当前位置:文档之家› 非参数统计_第四章 单样本非参数检验_new

非参数统计_第四章 单样本非参数检验_new

非参数统计题目及答案

1.人们在研究肺病患者的生理性质时发现,患者的肺活量与他早在儿童时期是否接受过某种治疗有关,观察3组病人,第一组早在儿童时期接受过肺部辐射,第二组接受过胸外科手术,第三组没有治疗过,现观察到其肺活量占其正常值的百分比如下: 这一经验是否可靠。 解: H 0:θ2≤θ1≤θ 3 H 1 :至少有一个不等式成立 可得到 N=15 由统计量H= ) 112 +N N (∑=K i i N R 1i 2 -3(N+1)=)(1151512+(32×6.4+29×5.8+59×11.8)-3×(15+1)=5.46 查表(5,5,5)在P(H ≥4.56)=0.100 P(H ≥5.66)=0.0509 即P (H ≥5.46)﹥0.05 故取α=0.05, P ﹥α ,故接受零假设即这一检验可靠。

2.关于生产计算机公司在一年中的生产力的改进(度量为从0到100)与它们在过去三年中在智力投资(度量为:低,中等,高)之间的关系的研究结果列在下表中: 值等等及你的结果。(利用Jonkheere-Terpstra 检验) 解: H 0:M 低=M 中=M 高 H 1:M 低﹤M 中﹤M 高 U 12=0+9+2+8+10+9+10+2+10+10+8+0.5+3=82.5 U 13=10×8=80 U 23=12+9+12+12+12+11+12+11=89 J= ∑≤j ij U i =82.5+80+89=251.5 大样本近似 Z= []72 )32()324 1 2 1i 22 2∑ ∑==+-+--k i i i k i n n N N n N J ()(~N (0,1) 求得 Z=3.956 Ф(3.956)=0.9451 取α=0.05 , P >α, 故接受原假设,认为智力投资对改进生产力有帮助。

非参数统计部分课后习题参考答案

课后习题参考答案 第一章p23-25 2、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。我们对这两组数据作同样水平a=0.05的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。第一组数据的检验结果为:df=7,t 值为3.4157,单边p 值为0.0056,结论为“拒绝H 0:u=100。”(注意:该组均值为99.3750);第二组数据的检验结果为:df=2,t 值为3.3290,单边p值为0.0398;结论为“接受H 0:u=100。”(注意:该组均值为74.000)。你认为该问题的结论合理吗?说出你的理由,并提出该如何解决这一类问题。 答:这个结论不合理(6分)。因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。(4分) 第三章p68-71 3、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。已知1997年的索赔数额的中位数为5064元。 (1)是否1998年索赔的中位数比前一年有所变化?能否用单边检验来回答这个问题?(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。(10分) (3)找出基于符号检验的95%的中位数的置信区间。(8分) 解:(1)1998年的索赔数额的中位数为9480元比1997年索赔数额的中位数5064元是有变化,但这只是从中位数的点估计值看。如果要从普遍意义上比较1998年与1997年的索赔数额是否有显著变化,还得进行假设检验,而且这个问题不能用单边检验来回答。(4分) (2)符号检验(5分) 设假设组:H 0:M =M 0=5064 H 1:M ≠M 0=5064 符号检验:因为n +=11,n-=3,所以k=min(n+,n-)=3 精确检验:二项分布b(14,0.5), ∑=-=3 0287 .0)2/1,14(n b ,双边p-值为0.0576,大于a=0.05, 所以在a水平下,样本数据还不足以拒绝零假设;但假若a=0.1,则样本数据可拒绝零假设。查二项分布表得a=0.05的临界值为(3,11),同样不足以拒绝零假设。 正态近似:(5分) np=14/2=7,npq=14/4=3.5 z=(3+0.5-7)/5.3≈-1.87>Z a/2=-1.96 仍是在a=0.05的水平上无法拒绝零假设。说明两年的中位数变化不大。 (3)中位数95%的置信区间:(5064,21240)(8分) 7、一个监听装置收到如下的信号:0,1,0,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0。能否说该信号是纯粹随机干扰?(10分)

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析 2011-09-19 15:09 最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。 还是以SPSS教程为例: 假设:HO: 不同地区的儿童,身高分布是相同的 H1:不同地区的儿童,身高分布是不同的 不同地区儿童身高样本数据如下所示: 提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个 即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,

(即指:卡方检验) 点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面: 将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。 在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定 运行结果如下所示:

对结果进行分析如下: 1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900 自由度为:3=k-1=4-1 下面来看看“秩和统计量”的计算过程,如下所示: 假设“秩和统计量”为 kw 那么:

其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数) 最后得到的公式为: 北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72 上海地区的“秩和”为:8.2*5=41 成都地区的“秩和”为:15.8*5=79 广州地区的“秩和”为:3.6*5=18

王静龙《非参数统计分析》课后计算题参考标准答案

王静龙《非参数统计分析》课后习题计算题参考答案习题一 1. One Sample t-test for a Mea n Sample Statistics for x N Mea n Std. Dev. Std. Error 26 1.38 8.20 1.61 Hypothesis Test Null hypothesis: Mea n of x = 0 Alternative: Mea n of x A= 0 t Statistic Df Prob > t 0.861 25 0.3976 95 % Con fide nee In terval for the Mea n Lower Limit: -1.93 Upper Limit: 4.70 则接受原假设认为一样 习题二 1.描述性统计

习题二 1.1 S+=13 n 39 H o: me 6500 H〔:me 6500 PS 13 二BINOMDIST(13,39,0.5,1) =0.026625957 另外:在excel2010中有公式BINOM.INV(n,p,a)返回一个数值,它使得累计二项式分布的函数值大于或等于临界值a的最小整数 * 1 m n m inf m ■ 2 i 0 i BINO M」N V(39,0.5,0.05)=14 * n 1 * d n d=sup d : m 1 13 2 i 0 i S+13 d 13 以上两种都拒绝原假设,即中位数低于6500 1.2

n 1 inf n * * 1 m n m inf m :- 2 i o i BINOM.INV(40,0.5,1 -0.025)=26 d=n-c=40-26=14 x 14 5800 x 26 6400 me x 20 6200 2. S + =40 n 70 H 0: me 6500 H 1: me 6500 2P S 40 2*(1-BIN0MDIST(39,70,0.5,1)) =0.281978922 则接受原假设,即房价中位数是 6500 3.1 S + =1552 n 1552 527 2079 inf m inf m=BINOM.INV(2079,0.5,0.975)=1084 则拒绝原假设,即相信孩子会过得更好的人多 3.2 P 为认为生活更好的成年人的比例,则 H 。: p 出:p n 比较大,则用正态分布近似 P S 1552 1039.5-1552+0.5 、519.75 =5.33E-112 另外:S +=1552 n 1552 527 2079

(完整版)SPSS-非参数检验—两独立样本检验_案例解析

SPSS-非参数检验—两独立样本检验案例解析 2011-09-16 16:29 好想睡觉,写一篇博文,希望可以减少睡意,今天跟大家研究和分享一下:spss非参数检验——两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺生产方法,他们的使用寿命分布是相同的 2:一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的 我们采用SPSS进行分析,数据如下所示: 点击“分析”选择“非参数检验” 再选择“旧对话框——2个独立样本检 验如下所示:

在检验类型下面选择"Mann-Whitney U “ 检验类型(Mann-whitney u 检验等同于对两组数据的Wilcoxon秩和检验和Kruskal-Wallis检验,主要检验两个样本的总体在某些位置上是否相等。) 两种工艺类型分别为:甲种工艺和乙种工艺分别用定义值为“1” 和 “2”将“工艺类型”变量拖入“分组变量”下拉框内,点击“定义组”按钮,在组别1 和组别 2 中分别填入 1和2,点击继续按钮 选择“使用寿命”作为“检验变量”点击确定,得到分析结果如下:

下面对结果,我将进行详细分解: 1:N 代表变量个数,甲种工艺秩和为 80 乙种工艺秩和为 40, 下面来分析“秩和”这个结果如何出来的 第一步:我们将”使用寿命“这个变量按照“从小到大”的顺序进行排序,得到如下结果:

得到数据如下: 甲种工 艺: 661 669 675 679 682 692 693 乙种工艺: 646 649 650 651 652 662 663 672 我们将“甲种工艺”和“乙种工艺”两组数据进行合并排序,并且对两组数据进行“秩次排序”分别用“序号”代替以上数据 序号分别为: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 得到以下结果: 甲种工艺为: 6 9 11 12 13 14 15 (加起来刚好等于80)

非参数检验的SPSS操作

第八节非参数检验的SPSS操作 前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。 一、两个独立样本的差异显著性检验 两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。若数据不满足这样的条件,强行进行T检验容易造成错误的结论。在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。 1.数据 采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。 2.理论分析 对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。 2.操作过程 (1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。

spss的多独立样本的非参数检验论文

4.为研究烫伤后不同时间切痂对大鼠肝脏三磷酸腺苷(ATP)的影响,现将30只雄性大鼠随机分成3组,每组10只:A组为烫伤无切痂,B组为烫伤后24小时时切痂组,C组为烫伤后96小时切痂组,全部大鼠在烫伤168小时后测量其肝脏ATP含量。试检验3组大鼠肝脏ATP总数均数是否相同。 表。大鼠烫伤后肝脏ATP含量(mg) 解:由题意可知,通过分析多组独立样本的数据,推断样本来自多个总体的中位数或分布是否存在差异,所以可以选用多独立样本的Kruskal-Wallis检验 数据的组织方式如下:

30只雄性大鼠的多独立样本非参数检验的基本操作步骤如下: (1)选择菜单:【Nnalyze】→【Nonparametric Tests】→【K Independent Samples】于是出现以下所示的窗口。

(2)、选择ATP 到【Test Variable List】框中。 (3)、指定分组的变量到【Grouping Variable】框,并按Define Range按钮给出组标志值的而取之范围。 (4)、在【Test Type】框中选择三种检验方法。 一、中位数检验结果如下图所示 表(a)三组雄性大鼠的中位数检验结果(一)· 表(b)三组雄性大鼠的中位数检验结果(二)

表(a )与表(b )中,三组共同的中位数为9.5150,计算出卡方统计量为10.400,概率P-值为0.006。如果显著性水平α为0.05,由于概率P-值小于显著性水平α,应拒绝原假设,认为三组雄性大鼠的分布存在显著性差异。 二、多独立样本Kruskal-Wallis 检验结果 表(c ) 三组雄性大鼠的Kruskal-Wallis 检验结果(一) 表(d )三组雄性大鼠的Kruskal-Wallis 检验结果(二)

spss-非参数检验-K多个独立样本检验案例解析

2011-09-19 15:09 最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。 还是以SPSS教程为例: 假设:HO: 不同地区的儿童,身高分布是相同的 H1:不同地区的儿童,身高分布是不同的 不同地区儿童身高样本数据如下所示: 提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个 即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验) 点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面: 将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。

在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定 运行结果如下所示: 对结果进行分析如下: 1:从“检验统计量a,b”表中可以看出:秩和统计量为: 自由度为: 3=k-1=4-1 下面来看看“秩和统计量”的计算过程,如下所示: 假设“秩和统计量”为 kw 那么: 其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)

最后得到的公式为: 北京地区的“秩和”为:秩平均*观察数(N) = *5=72 上海地区的“秩和”为:*5=41 成都地区的“秩和”为:*5=79 广州地区的“秩和”为:*5=18 接近(由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差) 2:“检验统计量a,b”表中可以看出:“渐进显著性为,由于< 所以得出结论: H1:不同地区的儿童,身高分布是不同的

第4章 两独立样本的非参数检验(非参数统计,西南财大)

第三章 两独立样本的非参数检验 在单样本位置问题中,人们想要检验的是总体的中心是否等于一个已知的值.但在实际问题中,更受注意的往往是比较两个总体的位置参数;比如。两种训练方法中哪一种更出成绩,两种汽 油中哪一个污染更少,两种市场营销策略中那种更有效等等. 作为一个例子.我国沿海和非沿海省市区的人均国内生产总值(GDP)的1997年抽样数据如下(单位为元).沿海省市区为(Y1,Y2,…,Y12): 15044 12270 5345 7730 22275 8447 9455 8136 6834 9513 4081 5500 而非沿海的为对(x1,x2,…,x18): 5163 4220 4259 6468 3881 3715 4032 5122 4130 3763 2093 3715 2732 3313 2901 3748 3731 5167 人们想要知道沿海和非沿海省市区的人均GDP 的中位数是否一样.这就是检验两个总体的位置参数是否相等的问题. 假定代表两个独立总体的随机样本(Y1,Y2,…,Y12)和(x1,x2,…,x18),则问题归结为检验它们总体的均值(或中位数)的差是否相等,或是否等于某个已知值.换言之,即检验 0H :021D =-μμ;1H : 021D ≠-μμ 0H :021D =-μμ;1H : 021D <-μμ 0H :021D =-μμ;1H : 021D >-μμ 在正态假定下,这些问题化为:)2(~1 1)(0-++--= m n t m n s D y x t 2 )()(1 2 1 2 -+-+-= ∑∑==n m y y x x S m i i n i i t 检验并不稳健,在不知总体分布时,应用t 检验时会有风险的。 3.1 Brown-Mood 中位数检验 令沿海地区的人均GDP 的中位数为M X ,而内地的为M Y 。零假设为 0H :y x M M =;1H : y x M M > 显然,在零假设下,中位数如果一样的话,它们共同的中位数,即这(12十18)=30个数的样本中位数(记为此xy M ),应该对于每一列数据来说都处于中间位置.也就是说,(Y1,Y2,…,Y12)和(x1,x2,…,x18)中大于或小于xy M 的样本点应该大致一样多,计算他们的混合样本中位数为

非参数统计(R软件)参考答案

内容: A.3, A.10, A.12 A.3 上机实践:将MASS数据包用命令library(MASS)加载到R中,调用自带“老忠实”喷泉数据集geyer,它有两个变量:等待时间waiting和喷涌时间duration,其中… (1) 将等待时间70min以下的数据挑选出来; (2) 将等待时间70min以下,且等待时间不等于57min的数据挑选出来; (3) 将等待时间70min以下喷泉的喷涌时间挑选出来; (4) 将喷涌时间大于70min喷泉的等待时间挑选出来。 解:读取数据的R命令: library(MASS);#加载MASS包 data(geyser);#加载数据集geyser attach(geyser);#将数据集geyser的变量置为内存变量 (1) 依题意编定R程序如下: sub1geyser=geyser[which(waiting<70),1]; #提取满足条件(waiting<70)的数据,which(),读取下标 sub1geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 57 60 56 50 54 (2) 依题意编定R程序如下: Sub2geyser=geyser[which((waiting<70)&(waiting!=57)),1]; #提取满足条件(waiting<70& (waiting!=57)的数据. Sub2geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 60 56 50 54 60 …… 原数据集的第1列为waiting喷涌时间,所以用[which(waiting<70),2] (3) Sub3geyser=geyser[which(waiting<70),2]; #提取满足条件(waiting<70)的数据,which(),读取下标 Sub3geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 4.000000 4.383333 4.833333 5.450000 4.866667…… 原数据集的第2列为喷涌时间,所以用[which(waiting<70),2] (4) Sub4geyser=geyser[which(waiting>70),1]; #提取满足条件(waiting<70)的数据,which(),读取下标 Sub4geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 80 71 80 75 77……. A.10 如光盘文件student.txt中的数据,一个班有30名学生,每名学生有5门课程的成绩,编写函数实现下述要求: (1) 以data.frame的格式保存上述数据; (2) 计算每个学生各科平均分,并将该数据加入(1)数据集的最后一列; (3) 找出各科平均分的最高分所对应的学生和他所修课程的成绩; (4) 找出至少两门课程不及格的学生,输出他们的全部成绩和平均成绩; (5) 比较具有(4)特点学生的各科平均分与其余学生平均分之间是否存在差异。 先将数据集读入R系统 student=read.table("…",header=T)

两独立样本的非参数检验

第四章 两独立样本的非参数检验 在单样本位置问题中,人们想要检验的是总体的中心是否等于一个已知的值.但在实际问题中,更受注意的往往是比较两个总体的位置参数;比如。两种训练方法中哪一种更出成绩,两种汽 油中哪一个污染更少,两种市场营销策略中那种更有效等等. 作为一个例子.我国沿海和非沿海省市区的人均国内生产总值(GDP)的1997年抽样数据如下(单位为元).沿海省市区为(Y1,Y2,…,Y12): 15044 12270 5345 7730 22275 8447 9455 8136 6834 9513 4081 5500 而非沿海的为对(x1,x2,…,x18): 5163 4220 4259 6468 3881 3715 4032 5122 4130 3763 2093 3715 2732 3313 2901 3748 3731 5167 人们想要知道沿海和非沿海省市区的人均GDP 的中位数是否一样.这就是检验两个总体的位置参数是否相等的问题. 假定代表两个独立总体的随机样本(Y1,Y2,…,Y12)和(x1,x2,…,x18),则问题归结为检验它们总体的均值(或中位数)的差是否相等,或是否等于某个已知值.换言之,即检验 0H :021D =-μμ;1H : 021D ≠-μμ 0H :021D =-μμ;1H : 021D <-μμ 0H :021D =-μμ;1H : 021D >-μμ 在正态假定下,这些问题化为:)2(~1 1)(0-++--= m n t m n s D y x t 2 )()(1 2 1 2 -+-+-= ∑∑==n m y y x x S m i i n i i t 检验并不稳健,在不知总体分布时,应用t 检验时会有风险的。 4.1 Brown-Mood 中位数检验 令沿海地区的人均GDP 的中位数为M X ,而内地的为M Y 。零假设为 0H :y x M M =;1H : y x M M > 显然,在零假设下,中位数如果一样的话,它们共同的中位数,即这(12十18)=30个数的样本中位数(记为此xy M ),应该对于每一列数据来说都处于中间位置.也就是说,(Y1,Y2,…,Y12)和(x1,x2,…,x18)中大于或小于xy M 的样本点应该大致一样多,计算他们的混合样本中位数为

王静龙非参数统计分析课后计算题参考答案Word版

王静龙《非参数统计分析》课后习题计算题参考答案 习题一 1.One Sample t-test for a Mean Sample Statistics for x N Mean Std. Dev. Std. Error ------------------------------------------------- 26 1.38 8.20 1.61 Hypothesis Test Null hypothesis: Mean of x = 0 Alternative: Mean of x ^= 0 t Statistic Df Prob > t --------------------------------- 0.861 25 0.3976 95 % Confidence Interval for the Mean Lower Limit: -1.93 Upper Limit: 4.70 则接受原假设认为一样 习题二 1.描述性统计

习题三 1.1 {}+01=1339 :6500:650013=BINOMDIST(13,39,0.5,1)=0.026625957 S n H me H me P S +==<≤ 另外:在excel2010中有公式 BINOM.INV(n,p,a) 返回一个数值,它使得累计二项式分布的函数值大于或等于临界值a 的最小整数 * **0*0+1inf :2BINOM.INV(39,0.5,0.05)=14 1sup :113 2S 1313 n m i n d i n m m i n d d m i d αα==?????? ??=≥?? ? ????????? ?????? ??≤=-=?? ? ????????? =≤=∑∑= 以上两种都拒绝原假设,即中位数低于6500 1.2

多独立样本非参数检验

课程名称实用统计软件 实验项目名称多独立样本非参数检验 实验成绩指导老师(签名)日期2011-11-25 一.实验目的 1,掌握多独立样本的非参数检验基本原理和算法; 2,能够用SPSS软件解决多独立样本的非参数检验的问题。 二. 实验内容与要求 1.实验内容 1.运用三种检验方法检验书上的研究问题。 2.某公司的20名管理人员来自三所大学,他们的年度表现评分数据见表。问:来自这三所 大学的管理人员的表现有没有差异。 3.根据游泳、打篮球和骑自行车这三种运动在30分钟内的消耗热量(卡路里数)数据分析 这三种运动消耗的热量是否全部相等?

2.实验要求: A .在中位数检验中,频数表需要像ppt 中第8页中演示那样标注期望频数Eij 的值。 B .在K-W 检验中,使用SPSS 给数据进行编秩(这里是对混合样本编秩,无需设置By 栏),附上截图指明储存秩号的变量。 C .三种检验都需要给出各个检验统计量的计算公式,可结合SPSS 计算结果。 D .根据SPSS 结果,作出对数据的分析。 三.实验步骤 四. 实验结果(数据与图形)与分析 1.运用三种检验方法检验书上的研究问题。 全部的平均秩为11 ∑=-+=k i i i R R n N N 1 )()1(12 H W -K 经计算,H=214.6486 从第一个表中可以看出,各样本的平均秩分别为6,11.57,15.43;从第二个表中可

以得到卡方统计量为8.213,相伴概率为0.016,小于显著性水平0.05,因此拒绝零假设,认为3个班级学生成绩分布存在显著差异。 期望频数表 1 2 3 =md 3.666667 3.666667 3.666667 11 N2 21 N 公式为2 2 2 11 ()k ij ij i j ij O E E χ==-= ∑∑ =7.255 第一张表可以看出各组样本大于和小于等于中位数的样本个数。 第二张表可以看出,共同的中位数为83,计算出的卡方统计量为7.255,相伴概率为0.027,小于显著性水平,因此拒绝零假设,认为3个班级学生成绩中位数存在显著差异。

K个相关样本的非参数检验

第五章 K 个样本的非参数检验 1 第五章 K 个样本的非参数检验 §5.1 几个概念 在参数检验中,我们常常对三个或三个以上的总体的均值进行相等性检验,使用的方法是方差分析,在非参数分析中也会遇到同样的问题,检验多个总体的分布是否相同。更严密的说,当几个总体的分布相同的条件下,讨论其位臵参数是否相等。方差分析过程需要假定条件,F 检验才有效。可有时候所采集的数据常常不能满足这些条件,像多样本比较时一样,我们不妨尝试将数据转化为秩统计量,因为秩统计量的分布与总体分布无关,可以摆脱总体分布的束缚。秩方法在方差分析中的应用。 1、 处理—因素, 条件,k 个构成k 个总体; 2、 区组—样本点,每个处理下j n (或N )个样本点。 在K 个不同的条件下,对N 个受试者进行试验。得下列数据,ij x 为第i 个样本在第j 个条件下的观测值: §5.2 Kruskal Wallis 检验 在比较两个以上的总体时广泛使用的Kruckal-Wallis 检验,就是对两个以上的秩样本进行比较的非参数方法,实质上它是两样本比较时的Wilcoxon 方法在多于两个样本时的推广。 在该测验中,首先计算全体样本中的秩,遇到数据出现相等,即存在“结”的情 况时,采用“平均秩”手段让它们分享它们理应所得的秩和,再对数据(秩)进行方差分析,但构造的统计量并不是组间平均平方和除以组内平均平方和,而是KW=组间平方和/总平方和的平均数,KW 表示Kruskal-Wallis 统计量。 k M M M H === 210:

第五章 K 个样本的非参数检验 2 。 至少一对位臵参数不等:1H KW 统计量的观察值是我们判定各组之间是否存在差异的有力依据,因为我们需要检验的原假设是各组之间不存在差异,或者说各组样本来自的总体具有相同的中心(均值或中位数)。Kruskal-Wallis 统计量的计算步骤为: 将 k 组数据混合,并从小到大排列,列出等级,如有相同数据则取平均等级,如果原假设为不真,某个总体的位臵参数太大,则其观测值也倾向于取较大的值,则该总体的观测值的秩和也会偏大,因而导致 2 1 121()(1)2k N i i i N S n R N N =+=-+∑ 偏大,其中1 /j n j ij j i R R n == ∑。 S N 的含义是: 2 1 1()2 k i i i N n R =+- ∑是组间离差平方和 2 1)2 1(11∑=+--N i N i N ?? ? ???+--=∑=212)21(11N i N N i N 12 ) 1(+= N N 2 1121()(1)2 k N i i i N S n R N N =+=-+∑ 在原假设为真的条件下,只要k 大于3, KW 很快地依分布趋于自由度为(k-1)的 )1(2-k χ分布。 例:从我国上市公司中分别随机抽取了工业、商业、建筑业、交通运输业等四个行业,其在1999年的总资产报酬率如下:

非参数统计部分课后习题参考答案

课后习题参考答案 第一章p23-25 2、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。我们对这两组数据作同样水平a=的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。第一组数据的检验结果为:df=7,t 值为,单边p 值为,结论为“拒绝H 0:u=100。”(注意:该组均值为);第二组数据的检验结果为:df=2,t 值为,单边p值为;结论为“接受H 0:u=100。”(注意:该组均值为)。你认为该问题的结论合理吗说出你的理由,并提出该如何解决这一类问题。 答:这个结论不合理(6分)。因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。(4分) 第三章p68-71 3、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。已知1997年的索赔数额的中位数为5064元。 (1)是否1998年索赔的中位数比前一年有所变化能否用单边检验来回答这个问题(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。(10分) (3)找出基于符号检验的95%的中位数的置信区间。(8分) 解:(1)1998年的索赔数额的中位数为9480元比1997年索赔数额的中位数5064元是有变化,但这只是从中位数的点估计值看。如果要从普遍意义上比较1998年与1997年的索赔数额是否有显著变化,还得进行假设检验,而且这个问题不能用单边检验来回答。(4分) (2)符号检验(5分) 设假设组:H 0:M =M 0=5064 H 1:M ≠M 0=5064 符号检验:因为n +=11,n-=3,所以k=min(n+,n-)=3 精确检验:二项分布b(14,, ∑=-=3 0287 .0)2/1,14(n b ,双边p-值为,大于a=,所以在a水平 下,样本数据还不足以拒绝零假设;但假若a=,则样本数据可拒绝零假设。查二项分布表得a=的临界值为(3,11),同样不足以拒绝零假设。 正态近似:(5分) np=14/2=7,npq=14/4= z=(3+/5.3≈>Z a/2= 仍是在a=的水平上无法拒绝零假设。说明两年的中位数变化不大。 (3)中位数95%的置信区间:(5064,21240)(8分) 7、一个监听装置收到如下的信号:0,1,0,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0。能否说该

非参数统计分析方法总结

非参数统计分析方法 一单样本问题 1,二项式检验:检验样本参数是否与整体参数有什么关系。 样本量为n,给定一个实数M0(代表题目给出的分位点数),和分位点∏(0.25,0.5,0.75)。用S-记做样本中比M0小的数的个数,S+记做样本中比M0大的数的个数。如果原假设H0成立那么S-与n的比之应为∏。 H0:M=M0 H1:M≠MO或者M>M0或者M

长度长) Spss步骤:分析—非参数检验—游程 得出统计量R和p值 当p值小于0.05时拒绝原假设,没有充足理由证明该数据出现是随机的 二,两个样本位置问题 1,Brown—Mood中位数检验 给出两个样本比较两个样本的中位数或者四分位数等是否相等或者有一定关系,设一个中值为M1,一个为M2 H0:M1=M2. H1:M1≠M2或者M1>M2或者M1

非参数统计参考答案

内容: , , 上机实践:将MASS数据包用命令library(MASS)加载到R中,调用自带“老忠实”喷泉数据集geyer,它有两个变量:等待时间waiting和喷涌时间duration,其中… (1) 将等待时间70min以下的数据挑选出来; (2) 将等待时间70min以下,且等待时间不等于57min的数据挑选出来; (3) 将等待时间70min以下喷泉的喷涌时间挑选出来; (4) 将喷涌时间大于70min喷泉的等待时间挑选出来。 解:读取数据的R命令: library(MASS);#加载MASS包 data(geyser);#加载数据集geyser attach(geyser);#将数据集geyser的变量置为内存变量 (1) 依题意编定R程序如下: sub1geyser=geyser[which(waiting<70),1]; #提取满足条件(waiting<70)的数据,which(),读取下标 sub1geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 57 60 56 50 54 (2) 依题意编定R程序如下: Sub2geyser=geyser[which((waiting<70)&(waiting!=57)),1]; #提取满足条件(waiting<70& (waiting!=57)的数据. Sub2geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 60 56 50 54 60 …… 原数据集的第1列为waiting喷涌时间,所以用[which(waiting<70),2] (3) Sub3geyser=geyser[which(waiting<70),2]; #提取满足条件(waiting<70)的数据,which(),读取下标 Sub3geyser[1:5];#显示子数据集sub1geyser的前5行 [1] …… 原数据集的第2列为喷涌时间,所以用[which(waiting<70),2] (4) Sub4geyser=geyser[which(waiting>70),1]; #提取满足条件(waiting<70)的数据,which(),读取下标 Sub4geyser[1:5];#显示子数据集sub1geyser的前5行 [1] 80 71 80 75 77……. 如光盘文件中的数据,一个班有30名学生,每名学生有5门课程的成绩,编写函数实现下述要求: (1) 以的格式保存上述数据; (2) 计算每个学生各科平均分,并将该数据加入(1)数据集的最后一列; (3) 找出各科平均分的最高分所对应的学生和他所修课程的成绩; (4) 找出至少两门课程不及格的学生,输出他们的全部成绩和平均成绩; (5) 比较具有(4)特点学生的各科平均分与其余学生平均分之间是否存在差异。 先将数据集读入R系统 student=("…",header=T) class(student):#显示数据集student的类型, [1] ""#student是数据框

两个独立样本的非参数检验方法有4种

两个独立样本的非参数检验方法有4种 曼-惠特尼U检验(Mann—whitney U) 两个独立的曼-惠特尼U检验可用于对两个总体分布的比较判断。其零假设是两组独立样本来自的总体分布无显著差异。曼-惠特尼U检验通过对两组样本平均秩的研究来实现推断秩简单的说就是变量值排序的名次。 两个独立样本的K-S检验 K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。 两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。主要差别在于:这里是以变量值的秩作为分析对象,而非变量值本身。其基本思路如下: ①首先,将这两组样本混合并按升序排序。 ②然后分别计算两组样本秩的累计频数和累计频率。 ③最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。 两独立样本的游程检验 单样本游程检验用来检验变量值的出现是否随机,而两个独立变量游程检验则用来检验两个独立样本来自的两个总体的分布是否存在显著差异。其零假设是两组独立样本来自的两个总体的分布无显著差异。 两独立样本的游程检验与单样本游程检验的基本思想相同,不同的是计算游程数的方法。两独立样本的游程检验中,又程数依赖于变量的秩。 步骤如下:首先,将两组样本混合并按升序排列,在变量值排序的同时,对应的组标记值也会随之重新排列。 然后,对组标记只序列按前面讨论的游程的方法计算游程数容易理解:如果两总体的分布存在较大的差距,那么游程数会相对比较少,如果游程数比较大,则应是两组样本充分混合的结果,那么总体的分布不会存在显著差异。 再次,根据游程数据计算Z统计量,该统计量近似服从正态分布。 极端反应检验 极端反应检验从另一个角度检验两独立样本所来自的两个总体分布是否存在显著差异。其零假设是来两独立样本来自的两个总体分布无显著差异。 极端反应检验的基本思想是将一组样本作为控制样本,另一组样本作为实验样本。以控制样本作为对照,检验实验样本相对于控制样本是否出现极端反应。如果试验样本没有出现极端反应,则认为两总体分布无显著差异,反之,则总体分布存在显著差异。 第1 页共1 页

相关主题
文本预览
相关文档 最新文档