告案例之一。其著名系列包括绝对城市、绝对季节、绝对艺术、绝对话题等,主题鲜明,非常具有时尚感。通过广告,绝对伏特加赋予消费者自信、高雅的感觉,并使其本身超越酒的概念,成为文化、个性和品位的象征。在不到十年的时间里,绝对伏特加创造出了辉煌的销售业绩,彻底置换了伏特加原有的俄罗斯文化背景,成为美国最热销的伏特加酒和世界顶级烈酒品牌。 如今,每天有超过50万瓶绝对伏特加在奥胡斯生产,并运往全球100多个国家和地区。 Absolut Vodka伏特加酒永恒的个性化包装,对没一个消费者来说都不陌生:短颈圆肩的水晶瓶,独创性地将所有标注Absolut Vodka伏特加酒的文字信息用彩色粗体字体直接印在瓶身。透过完全透明的酒瓶,消费者感触到的是纯正、净爽、自信的Absolut Vodka伏特加酒。在没有传统纸质酒标遮蔽的Absolut Vodka 伏特加酒,让消费者感觉到的是只有对自己有信心,别人对您才有信心。Absolut Vodka伏特加对自己的酒质有信心,才敢放弃传统的纸质酒标以完全透明度使消费者对Absolut Vodka伏特加酒的酒质放心。从此,他的包装以个性赢得消费者的认同,并很快传播到世界各地。而现在的Absolut Vodka伏特加酒的酒瓶形象,也不仅仅是一种伏特加酒的个性化包装,而被同行以艺术价值为标准,将他视为一件艺术品来欣赏。而他的平面广告,更是一件件艺术品。

绝对伏特加包装设计调研报告

绝对伏特加包装设计调研报告 调研时间:2011年10月25日星期二 调研方式:网上资料及图书馆资料 调研目的:综合应用包装设计知识 调研人员:李昭 一、产品背景: 1 伏特加酒简介(vodka) 绝对伏特加是伏特加旗下的一系列产品,伏特加语源于俄文的“生命之水”一词,当中“水”的发音“V o d a”,约14世纪开始成为俄罗斯传统饮用的蒸馏酒。 伏特加酒以谷物或马铃薯为原料,经过蒸馏制成高达95°的酒精,再用蒸馏水淡化至40°-60°,并经过活性炭过滤,使酒质更加晶莹澄澈,无色且清淡爽口,使人感到不甜、不苦、不涩,只有烈焰般的刺激,形成伏特加酒独具一格的特色。因此,在各种调制鸡尾酒的基酒之中,伏特加酒是最具有灵活性、适应性和变通性的一种酒。 2.历史传说 传说在1812年,以俄国严冬为舞台,展开了一场俄法大战,战争以白兰地酒瓶见底的法军败走于伏特加无尽的俄军而告终。帝俄时代的1818年,宝狮伏特加(Pierre SmirnoffFils)酒厂就在莫斯科建成,1917年,十月革命后,仍是一个家族的企业,1930年,伏特加酒的配方被带到美国,在美国也建起了宝狮(smirnoff)酒厂,所产酒的酒精度很高,在最后过程中用一种特殊的木炭过滤,以求取得伏特加酒味纯净。伏特加是俄国和波兰的国酒,是北欧寒冷国家十分流行的烈性饮料,“伏特加”是原苏联人对“水”的昵称。 3.设计背景 从1985年起,ABSOLUT踏上了它的艺术旅程。Andy Warhol使ABSOLUT开始以另一种全新的形式展示在世人面前:绝对艺术(ABSOLUT ART)。 ABSOLUT不仅与绘画大师合作,还吸取各个领域艺术家的灵感,其中包括:雕塑家,琉璃艺术家,摄影师,室内设计师,建筑师和珠宝设计师等等。 二、瓶身设计 1.瓶身形状设计

绝对伏特加的绝对创意

绝对伏特加的“绝对”创意 【摘要】绝对伏特加(Absolut Vodka)是世界知名的伏特加酒品牌,虽然伏特加酒起源于俄罗斯(一说波兰),但是绝对伏特加(Absolut Vodka)却产自一个人口仅有一万的瑞典南部小镇Ahus。多年来,绝对伏特加(Absolut Vodka)不断采取富有创意而又高雅及幽默的方式诠释该品牌的核心价值:纯净、简单、完美。广告创作中最重要,并且将影响到最终传播效果的就是广告创意这一环节。绝对伏特加广告所做的就是为产品创造一种外观上持久的时尚,“总是相同,却又总是不同”广告创意哲学,产生杰出又持久的效果。 【关键词】广告创意绝对伏特加 一、“绝对”背景 伏特加酒诞生在公元14世纪的俄罗斯,酒度一般在40度至55度,属于低度烈性酒,纯度极高,今已跻身世界十大名酒行列。俄罗斯人吃黑鱼子酱,喝伏特加酒,是极尽民族风情的美食佳酿。所以在人们的印象中,只有俄制造的伏特加(Vodka)才是正宗的伏特加。怪不得前苏联解体后数日,Stolichnaya伏特加赶紧在报纸上刊登出全版广告,标题是:“我们比以往更加以身为俄国为荣”。在美国市场上,甚至许多美国本地生产的伏特加也冠上俄国的名称。Stolichnaya 伏特加酒抓住这种“虚假”的表象,在美国市场上始终坚持它“俄国列宁格勒制造”的定位,从而牢固霸占了领导者的地位。 所以,当1978年美国Carillon公司为进口代理1879年产于瑞典的绝对牌(Absolut)伏特加投资6.5万美元,进行一项专门的市场调查时,得出的结论是:绝对失败。人们甚至指出,品牌名称太过噱头,瓶的形状也太丑陋,酒吧伙计认为它难以倒取,瓶颈太短,还批评这酒没有贴上类似其它品牌色彩丰富、花俏的贴纸。绝对牌透明的清玻璃酒瓶,像个隐形瓶一样,摆在酒柜上,人们一眼就看穿它,感觉不出它的存在等等。 最后市场分析家的结论是:放弃这种产品。然而,Carillon公司总裁Michel Roux却无法拒绝自己的直觉,他认为这种产品与消费者印象中的伏特加形象是如此的不同,也正是如此,以致于市场调研无法完整了解它。他果断地决定,放弃调查结果。他认为现在需要做的是用强劲的广告赋予品牌个性!于是,一场持久的关于“绝对”的创意诞生了。 二、“绝对”创意 1、“绝对“开始 Carillon公司把广告委任给TBWA广告公司。最初为该品牌创建知晓度和流行度的方法是建立在产品的瑞典400年传统文化上。这种广告与美国其他酒的广告十分相像,尤其对于性感女人来说,这是她们喜欢的生活方式意向。 然而,TBWA的创意总监Geoff Hayes认为品牌要成功,广告不能随波逐流,必须冲破一般酒广告的传统模式;只渲染产品本身的质量远远不够,必须创造它的附加价值,把绝对牌塑造成时兴的——人人都想喝的形象。

十大奢华名酒之绝对伏特加

Absolut Vodka 产自瑞典世界十大名酒之一。 目前全部非限量版上市伏特加 享誉国际的顶级烈酒品牌绝对伏特加(ABSOLUT VODKA)在最近福布斯(Forbes)商业杂志所评选的美国奢侈品牌独占鳌头.这次它所赐予ABSOLUT VODKA的头衔也是花落名家,实至名归.所生产的顶级伏特加不但口感圆润,而且质量无与伦比,但其品牌所体现出来的完美和无穷创造力更是为世界所首肯, 从而名扬九州. ABSOLUT V ODKA名字不仅考虑到产品的绝对完美,也叙述了其品牌的来历.1879年,Lars Olsson Smith利用一个全新的工艺方式酿制了一种全新的伏特加,叫做"绝对纯净的伏特加酒"(Absolut Rent Branvin),这一工艺被ABSOLUT VODKA沿用至今,特选的冬小麦与纯净井水保证了ABSOLUT伏特加的优等质量与独特的品味. ABSOLUT VODKA在众多高档奢侈品牌,如Tiffany和BMW,脱颖而出,更重要的是它是烈酒种类中唯一获得如此殊荣的品牌.自从1999年ABSOLUT VODKA全新的营销活动展开以后,ABSOLUT VODKA已渗入了多种视觉艺术领域,例如时装,音乐与美术.但无论在任何领域中,ABSOLUT都能凭借自己品牌的魅力吸引众多的年轻富裕而忠实的追随者. 绝对伏特加(ABSOLUT VODKA)于1979年首度引入美国市场,并在26个国家和地区销售,并成为全世界第二大顶级伏特加酒品牌。(资料来源:Impact Inter national) 自从1979年推出以后,ABSOLUT在世界范围内创造了辉煌的销售业绩。从最初的10,000箱(90,000升)到2003年的8,100,000 箱(72,500,000升)。如今每天有超过500,000瓶的ABSOLUT VODKA在ÄHUS 生产,出厂并运往全世界地。(资料来源:绝对伏特加公司)绝对伏特加由冬小麦制成, 其坚实谷粒赋予了ABSOLUT VODKA优质细滑的特征。每年大约有80,000吨的冬小麦被用于ABSOL UT VODKA的生产。每生产一升绝对伏特加要用掉超过1公斤(大约2磅)的冬小麦。 被称为“伏特加酒之王”的Lars Olsson Smith,在19世纪成功的将连续蒸馏法运用到绝对伏特加的酿制过程中。这种独特的蒸馏方法将伏特加酒连续蒸馏上百次,直到祛除酒里所有的杂质。

绝对伏特加系列和酒鬼酒系列广告对比研究_孔灿鑫

设计理论 第31卷 总第170期 2016年3月 湖南包装 绝对伏特加系列和酒鬼酒系列广告对比研究 孔灿鑫 (长沙理工大学设计艺术学院,湖南 长沙 410114) 摘 要:以绝对伏特加酒为案例,从品牌传播,市场定位, 图形创意与视觉表现诸多方面,将感性诉求与理性诉求相 结合,对比绝对伏特加与酒鬼酒的创意推广的相似与不同, 加以研究与分析。并对绝对伏特加与酒鬼酒在市场与营销, 创意与推广等可以相互借鉴的方面加以阐述,绝对伏特加 与酒鬼酒两个案例对整个中国酒品行业的参考作用加以分 析。 关键词:绝对伏特加;成功;创意;推广;酒鬼酒 纵观西方酒行业的广告史,绝对伏特加无疑占据 了非常重要的地位,绝对伏特加以其独特的品牌营销 理念及绝妙幽默的创意,弥补了自己原产地的不足, 强势打入了国际市场,并创造了高额的利润回报。 往后推百年,在遥远的东方,有一位艺术家, 也同样以打破常规的创意,浑然天成的酒瓶设计,让 酒鬼酒在短期内一跃成为全国白酒热销品牌。 对比绝对伏特加的稳扎稳打,知名度越来越高, 酒鬼酒在哪些方面值得借鉴,绝对伏特加和酒鬼酒广 告有哪些不同点和相似点,这些都值得进一步探讨与 研究。 1 两者相同之处 1.1 别具一格的理念 最开始,绝对伏特加的广告营销方式是建立在瑞 典400年的文化传统之上,这种方式有很多成功的先 例[1]。但也有其弊端,这一类方法太过传统,并无 过多新意,广告一旦随波逐流,品牌价值就难以凸显。 并且,从传播学角度来说,要成为好的广告,只宣传 产品本身的单一性能如美观、质量等,是远远不够的。 必须赋予它附加的价值,如文化、生活方式等。 因此,在第二阶段,绝对伏特加提出的广告策 略主要是阐释绝对品牌与市场上别的同类型品牌的 差别[2]。这个策略也意在把绝对品牌捧为人们钟爱 的品牌,使之成为“成功”和“高级”的代名词。平 面广告的创意点都以怪瓶子的形状特写为元素,下方 作者简介:孔灿鑫(1993- ),女,长沙理工大学艺术设 计学院在读硕士研究生。 E-mail:kongcanxin@https://www.doczj.com/doc/6710473849.html, 收稿日期:2016-01-09 图1 酒鬼酒包装[3] 加上英文主题,是以 “ABSOLUT”为首词,并以一个 表示品质的词居次,如“完美”或“澄清”。至此, 绝对伏特加产品的独特性由广告的精准、特别、完美 地表达出来。把瓶子置于海报中间担任主角极大地吸 引了消费者,并赋予了广告无限的魅力。 酒鬼酒的理念,“美酒传文化,文化助酒兴”。 作家蒋子龙写出《酒鬼歌》“今世出酒鬼,翩然成大器。 人皆赞其美,品清香自溢。此鬼最风流,多情亦多趣。 称鬼不称神,识高藏玄机。鬼名天下扬,反惹神仙嫉。 有此鬼作伴,醉意胜醒意。”诗人胡秉言有诗云:七 绝?《酒鬼》“酒神秘酿隐湘泉,馥郁甘醇入口绵, 仙韵钟灵融酒鬼,风骚妙品养天年”。素有画坛“鬼 才”和“怪才”之称的当代大画家黄永玉先生将出自 湘西的美酒题名为“酒鬼”,并题字“全,无”,一 语道破酒鬼酒所蕴藏的文化内涵和所阐释的人生高 妙境地,道出酒鬼酒与饮者应达到的完美精神境界。 1.2 匠心独运的创意 绝对伏特加于1985年开始涉足艺术界,1988年 进入时尚界,并且一直延续其品牌营销策略,从而使 其包装设计成为了世界各国艺术家展示才华的舞台。 绝对伏特加广告运作的主题包括——“绝对的产品、 城市、艺术、节日、口味、服装设计、主题艺术、欧 洲城市、影片与文学、时事新闻”等等。 酒鬼酒瓶和湘泉酒瓶均为大师黄永玉先生所设 计。酒瓶立意孤绝,妙手天成,据说是黄永玉先生 一蹴而就的作品,创下了当时中国包装设计费之最。 以麻布袋的肌理拓印,细麻绳的捆扎,如同普通劳动 人民的性格,朴实,纯真,于平凡中见绝妙(见图1)。 酒鬼酒无疑是富有灵性的作品,也只有长期浸淫在东 方传统的写意山水绘中,饱受儒道思想的熏陶,才能 产生此类绝妙的创意。

相关主题
相关文档 最新文档