当前位置:文档之家› 材料力学概念整理

材料力学概念整理

材料力学概念整理
材料力学概念整理

1.强度:抵抗破坏的能力;刚度:抵抗变形的能力;稳定性:构建抵抗失稳、维持原有

平衡状态的能力。

2.材料的三个基本假设:连续性假设、均匀性假设、各向同性假设

变形的两个基本假设:小变形假设、线弹性假设

3.基本变形:轴向拉伸(压缩)、剪切、扭转、弯曲。

4.内力:因外力作用而引起的物体内部各质点相互作用的内力的该变量,即由外力引起

的“附加内力”,简称内力。

5.应力:受力杆件在截面上各点处的内力的大小和方向(一点处分布内力的集度),来

表明内力左右在该点处的强弱程度。

6.低碳钢拉伸四个阶段:弹性阶段、屈服阶段(滑移线)、强化阶段、紧缩阶段。

7.冷作硬化:在常温下降钢材拉伸超过屈服阶段,卸载再重新加载时,比例极限提高而

塑性降低的现象(提高强度,降低塑性)。

8.应力集中:由于截面尺寸突然改变而引起的局部应力急剧增大的现象。

9.轴:工程中常把以扭转为主要变形构件。

10.扭转;杆件两端受到两个作用面垂直于杆轴线的力偶的作用,两力偶大小相等,转向

相反,使杆的各截面绕轴线做相对转动产生的变形。

11.切应力互等定理:在单元体相互垂直的两个平面上,沿垂直于两面交线作用的切应力

必然成对出现,且大小相等,方向共同指向或背离该两面的交线。

12.梁:凡是以弯曲变形为主要变形的构件通常称为梁。

13.弯曲:在一对转向相反,作用在杆的纵向平面内的外力偶作用下,直杆将在该轴向平

面内发生弯曲,变形后的杆轴线将弯成曲线,这种变形形式称为弯曲。

14.叠加原理:几个外力共同作用所引起的某一量值(支座反力,内力,应力,变形,位移

值)等于每个外力单独作用所引起的该量量值的代数和,这是力学分析的一个普遍原理,称为叠加原理。

15.纯弯曲:平面弯曲梁的横截面上,只有弯矩,而无剪力。横力弯曲:既有弯矩又有剪

力的弯曲。

16.中性层:由于变形的连续性,纵向纤维从受压缩到受拉伸的变化之间,必然存在着一

层既不受压缩、又不受拉伸的纤维,这层纤维称为中性层。

17.挠度:用垂直于梁轴线的线位移代表横截面形心的线位移。转角:绕本身的中性轴转过

一个角度。

18.应力状态:受力构件内一点处各个不同方位截面上的应力的大小和方向情况,称为一

点出的应力状态。

19.单元体:为了研究受力构件一点处的应力状体,可围绕该点取出一微小,正六面体,

称为单元体。

20.主平面、主应力:对于受力构件内任一点,总可以找到三对相对垂直的平面,在这些

面上只有正应力而没有切应力,这些切应力为零的平面的平面称为主平面,其上正应力称为主应力。

21.截面核心:压杆横截面上只产生压应力时压力作用区域。(对于偏心受压构件,为避

免截面产生拉应力,要求偏心压力作用在横截面性心附近的某个区域内,此区域称为截面核心)

22.临界压力:

23.失稳:压杆从稳定平衡状态转化为不稳定平衡状态,这种现象称为丧失稳定性,简称

失稳。

材料力学的简答题

1、(中)材料的三个弹性常数是什么?它们有何关系?

材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。

2、何谓挠度、转角?

挠度:横截面形心在垂直于梁轴线方向上的线位移。转角:横截面绕其中性轴旋转的角位移。

3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?

Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。

4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。

变形固体有多种多样,其组成和性质是复杂的。对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。根据其主要的性质对变形固体材料作出下列假设。1.均匀连续假设。2.各向同性假设。3.小变形假设。

5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。

6、用叠加法求梁的位移,应具备什么条件?

用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。9、欧拉公式的适用范围?

只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ1= 10、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。

11、简述疲劳破坏的特征?

(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。

12、杆件轴向拉伸(压缩)时的强度条件可以解决哪几面的问题?

(1)强度校核。已知杆件的尺寸、承受的载荷以及材料的许用应力,验证强度条件不等式是否成立。(2)截面设计。已知杆件承受的载荷以及材料的许用应力,确定杆件的横截面尺寸,再由横截面积进而计算出相关的尺寸。(3)确定许可载荷。已知杆件的尺寸及材料的许用应力,确定结构或机器的最大载荷,得到最大轴力后,再由平衡条件确定机器或结构的许可载荷。13、在推导纯弯曲正应力公式时,作了哪些基本假设?

平面假设:梁弯曲变形后,其横截面仍然保持为一平面,并仍与变形后梁的轴线垂直,只是转了一个角度。这个假设称为平面假设。

14、正应力的“正”指的是正负的意思,所以正应力恒大于零,这种说法对吗?为什么?

这种说法不对。正应力的“正”指的是正交的意思,即垂直于截面。其本身有正负规定:拉为正,压为负。

15、简述梁弯曲时,横截面上的内力剪力和弯矩的正负符号的规定?(1)剪力如对梁段内任意点有产生顺时针转向趋势为正,反之为负。(2)弯矩如使梁段弯曲变形的下凸者为正,反之为负。16、试述影响构件疲劳极限的因

素?因素:(1)构件的外形的影响(2)构件尺寸的影响(3)表面质量的影响(4)表面强度的影响。

17、何谓弹性变形和塑性变形?

弹性变形——载荷撤除后,可完全恢复的变形塑性变形——载荷撤除后,不可恢复的变形

18、试简述提高梁高弯曲强度的主要措施。

(1)选用合理的截面(2)采用变截面梁(3)适当布置载荷和支座位置19、内力和应力有何区别?有何联系?

(1)两者概念不同:内力是杆件收到外力后,杆件相连两部分之间的相互作用力:应力是受力杆件截面上某一点处的内力分布集度,提及时必须明确指出指出杆件、截面和点的位置

(2)两者单位不同:内力——KN、KN·m,同力或力偶的单位;应力——N/m2或N/mm2,Pa(帕)或MPa(兆帕)(3)两者的关系:整个截面上各点处的应力总和等于该截面上的内力。在弹性范围内,应力与内力成正比。20、为什么不用危险应力作为许用应力?

不允许超过的应力值统称为极限应力,也叫危险应力。为了保证构件能安全地工作,还须将其工作应力限制在比极限应力(危险应力)更低的范围内,也就是将材料的破坏应力(危险应力)打一个折扣,即除以一个大于1的系数n以后,作为构件工作应力所不允许超过的数值,这个应力值称为材料的许用应力。如果直接把危险应力作为许用应力,构件破坏的几率大些,不能保证构件充分的安全。21、当传递的功率不变时,改变轴的转速对轴的强度和刚度有什么影响?

M=9550N/n,τ=T/Wτ≤[τ] Φ=T/GIP×180/o[Φ]。①n提高,M降低;T降低,则τ、Φ都降低,提高了轴的强度和刚度。②n降低,M提高;T提高,则τ、Φ都提高,降低了轴的强度和刚度。22、何为主应力?何为主平面?剪应力等于零的平面,叫主平面;主平面上的正应力叫主应力。

23、材料有哪两种基本破坏形式?铸铁试件的扭转破坏,属于哪一种破坏形式?各种材料因强度不足而发生的破坏形式是不同的,但主要的破坏形式有两类,一是屈服破坏,另一类是断裂破坏。

试件受扭,材料处于纯剪切应力状态,在试件的横截面上作用有剪应力,同时在与轴线成±450的斜截面上,会出现与剪应力等值的主拉应力和主压应力。低碳钢的抗剪能力比抗拉和抗压能力差,试件将会从最外层开始,沿横截面发生剪断破坏,而铸铁的抗拉能力比抗剪和抗压能力差,则试件将会在与杆轴成450的螺旋面上发生拉断破坏。

铸铁试件的扭转碱坏,属于断裂破坏.

24、强度理论解决问题的步骤?

解决问题的步骤:如果一点处于复杂应力状态下,可以先求出该点处的三个主应力σ1,σ2和σ3。它们可以计算出与某个强度理论相应的相当应力σxd,则强度条件要求σxd≤[σ]。

25、什么事失效?材料力学中失效包括哪几种形式?

不能保持原有的形状和尺寸,构件已不能正常工作,叫失效。材料力学中的失效包括强度失效、刚度失效和稳定性失效三种。26、如何解释超静定问题?

未知数多于可被应用的独立平衡方程数,不能用静力学平衡方程完全确定全部未知数的问题。

27、实际挤压面是半圆柱面时,计算挤压应力时如何确定挤压面的面积?是否按半圆柱面来计算面积?

挤压面是半圆柱面时,挤压面面积按其正投影计算。

28、拉(压)杆通过铆钉连接时,连接处的强度计算包括哪些计算?包括(1)铆钉的剪切强度计算;(2)铆钉的挤压强度计算:(3)拉(压)杆的抗拉(压)强度计算。

29、什么是塑性材料和脆性材料?

一般把延伸率大于5%的金属材料称为塑性材料(如低碳钢等)。而把延伸率小于5%的金属材料称为脆性材料(如灰口铸铁等)。在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。30、30.简述应力集中的概念?

实际上很多构件由于结构或工艺等方面的要求,一般常有键槽、切口、油孔、螺纹、轴肩等,因而造成在这些部位上截面尺寸发生突然变化。这种由于截面尺寸的突变而产生的应力局部骤增的现象,工程上称为应力集中。

1、低碳钢的拉伸试验

答:使用试验机及相关的试件设备仪器绘制出试件的拉伸图,即:P-△L曲线,形象的饭引出低碳钢材料的变形特点以及各阶段受力和变形的关系,并分析得出低碳钢的相关参数,由此来分析判断低碳钢材料的弹性与塑性性能与承载能力。试验过程分为四个阶段:1.弹性阶段;2.屈服阶段;3.强化阶段;4.颈缩阶段。综上:分析低碳钢材料的变形过程,通过绘制并分析P-△L曲线以及相关的参数,求解得到低碳钢材料的强度极限、拉伸强度极限、延伸率和截面收缩率。2、为什么轴向拉伸时,横截面的正应力分布式平均分布的。答:受拉伸的杆件变形前为平面的很截面,变形后仍为平面,仅沿着轴线产生了相对的评议且仍与杆件的轴线垂直,犹豫材料的均匀性、连续性假设可以推断出轴力在横截面上的分布式均匀的,且都垂直于横截面,故横街面上的正应力也是均匀分布的。

3、剪应力互等定理。

答:剪应力互等定理:在材料中取一个正六面单元体,在这个单元体上两个相互垂直的平面上,剪应力必然成对存在,且数值相等,其方向共同指向或共同背离这两个平面的交线(棱线)。

4、叠加原理及其运用

答:由力的作用独立性知,在材料的位移、应力、应变、内力等与外力成线性关系的条件下,力的作用是相互独立的,可以把每一个力的效果矢量叠加,得到一等效合力,或合力偶。在材料力学里面,用到的地方是:叠加法求挠度,转角;叠加法求弯矩;超静定问题的求解。

5、冬天水管冻裂的原因。

答:在冬天低温条件下,水由液态凝结成固态,体积膨胀,由此产生对水管的膨胀挤压应力,将水管看成薄壁构建,由于水管本身的材料属性原因,在低温条件下,水管的脆性增强,强度极限降低,塑性抗拉强度降低,在一定条件下水管承受不住水结冰后产生的应力,发生破裂现象。

6、连接杆的三种可能的破坏形式

答:1.剪切破坏形式;2.挤压破坏形式;3.塑性变形(扭转)破坏形式。

(完整版)材料力学简答题

1、(中)材料的三个弹性常数是什么?它们有何关系? 材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。 2、何谓挠度、转角? 挠度:横截面形心在垂直于梁轴线方向上的线位移。 转角:横截面绕其中性轴旋转的角位移。 3、强度理论分哪两类?最大应切力理论属于哪一类强度理论? Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。 4、何谓变形固体?在材料力学中对变形固体有哪些基本假设? 在外力作用下,会产生变形的固体材料称为变形固体。 变形固体有多种多样,其组成和性质是复杂的。对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。根据其主要的性质对变形固体材料作出下列假设。1.均匀连续假设。2.各向同性假设。3.小变形假设。 5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求? 强度要求、刚度要求和稳定性要求。 6、用叠加法求梁的位移,应具备什么条件? 用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。 7、列举静定梁的基本形式? 简支梁、外伸梁、悬臂梁。 8、列举减小压杆柔度的措施? (1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。 9、欧拉公式的适用范围? = 只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ 1 10、列举图示情况下挤压破坏的结果? 一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。 11、简述疲劳破坏的特征? (1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。 12、杆件轴向拉伸(压缩)时的强度条件可以解决哪几面的问题? (1)强度校核。已知杆件的尺寸、承受的载荷以及材料的许用应力,验证强度条件不等式是否成立。(2)截面设计。已知杆件承受的载荷以及材料的许用应力,确定杆件的横截面尺寸,再由横截面积进而计算出相关的尺寸。(3)确定许可载荷。已知杆件的尺寸及材料的许用应力,确定结构或机器的最大载荷,得到最大轴力后,再由平衡条件确定机器或结构的许可载荷。 13、在推导纯弯曲正应力公式时,作了哪些基本假设? 平面假设:梁弯曲变形后,其横截面仍然保持为一平面,并仍与变形后梁的轴线

材料力学概念及基础知识

一、基本概念 1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。 2 强度:构件抵抗破坏的能力。 3 刚度:构件抵抗变形的能力。 4 稳定性:构件保持初始直线平衡形式的能力。 5 连续均匀假设:构件内均匀地充满物质。 6 各项同性假设:各个方向力学性质相同。 7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。 8 截面法:计算内力的方法,共四个步骤:截、留、代、平。 9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。 10 正应力:垂直于截面的应力(σ) 11 剪应力:平行于截面的应力( ) 12 弹性变形:去掉外力后,能够恢复的那部分变形。 13 塑性变形:去掉外力后,不能够恢复的那部分变形。 14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。 二、拉压变形 15 当外力的作用线与构件轴线重合时产生拉压变形。 16 轴力:拉压变形时产生的内力。 17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。 18 画轴力图的步骤是: ①画水平线,为X轴,代表各截面位置; ②以外力的作用点为界,将轴线分段; ③计算各段上的轴力; ④在水平线上画出对应的轴力值。(包括正负和单位) 19 平面假设:变形后横截面仍保持在一个平面上。 20 拉(压)时横截面的应力是正应力,σ=N/A 21 斜截面上的正应力:σα=σcos2α 22 斜截面上的切应力: α=σSin2α/2 23 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp) 24 胡克定律的微观表达式是σ=Eε。 25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。 26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。 27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣ 28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。 29 比例极限σp :比例阶段的最大应力值。 30 屈服极限σs :屈服阶段的最小应力值。 31 强化极限σb :断裂前能承担的最大应力值。 32 脆、塑材料的比较: ①脆材无塑性变形,抗压不抗拉;塑材抗拉也抗压。 ②脆材对应力的集中的反应敏感,塑材不敏感。。 33 应力集中:在形状变化处,应力特别大的现象。 34 延伸率:拉断后,变形量与原长的比值(δ=△L1/L,≥5%为塑材) 35 冷作硬化:进入强化阶段后,卸载再重新加载,比例极限增大的现象。 38 极限应力σjx:失去承载能力时的应力 39 许用应力〔σ〕:保证安全允许达到的最大应力。 42 计算思路:外力内力应力。 43 超静定问题:未知力多于平衡方程个数的问题(用平衡方程不能或不能全部计算出构件的外力)。 44 计算超静定问题:除平衡方程以外,更需依据变形实际建立补充方程。 45 剪力:平行于截面的内力(Q),该截面称作剪切面。 46 单剪:每个钉有一个剪切面。双剪:每个钉有两个剪切面。 48 挤压力:两构件相互接触面所承受的压力。 三、扭转 1 外力偶矩的矢量方向与杆件的轴线重合时杆件发生(扭转)变形。杆件的两个相邻截面发生绕轴线的相对转动。 2 传动轴所传递的功P(kw),转速n(r/min),则此外力偶矩为Me=9.549P/n(N*m)。 3 扭转变形时,杆件横截面上的内力称扭矩。表示各截面上扭矩大小的图形,称作扭矩图。 4 两正交线之间的直角的改变量( ),称为剪应变。表示剪切变形的严重程度。 5 剪切胡克定律τ=G ,式中G称为材料剪切弹性模量。 6 薄壁扭转构件横截面上某点的剪应力 n δ,式中 为圆形横截面包围的面积,δ为该点处的壁厚。 7 Ip=∫Aρ2dA称为截面的极惯性矩。 四、弯曲应力: 1 梁弯曲时,作用线与横截面平行的内力,称为剪力。数值上等于该截面之左侧或右侧梁上各个横向外力的代数和,绕截面顺转的力为正。 2 梁弯曲时,作用面垂直于轴线的内力偶矩,称为弯矩。数值上等于该截面之左侧或右侧梁上各个外力(包括力偶)对截面力矩的代数和,使截面处产生凹变形的力矩为正。 3 无均布载荷梁段,剪力为水平直线。 无剪力(零)的梁段,弯矩为水平直线。 在集中力作用的截面,剪力图上发生转折,在集中力偶作用的截面,弯矩图上发生跃变。 在剪力为零的截面,弯矩有极大值。最大弯矩发生在Q=0 ,集中力偶两侧、悬臂梁根部和集中力的截面上。 Iz=∫Ay2dA称为截面的轴惯性矩。式中y是微面积dA到中性轴的距离。 中性轴通过截面的形心,是拉压区的分界线。 五、弯曲时的位移 1 挠度是梁弯曲时横截面的形心在垂直于梁轴线方向的位移。 2 转角是梁变形时横截面绕其中性轴旋转的角度。 六、超静定问题 1 使用静力平衡方程不能求出结构或构件全部约束力或内力的问题。 2 多余约束力 解除维持构件平衡的多余约束后,以力代替该约束对构件的作用力。 变形协调方程 多余约束力与基本力共同作用的变形满足梁的约束条件。 七、应力状态和强度理论 1 应力状态: 受力构件内部一点处不同方位截面应力的集合。 单元体:围绕构件内一点处边长为无穷小的立方体。 主平面:单元体上剪力为零的截面 4 截面核心:压力作用线通过此区域,受压杆横截面上无拉应力。 5 弯矩扭合构件选用空心圆形截面比较合理。 九、压杆稳定 1 稳定性:受压杆件保持原有直线平衡形式的能力。 2 临界力Pcr:受压杆件能保持稳定的最大压力。 9 提高稳定措施:①环形截面;②减小长度;③固定牢固。 冷拉是在常温条件下,以超过原来钢筋屈服点强度的拉应力,强行拉伸钢筋,使钢筋产生塑性变形以达到提高钢筋屈服点强度和节约钢材为目的。 冷拔-是材料的一种加工工艺,对于金属材料,冷拔指的是为了达到一定的形状和一定的力学性能,而在材料处于常温的条件下进行拉拔。冷拔的产品较之于热成型有:尺寸精度高和表面光洁度好的优点。第一章绪论 §1.1 材料力学的任务 二、基本概念 1、构件:工程结构或机械的每一组成部分。(例如:行车结构中的横梁、吊索等) 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的改变。(宏观上看就是物体尺寸 和形状的改变) 弹性变形—随外力解除而消失 塑性变形(残余变形)—外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力 3、内力:构件内由于发生变形而产生的相互作用力。(内力随外力的增大而增大) 强度:在载荷作用下,构件抵抗破坏的能力。 4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。 强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承 载能力的一门科学。 三、材料力学的任务 材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全 的构件,提供必要的理论基础和计算方法 研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在进行理论分 析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。 四、材料力学的研究对象 构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的 杆 等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状 变化的杆 等截面直杆——等直杆 §1.2 变形固体的基本假设 在外力作用下,一切固体都将发生变形,故称为变形固体。在材料力学中,对变 形固体作如下假设: 1、连续性假设:认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织球墨铸铁的显微组织 2、均匀性假设:认为物体内的任何部分,其力学性能相同 普通钢材的显微组织优质钢材的显微组织 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增 强材料等) 4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。 如右图,δ远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的 变形略去不计。计算得到很大的简化。 §1.3 外力及其分类 外力:来自构件外部的力(载荷、约束反力) 按外力作用的方式分类 体积力:连续分布于物体内部各点的力。如重力和惯性力 表面力: 分布力:连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水压力等 均为分布力 集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。 按外力与时间的关系分类 静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静 载 动载:载荷随时间而变化。如交变载荷和冲击载荷 §1.4 内力、截面法和应力的概念 内力:外力作用引起构件内部的附加相互作用力。 求内力的方法—截面法 (1)假想沿m-m横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留 下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力的值。 §1.4 内力、截面法和应力的概念 为了表示内力在一点处的强度,引入内力集度,即应力的概念。 §1.5 变形与应变 1.位移:MM' 刚性位移;变形位移。 2.变形:物体内任意两点的相对位置发生变 化。 取一微正六面体 两种基本变形: 线变形——线段长度的变化角变形——线段间夹角的变化 3.应变 正应变(线应变) x方向的平均应变:切应变(角应变) 杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲 第二章拉伸、压缩与剪切(1) §2.1 轴向拉伸与压缩的概念和实例 受力特点与变形特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件 变形是沿轴线方向的伸长或缩短。 §2.2 轴向拉伸或压缩时横截面上的内力和应力 2、轴力:截面上的内力 由于外力的作用线与杆件的轴线重合,内力的作用线也与杆件的轴线重合。所以 称为轴力。 4、轴力图:轴力沿杆件轴线的变化 杆件的强度不仅与轴力有关,还与横截面面积有关。必须用应力来比较和判断杆 件的强度。 在拉(压)杆的横截面上,与轴力FN对应的应力是正应力。根据连续性假设, 横截面上到处都存在着内力。 观察变形: 平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。 从平面假设可以判断: (1)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的 §2.4 材料拉伸时的力学性能 一试件和实验条件:常温、静载 二低碳钢的拉伸 明显的四个阶段 1、弹性阶段ob 2、屈服阶段bc(失去抵抗变形的能力) 3、强化阶段ce(恢 复抵抗变形的能力) 4、局部径缩阶段ef 两个塑性指标: 断后伸长率断面收缩率 δ>5%为塑性材料δ<5%为脆性材料 低碳钢的S≈20-30% ψ≈60%为塑性材料 三卸载定律及冷作硬化 1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载 材料在卸载过程中应力和应变是线性关系,这就是卸载定律。 材料的比例极限增高,延伸率降低,称之为冷作硬化或加工硬化。 四其它材料拉伸时的力学性质 对于没有明显屈服阶段的塑性材料,用名义屈服极限σp0.2来表示。 对于脆性材料(铸铁),拉伸时的应力应变曲线为微弯的曲线,没有屈服和径缩 现象,试件突然拉断。断后伸长率约为0.5%。为典型的脆性材料。 拉伸与压缩在屈服阶段以前完全相同 三脆性材料(铸铁)的压缩 脆性材料的抗拉与抗压性质不完全相同 压缩时的强度极限远大于拉伸时的强度极限 一、安全因数和许用应力 变形特点:位于两力之间的截面发生相对错动。 切应力强度条件:[τ]许用切应力,常由实验方法确定 第三章扭转 §3.1 扭转的概念和实例 扭转受力特点及变形特点: 杆件受到大小相等,方向相反且作用平面垂直于杆件 轴线的力偶作用, 杆件的横截面绕轴线产生相对转动。 1.材料力学就是研究构件强度、刚度、稳定性理论 2.变形性质分为弹性变形、塑性变形 3.研究内力的方法是截面法 4.表示内力密集的程度是应力 5.基本变形有:轴向拉伸或压缩、剪切、扭转、弯曲 6轴力图是表示轴力与横截面积关系 7.平面假设是受轴向拉伸的杆件,变形后横截面积仍保持不变为平面,两平面相 对位移了一段距离 8.应力集中是会在其局部应力骤然增大的现象 9低碳钢的四个表现阶段弹性阶段、屈服阶段、强化阶段、局部变形阶段 10.代表材料强度性能的主要指标是屈服强度和抗拉强度 11塑性指标主要是伸长率和断面收缩率 12.5 ≥ δ%为塑性材料% 5 < δ为脆性材料 13连接杆主要有铆钉链接、螺栓链接、焊接、键连接、销轴链接 14剪切计算主要有安全计算、加工计算、运算安全计算 15焊接的对焊接和搭焊接两种,其中对焊接有对接、V型、 X型 16按照强度条件设计的构件尺寸取大值,许应用荷载取小值, 17切应力互等原理是在单元体互相垂直的平面上,垂直于两面交线的切应力数值 相等,其方向均指向或背离该交线, 18脆性材料的抗拉能力低于其抗剪能力,塑性材料的抗剪能力则低于抗拉能力 19纯弯曲是指梁横截面上只有弯矩无剪力的弯曲 20横力弯曲指的是梁横截面上既有弯矩又有剪力的弯曲变形 21材料力学的基本假设连续性假设、均匀性假设、各向同性假设

材料力学简答题

1 / 7 1、(中)材料的三个弹性常数是什么?它们有何关系? 材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。 2、xx挠度、转角? 挠度: 横截面形心在垂直于梁轴线方向上的线位移。 转角: 横截面绕其中性轴旋转的角位移。 3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ.研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。 4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。 变形固体有多种多样,其组成和性质是复杂的。对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。根据其主要的性质对变形固体材料作出下列假设。 1.均匀连续假设。 2.各向同性假设。

3.小变形假设。 5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。 2 / 7 6、用叠加法求梁的位移,应具备什么条件? 用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。 7、列举静定梁的基本形式? xx、外伸xx、悬臂xx。 8、列举减小压杆柔度的措施? (1)加强杆端约束 (2)减小压杆xx,如在中间增设支座 (3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。 9、xx公式的适用范围? 只适用于压杆处于弹性变形范围,且压杆的柔度应满足: λ≥λ 1= 10、列举图示情况下挤压破坏的结果? 一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆

应力状态——材料力学

土体应力计算 补充一、力学基础知识 材料力学研究物体受力后的内在表现,即变形规律和破坏特征。 一、材料力学的研究对象 材料力学以“梁、杆”为主要研究对象。

二、材料力学的任务 材料力学的任务:在满足强度、刚度、稳定性的要求下,以最经济的代价,为构件确定合理的形状和尺寸,选择适宜的材料,而提供必要的理论基础和计算方法。 强度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。刚度:杆件在外载作用下,抵抗弹性变形的能力。 稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。 如:自行车结构也有强度、刚度和稳定问题; 大型桥梁的强度、刚度、稳定问题 强度、刚度、稳定性

三、基本假设 1、连续性假设:物质密实地充满物体所在空间,毫无空隙。(可用微积分数学工具) 2、均匀性假设:物体内,各处的力学性质完全相同。 3、各向同性假设:组成物体的材料沿各方向的力学性质完全相同。(这样的材料称为各项同性材料;沿各方向的力学性质不同的材料称为各项异性材料。) 4、小变形假设:材料力学所研究的构件在载荷作用下的变形与原始尺寸相比甚小,故对构件进行受力分析时可忽略其变形。 假设

四、杆件变形的基本形式

五、内力?截面法?轴力 1、内力 指由外力作用所引起的、物体内相邻部分之间分布内力系的合成(附加内力)。 2、截面法 内力的计算是分析构件强度、刚度、稳定性等问题的基础。求内力的一般方法是截面法。

(1)截面法的基本步骤: ①截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面上的未知内力(此时截开面上的内力对所留部分而言是外力) 截面法

材料力学各章重点内容总结汇编

材料力学各章重点内容总结 第一章绪论 一、 材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性 要求。 二、 强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够 的抵抗变 形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、 材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假 设和各向 同性假设。 第二章轴向拉压 一、 轴力图:注意要标明轴力的大小、单位和正负号。 二、 轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只 适用于轴 力,轴力是内力,不适用于外力。 三、 轴向拉压时横截面上正应力的计算公式: 二 = F N 注意正应力有正负号, A 拉伸时的正应力为正,压缩时的正应力为负。 四、 斜截面上的正应力及切应力的计算公式:cos ? :?,. 一.. = jsin2〉 注意角度〉是指 斜截面与横截面的夹角。 Al g 七、 线应变」没有量纲、泊松比卩=一没有量纲且只与材料有关、 l g 胡克定律的两种表达形式:卞=E ;,厶"■F 也 注意当杆件伸长时l 为正, EA 缩短时l 为负。 八、 低碳钢的轴向拉伸实验:会画过程的应力一应变曲线,知道四个阶段及相应 的四个极限应力:弹性阶段(比例极限 J ,弹性极限e )、屈服阶段(屈服 极限▽ s )、强化阶段(强度极限<^b )和局部变形阶段。 会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力一应变曲线 五、轴向拉压时横截面上正应力的强度条件 -■ max F N,max 六、利用正应力强度条件可解决的三种问题: 1? 强度校核 CJ max F N ,max A

材料力学--名词解释与简答题及答案

材料力学—名词解释与简答题及答案 一、名词解释 1.强度极限:材料σ-ε曲线最高点对应的应力,也是试件断裂前的最大应力。 2.弹性变形:随着外力被撤消后而完全消失的变形。 3..塑性变形:外力被撤消后不能消失而残留下来的变形。 4..延伸率:δ=(l1-l)/l×100%,l为原标距长度,l1为断裂后标距长度。 5.断面收缩率:Ψ=(A-A1)/A×100%,A为试件原面积,A1为试件断口处面积。 6.工作应力:杆件在载荷作用下的实际应力。 7.许用应力:各种材料本身所能安全承受的最大应力。 8.安全系数:材料的极限应力与许用应力之比。 9.正应力:沿杆的轴线方向,即轴向应力。 10.剪应力:剪切面上单位面积的内力,方向沿着剪切面。 11.挤压应力:挤压力在局部接触面上引起的压应力。 12.力矩:力与力臂的乘积称为力对点之矩,简称力矩。 13.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶 14.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。 15.轴力:横截面上的内力,其作用线沿杆件轴线。 16.应力:单位面积上的内力。 17..应变:ε=Δl/l,亦称相对变形,Δl为伸长(或缩短),l为原长。 18.合力投影定理:合力在坐标轴上的投影,等于平面汇交力系中各力在坐标轴上投影的代数和。 19.强度:构件抵抗破坏的能力。 20.刚度:构件抵抗弹性变形的能力。

21.稳定性:受压细长直杆,在载荷作用下保持其原有直线平衡状态的能力。 22.虎克定律:在轴向拉伸(或压缩)时,当杆横截面上的应力不超过某一限度时,杆的伸长(或缩短)Δl与轴力N及杆长l成正比,与横截面积A成正比。 22.拉(压)杆的强度条件:拉(压)杆的实际工作应力必须小于或等于材料的许用应力。 23.剪切强度条件:为了保证受剪构件在工作时不被剪断,必须使构件剪切面上的工作应力小于或等于材料的许用剪应力。 24.挤压强度条件:为了保证构件局部受挤压处的安全,挤压应力小于或等于材料的许用挤压应力。 25.圆轴扭转强度条件:保证危险点的应力不超过材料的许用剪应力。 26.弯曲正应力强度条件:为了保证梁的安全,应使危险点的应力即梁内的最大应力不超过材料许用应力。 27.中性层:在伸长和缩短之间必有一层材料既不伸长也不缩短。这个长度不变的材料层称为中性层。 28.中性轴:中性层与横截面的交线称为中性轴。 29.塔式起重机的稳定性:起重机必须在各种不利的外载作用下,抵抗整机发生倾覆事故的能力,称为塔式起重机的整机稳定性。 30.自锁:当主动力位于摩擦锥范围内,不论主动力增加多少,正压力和磨擦力的合力与主动力始终处于平衡状态,而不会产生滑动,这种现象称为自锁。 二、简答题及答案 1.何谓“截面法”,它与静力学中的“分离体”有何区别? 答:截面法是揭示和确定杆件内力的方法。分离体是取消约束后的实物,用以画出所受全部主动力和约束反力的受力图。 2.杆件有哪些基本变形? 答:杆件有四种基本变形:拉伸和压缩、剪切、扭转、弯曲。 3.杆件在怎样的受力情况下才会发生拉伸(压缩)变形? 答:杆件在轴向拉(压)力作用下才会发生拉伸(压缩)变形。 4.根据构件的强度条件,可以解决工程实际中的哪三方面的问题?

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学试题及答案

一、回答下列各题(共4题,每题4分,共16分) 1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=,断口处的直 径为mm d 0.61 =,试计算其延伸率和断面收缩率。 答:延伸率%25%100100 100 125%100001=?-=?-= l l l δ 断面收缩率%64%100))(1(%100211=?-=?-= d d A A A δ 2、试画出图示截面弯曲中心的位置。 3、梁弯曲剪应力的计算公式z z QS = τ,若要计算图示矩形截面A 点的剪应力,试计算z S 。 232 3 )84(41bh h h hb S z =+= 4、试定性画出图示截面截面核心的形状(不用计算)。 二、绘制该梁的剪力、弯矩图。(15分) 矩形 圆形 矩形截面中间 挖掉圆形 圆形截面中间 挖掉正方形 4

三、图示木梁的右端由钢拉杆支承。已知梁的横截面为边长等于0.20m 的正方形,q=4OKN/m,弹性模量 E 1=10GPa ;钢拉杆的横截面面积A 2=250mm 2 ,弹性模量E 2=210GPa 。试求拉杆的伸长l ?及梁中点沿铅垂方向的位移?。(14分) 解:杆受到的拉力kN q F N 402 2== m EA l F l N 00228.010 25010210310406 93=?????==?- 梁中点的挠度: m I E ql A E l F w l N c 00739.012 2 .0101038421040500114.0384521214 94 314122=? ?????+ =+=+?=?四、砖砌烟窗高m h 30=,底截面m m -的外径m d 31=,内径m d 22=,自重kN P 20001=,受 m kN q /1=的风力作用。试求:(1)烟窗底截面m m -的最大压应力;(2)若烟窗的基础埋深m h 40=, 基础及填土自重按kN P 10002=计算,土壤的许用压应力MPa 3.0][=σ,圆形基础的直径D 应为多大?(20分) 注:计算风力时,可略去烟窗直径的变化,把它看成是等截面的。 F s M m kN q /20=kN 20m kN ?160A B C m 10m 2112kN 88kN 20kN 5.6m 40kNm 150.3kNm 160kNm

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

《材料力学》考试试卷A、B卷及答案

交通学院期末考试试卷 一、填空题(总分20分,每题2分) 1、杆件在外力作用下,其内部各部分间产生的,称为内力。 2、杆件在轴向拉压时强度条件的表达式是。 3、低碳钢拉伸时,其应力与应变曲线的四个特征阶段为阶段,阶段, 阶段,阶段。 4、线应变指的是的改变,而切应变指的是的改变。 5.梁截面上弯矩正负号规定,当截面上的弯矩使其所在的微段梁凹向下时为。 6.梁必须满足强度和刚度条件。在建筑中,起控制做用的一般是条件。 7、第一和第二强度理论适用于材料,第三和第四强度理论适用于材料。 8、求解组合变形的基本方法是。 9、力作用于杆端方式的不同,只会使与杆端距离在较小的范围内受到影响,该原理被称为 页脚内容1

。 10、欧拉公式是用来计算拉(压)杆的,它只适用于杆。 二、单项选择(总分20分,每题2分) 1、用截面法可求出图示轴向拉压杆a-a截面的内力 12 N P P =-,下面说法正确的是() A. N其实是应力 B. N是拉力 C. N是压力 D. N的作用线与杆件轴线重合 2、构件的强度是指( ) A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持原有平衡态的能力 C. 在外力作用下构件抵抗破坏的能力 D. 在外力作用下构件保持原有平稳态的能力 3、现有钢、铸铁两种杆材,其直径相同。从承载能力与经济效益两个方面考虑,图示结构中两种合理选择方案是( ) A. 1杆为钢,2杆为铸铁 B. 1杆为铸铁,2杆为钢 C. 2杆均为钢 D. 2杆均为铸铁 页脚内容2

页脚内容3 4、从拉压杆轴向伸长(缩短)量的计算公式EA Nl l = ?可以看出,E 和A 值越大,l ?越小,故( )。 A. E 为杆的抗拉(压)刚度。 B. 乘积EA 表示材料抵抗拉伸(压缩)变形的能力。 C. 乘积EA 为杆的抗拉(压)刚度 D. 以上说法都不正确。 5、空心圆轴的外径为D ,内径为d ,α=d /D 。其抗扭截面系数为( )。 A )1(16 3 απ-=D W P B )1(16 23 απ-=D W P C )1(16 3 3 απ-= D W P D )1(16 43 απ-= D W P 6、在没有荷载作用的一段梁上,( ) A. 剪力图为一水平直线 B.剪力图为一斜直线 C .没有内力 D.内力不确定 7、在平行移轴公式21Z Z I I a A =+中,其中Z 轴和轴1Z 轴互相平行,则( )。 A. Z 轴通过形心 B. 1Z 轴通过形心 C . 都不一定要通过形心 D. a 是Z 轴与1Z 轴之间的距离。所以a>0 8、梁弯曲时,梁的中性层( )。 F

弹性力学部分简答题

1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。 2、简述弹性力学的研究方法。 答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。 3、弹性力学中应力如何表示?正负如何规定? 答:弹性力学中正应力用σ表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用τ表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4、简述平面应力问题与平面应变问题的区别。 答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有x σ,y σ,xy τ。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u 和v 5、简述圣维南原理。 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 6、简述按应力求解平面问题时的逆解法。 答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

材料力学知识点总结

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ== 三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面:

1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: :拉为“+”,压为“-” :使单元体顺时针转动为“+” :从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x y στα τ D ' D A c B

(3)广义虎克定律: [])(1 3211σσνσε+-= E [] )(1z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 x σ

材料力学复习题1

一、简答题 简述提高压杆稳定性的措施 简述提高梁抗弯刚度的措施 二、计算题 1、某低碳钢构件危险点的应力状态如下图所示,已知低碳钢的许用应力[σ]=160M Pa,试求:(1)主应力大小,主平面位置,(2)最大切应力,(3)用第三强度理论校核其强度。 a 2、100mm×200mm矩形截面简支梁如图所示。试计算在集中力F稍左截面上距中性轴50mm的b点处和顶边上a点处的正应力和切应力。 3、图示的矩形截面简支梁AB,已知b h2 =,20 = q kN/m,5 = l m。容许挠度 [] 250 l w=,[]100 = σMPa,200 = E GPa,试选择矩形截面尺寸。 q 4、已知圆轴的许用切应力[τ]=90MP a,剪切弹性模量G=80GP a,单位长度的许用扭转角[θ]=0.5°/m,轴上作用扭矩为T=50kN.m,试设计圆轴的直径。如果8 0. = α,试设计空心圆轴的直径。并求两者的重量比。

5、图示支架,斜杆BC 为圆截面杆,直径d = 50 mm 、长度l = 1.5 m ,材料为优质碳钢,MPa p 200=σ ,GPa E 200=。若[]4=st n ,试按照BC 杆确定支架的许可载荷[]F 。 F B 6、下图所示压杆,两端为铰支,已知压杆的比例极限σp=9M P a ,弹性模量E =10GP a ,杆长l =3m ,截面尺寸:h =120mm ,b =90mm 的矩形,试计算其临界力。(计算临界应力的直线公式为 σcr =29.3-0.19λ) 三、填空题: 1、变形固体的基本假设是:( );( ); ( )。 2、材料的破坏按其物理本质可分为( )和( )两类。 3、低碳钢拉伸时大致分为以下几个阶段:( ); ( );( );( )。 4、图示为某合金材料的持久极限曲线,则以下各点的循环特征r 值为:A 点:r= ;B 点:r= ;C 点:r= ;D 点:r= 。(8分) .. h

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

相关主题
文本预览
相关文档 最新文档