当前位置:文档之家› 奥数平面几何几个重要定理

奥数平面几何几个重要定理

奥数平面几何几个重要定理
奥数平面几何几个重要定理

平面几何中几个重要定理及其证明

一、塞瓦定理

1.塞瓦定理及其证明

定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有

1A D B E C F

D B

E C

F A

??=. 证明:运用面积比可得ADC

ADP BDP BDC

S S AD DB S S ????==. 根据等比定理有

ADC ADC ADP APC

ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===

-,

所以APC

BPC S AD DB S ??=.同理可得APB

APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得

1AD BE CF

DB EC FA

??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”.

A

B

C

D F

P

2.塞瓦定理的逆定理及其证明

定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,

且D 、E 、F 均不是?ABC 的顶点,若

1AD BE CF

DB EC FA

??=,那么直线CD 、AE 、BF 三线共点.

证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有

//

1AD BE CF

D B EC FA

??=. 因为

1AD BE CF DB EC FA

??=,所以有/

/AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.

注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证.

二、梅涅劳斯定理

3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三边AB 、BC 、CA 所在直线分别交于点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,则有

A

B

C

D F

P

D /

A

B C

D

E

F

G

1A D B E

C F

D B

E C

F A

??=. 证明:如图,过点C 作AB 的平行线,交EF 于点G . 因为CG // AB ,所以CG CF

AD FA

= ————(1) 因为CG // AB ,所以CG EC

DB BE

= ————(2) 由(1)÷(2)可得DB BE CF

AD EC FA

=?,即得1AD BE CF DB EC FA ??=. 注:添加的辅助线CG 是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG )使得命题顺利获证.

4.梅涅劳斯定理的逆定理及其证明

定理:在?ABC 的边AB 、BC 上各有一点D 、E ,在边AC 的延长线上有一点F ,若

1AD BE CF

DB EC FA

??=, 那么,D 、E 、F 三点共线.

证明:设直线EF 交AB 于点D /,则据梅涅劳斯定理有

//

1AD BE CF

D B EC FA

??=. 因为

1AD BE CF DB EC FA

??=,所以有/

/AD AD DB D B =.由于点D 、D /都

A

B

C

D E

F

D /

在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.

注:证明方法与上面的塞瓦定理的逆定理如出一辙,注意分析其相似后面的规律.

三、托勒密定理

5.托勒密定理及其证明

定理:凸四边形ABCD 是某圆的内接四边形,则有

A B ·CD + B C ·AD = A C ·BD .

证明:设点M 是对角线AC 与BD 的交点,在线段BD 上找一点,使得∠DAE =∠BAM .

因为∠ADB =∠ACB ,即∠ADE =∠ACB ,所以?ADE ∽

?ACB ,即得

AD DE

AC BC

=,即AD BC AC DE ?=? ————(1) 由于∠DAE =∠BAM ,所以∠DAM =∠BAE ,即∠DAC =∠BAE 。而∠ABD =∠ACD ,即∠ABE =∠ACD ,所以?ABE ∽

?ACD .即得

A B B E

A C C D

=,即A B C D A C B ?=? ————(2)

由(1)+(2)得

A D

B

C A B C

D A C D

E A C B E ?+?=?+?=?.

所以A B ·CD + B C ·AD = A C ·BD .

注:巧妙构造三角形,运用三角形之间的相似推得结论.构造有特点,不容易想到,要认真分析题目并不断尝试.

6.托勒密定理的逆定理及其证明

定理:如果凸四边形ABCD 满足AB×CD + BC×AD = AC×BD ,那么A 、B 、C 、D 四点共圆.

证法1(同一法):

在凸四边形ABCD 内取一点E ,使得EAB DAC ∠=∠,

EBA DCA ∠=∠,则EAB ?∽DAC ?.

可得AB×CD = BE×AC ———(1)

且 AE AB

AD AC = ———(2) 则由DAE CAB ∠=∠及(2)可得DAE ?∽CAB ?.于是有

AD×BC = DE×AC ———(3)

由(1)+(3)可得 AB×CD + BC×AD = AC×( BE + DE ). 据条件可得 BD = BE + DE ,则点E 在线段BD 上.则由

EBA DCA ∠=∠,得DBA DCA ∠=∠,这说明A 、B 、C 、D 四点

共圆.

证法2(构造转移法)

延长DA 到A /,延长DB 到B /,使A 、B 、B /、A /四点共圆.延长DC 到C /,使得B 、C 、C /、B /四点共圆.(如果能证明A /、B /、C /

共线,则命题获证)

那么,据圆幂定理知A 、C 、C /、A /四点也共圆. 因此,

//

/A B A D A B

B D =,

//

/B C C D B C

B D

=. 可得 //

////

AB A D BC C D A B B C BD

?+?+=.

另一方面,//

/A C A D A C C D =,即/

//

AC A D A C CD

?=. 欲证//AB A D BC C D BD

?+?=/AC A D

CD ?,即证

///AB CD A D BC CD C D AC BD A D ??+??=??

即 //

()BC CD C D AC BD AB CD A D ??=?-?.

据条件有 AC BD AB CD AD BC ?-?=?,所以需证

//BC CD C D AD BC A D ??=??,

即证

//

CD C D AD A D ?=?,这是显然的.所以,////

/

A B B C A C +=,即

A /、

B /、

C /共线.所以//A B B ∠与//BB C ∠互补.由于//

A B B DAB ∠=∠,//BB C DCB ∠=∠,所以DAB ∠与

DCB ∠互补,即A 、B 、C 、D 四点共圆.

7.托勒密定理的推广及其证明 定理:如果凸四边形ABCD 的四个顶点不在同一个圆上,那么就有

AB×CD + BC×AD > AC×BD

证明:如图,在凸四边形ABCD 内取一点E ,使得

EAB DAC ∠=∠,EBA DCA ∠=∠,则EAB ?∽DAC ?.

可得AB×CD = BE×AC ————(1)

且 AE AB

AD AC

= ————(2) 则由DAE CAB ∠=∠及(2)可得DAE ?∽CAB ?.于是

AD×BC = DE×AC ————(3)

由(1)+(3)可得 AB×CD + BC×AD = AC×( BE + DE ) 因为A 、B 、C 、D 四点不共圆,据托勒密定理的逆定理可知

AB×CD + BC×AD ≠AC×BD

所以BE + DE ≠BD ,即得点E 不在线段BD 上,则据三角形的性质有BE + DE > BD .

所以AB×CD + BC×AD > AC×BD .

四、西姆松定理

8.西姆松定理及其证明

定理:从?ABC 外接圆上任意一点P 向BC 、CA 、AB 或其

则D、E、F三点共线.

证明:如图示,连接PC,连接EF 交

BC于点D/,连接PD/.

因为PE⊥AE,PF⊥AF,所以A、F、P、E四点共圆,可

得∠FAE =∠FEP.

因为A、B、P、C四点共圆,所以∠BAC =∠BCP,即∠FAE

=∠BCP.

所以,∠FEP =∠BCP,即∠D/EP =∠D/CP,可得C、D/、P、E四点共圆.

所以,∠CD/P +∠CEP = 1800。而∠CEP = 900,所以∠CD/P = 900,即PD/⊥BC.

由于过点P作BC的垂线,垂足只有一个,所以点D与D/

重合,即得D、E、F三点共线.

注:(1)采用同一法证明可以变被动为主动,以便充分地调用题设条件.但需注意运用同一法证明时的唯一性.

(2)反复运用四点共圆的性质是解决此题的关键,要掌握

好四点共圆的运用手法.

五、欧拉定理

9.欧拉定理及其证明

定理:设ΔABC 的重心、外心、垂心分别用字母G 、O 、H 表示.则有G 、O 、H 三点共线(欧拉线),且满足3OH OG =.

证明(向量法):连BO 并延长交圆O 于点D 。连接CD 、AD 、HC ,设E 为边BC 的中点,连接OE 和OC .则 →

→→+=AH OA OH ——— ①

因为 CD ⊥BC ,AH ⊥BC ,所以 AH // CD .同理CH // DA .

所以,AHCD 为平行四边形.

从而得→

=DC AH .而→→=OE DC 2,所以→

→=OE AH 2.

因为???

?

??+=→→→

OC OB OE 21,所以→→→+=OC OB AH ——— ② 由①②得:→

→→→++=OC OB OA OH ———— ③ 另一方面,→

→→→→→→→++=+=+=GC GB OA GF OA AG OA OG 2.

而→

+=+=OC GO GC OB GO GB ,

,所以

???

?

??++=?+++=→→→→

→→→→→OC OB OA OG OB OC GO OA OG 312 —— ④

由③④得:→

=OG OH 3.结论得证.

注:(1)运用向量法证明几何问题也是一种常用方法,而且有其独特之处,注意掌握向量对几何问题的表现手法;

(2)此题也可用纯几何法给予证明. 又证(几何法):连接OH ,AE ,两线段相交于点G /;连BO 并延长交圆O 于点D ;连接CD 、AD 、HC ,设E 为边BC 的中点,连接OE 和OC ,如图. 因为 CD ⊥BC ,AH ⊥BC ,所以 AH // CD .同理CH // DA .

所以,AHCD 为平行四边形.

可得AH = CD .而CD = 2OE ,所以AH = 2OE .

因为AH // CD ,CD // OE ,所以AH // OE .可得?AHG /∽

?EOG /.所以

////2

1

AH AG HG OE G E G O ===. 由//2

1

AG G E =,及重心性质可知点G /就是?ABC 的重心,即G /与点G 重合.

所以,G 、O 、H 三点共线,且满足3OH OG =.

六、蝴蝶定理

10.蝴蝶定理及其证明

定理:如图,过圆中弦AB 的中点M 任引两弦CD 和EF ,连接CF 和ED ,分别交AB 于P 、Q ,则PM = MQ .

证明:过点M 作直线AB 的垂线l ,

作直线CF 关于直线l 的对称直线交圆于点C /、F /,交线段AB 于点Q /.连接FF /、DF /、Q /F /、DQ /.据圆的性质和图形的对称性可知:

∠MF /Q /

=∠MFP ,∠F /Q /

M =∠FPM ;

且FF / // AB ,PM = MQ /. 因为C 、D 、F /、F 四点共圆,所以

∠CDF /

+∠CFF /

= 180

而由FF / // AB 可得∠Q /PF +∠CFF / = 1800,所以

∠CDF /

=∠Q /

PF ,即∠MDF /

=∠Q /

PF .

又因为∠Q /PF =∠PQ /F /,即∠Q /PF =∠MQ /F /.所以有

∠MDF /

=∠MQ /F /

这说明Q /、D 、F /、M 四点共圆,即得∠MF /Q / =∠Q /DM . 因为∠MF /Q / =∠MFP ,所以∠MFP =∠Q /DM .而∠MFP =∠EDM ,所以∠EDM =∠Q /DM .这说明点Q 与点Q /重合,即

A B

C

D E

F

P Q M C /

F

/ Q /

得PM = MQ.

此定理还可用解析法来证明:

x轴上的截距互为相反数.

证:以AB所在直线为x轴,线

段AB的垂直平分线为y轴建立直角

坐标系,M点是坐标原点.

设直线DE、CF的方程分别为

x = m1y + n 1,x = m2y + n 2;

直线CD、EF的方程分别为

y = k1 x,y = k2 x.

则经过C、D、E、F四点的曲线系方程为

(y –k1 x )(y–k2 x)+λ(x–m1 y–n1)(x–m2 y–n2)=0.整理得

(λ+k1k2)x 2+(1+λm1m2)y 2–[(k1+k2)+λ(m1+m2)]xy

–λ(n1+n2)x+λ(n1m2+n2m1)y+λn1n2=0.由于C、D、E、F四点在一个圆上,说明上面方程表示的是一个圆,所以必须

λ+ k1 k2 = 1 +λm1 m2≠0,

且(k1+k2)+λ(m1+m2)=0.

若λ=0,则k1k2=1,k1+k2=0,这是不可能的,故λ≠0;

又y轴是弦AB的垂直平分线,则圆心应落在y轴上,故有λ( n1 + n2 ) = 0,从而得n1 + n2 = 0.

这说明直线DE、CF在x轴上的截距互为相反数,即得PM = MQ.

注:利用曲线系方程解题是坐标法的一大特点,它可以较好地解决直线与曲线混杂在一起的问题.如本题,四条直线方程一经组合就魔术般地变成了圆方程,问题瞬息间得以解决,真是奇妙.运用它解题,不拘泥于小处,能够从整体上去考虑问题.另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.

小学奥数之几何五大模型精编版

一、等积变换模型 ⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况 ⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。 如上图12::S S a b = ⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。 ⑷正方形的面积等于对角线长度平方的一半; ⑸三角形面积等于与它等底等高的平行四边形面积的一半; 五大模型 1S 2 S

二、鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =??△△ 图1 图2 三、蝴蝶定理模型 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2 a b +。

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

小学奥数-几何五大模型(鸟头模型)-精选.

模型二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A E D C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =, 16ADE S =△平方厘米,求ABC △的面积. 三角形等高模型与鸟头模型

E D C B A E D C B A 【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===??△△, ::4:7(45):(75) ABE ABC S S AE AC ===??△△,所以:(24):(75)ADE ABC S S =??△△,设 8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 . 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角 形ADE 的面积等于1,那么三角形ABC 的面积是多少? E D C B A A B C D E 【解析】 连接BE . ∵3EC AE = ∴3ABC ABE S S =V V 又∵5AB AD = ∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V . 【巩固】如图,三角形被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =, 6AE =,乙部分面积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 【解析】 连接AD . ∵3BE =,6AE = ∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==, ∴2ABC ABD S S =V V ,∴6ABC BDE S S =V V ,5S S =乙甲.

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

小学奥数-几何五大模型(鸟头模型).

模型二鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在 △ABC中,D,E分别是AB,AC上的点如图(1)(或D在BA的延长线上,E在AC上如图2),则ABC : ADE -(AB AC): (AD AE) 厘米,求△ ABC的面积. 【解析】连接BE , S A ADE : S A ABE= AD : AB =2 :5 =(2 4): (5 4), S A ABE : S A ABC = AE : AC = 4 : 7 = (4 5) : (7 5),所以S^ADE: S^ ABC= (2 4) : (7 5),设S A ADE= 8 份, 则S A ABC =35份,S A ADE =16平方厘米,所以1份是2平方厘米,35份就是70平方厘米,△ ABC的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 三角形等高模型与鸟头模型 【例1】如图在△ ABC中, D,E分别是AB,AC上的点,且AD: AB =2:5 ,AE:AC =4:7 , S^ADE =16 平方 图⑵

【巩固】如图,三角形ABC中,AB是AD的5倍,AC是AE的 3 倍,如果三角形么三 角形ABC的面积是多少? ?/ EC =3AE --S A BC = 3S ABE 又??? AB =5AD --S|_ADE = S_ABE 5 = S_ ABC 15 ,??? S ABC 如图,三角形ABC被分成了甲(阴影部分)、乙两部分,BD=DC=4 , BE=3 , AE=6,乙部分面积是甲部分面积的几倍? ?/ BE =3 , AE =6 --AB = 3BE , S ABD=3S BDE 又T BD =DC =4 , --S ABC =2S ABD,…S ABC - 6S BDE , 【例2】如图在△ ABC中,D在BA的延长线上,E在AC上,且AB: AD =5: 2 , AE:EC=3:2 , S A ADE =12平方厘米,求△ ABC的面积. 【解析】连接BE , S A ADE : S A ABE= AD: AB =2:5 =(2 3): (5 3) S A ABE : S A ABC=AE: AC =3:(3 2)=(3 5): 1(3 2) 5】, 所以S A ADE : S A ABC - (3 2) : 5 (3 2^ - 6 : 25,设S A ADE = 6 份,贝V S A ABC = 25 份,S A ADE =12 平方厘 米,所以1份是2平方厘米,25份就是50平方厘米,△ ABC的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 【例3】如图所示,在平行四边形ABCD中,E为AB的中点,AF =2CF,三角形AFE(图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米? ADE的面积等于1,那 = 15S ADE =15 . 【巩固】 【解析】连接AD . 【解 析】

小学奥数-几何五大模型(蝴蝶模型)整理版

任意四边形、梯形与相似模型 卜亠\ 模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): D S1: S2 = S4: S3或者S S3 =S2 S4 ② AO : OC =[S S2 : S4 S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是 6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC的面积:⑵AG:GC= ? 【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ; ⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??) 【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。如果三角形ABD的面积等于三角形BCD的

面积的 1 ,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。 3 【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD于G,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:T AO :OC = S ABD: S BDC =1 : 3 , 二OC =2 3 =6 , ??? OC:OD =6:3 2:1 . 解法二:作AH _BD 于H , CG_BD 于G . ?- AH」CG , 3 1 ?- AO CO , 3 ?OC =2 3=6 , ?OC:OD =6:3 =2:1 ? 【例3】如图,平行四边形ABCD的对角线交于O点,A CEF、△OEF、△ODF、△BOE的面积依次是2、 4、4和6。求:⑴求A OCF的面积;⑵求A GCE的面积。 【解析】⑴根据题意可知,△BCD的面积为2 4 4 ^16,那么△BCO和:CDO的面积都是16亠2=8 , 所以A OCF 的面积为8—4=4; ⑵由于△ BCO的面积为8, △BOE的面积为6,所以A OCE的面积为8-6=2 , 根据蝴蝶定理,EG:FG 二 Sg E:S.COF =2:4 =1:2,所以S.GCE:S.GCF = EG : FG =1:2 , 1 1 2 那么S GCE S CEF 2 ~~? 1+2 3 3 【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? S 'ABD S BCD 3审 S AOD =—S DOC 3

六年级奥数专题几何五大模型鸟头模型

六年级奥数专题几何五大 模型鸟头模型 The latest revision on November 22, 2020

几何五大模型——鸟头模型 本讲要点 一两点都在边上:鸟头定理: (现出“鸟头模型”。然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。最后真实的鸟头隐去,只留下几何模型。最后按一下,出公式。) 二一点在边上,一点在边的延长线上:

例1 如图,AD=DB ,AE=EF=FC ,已知阴影部分面积为5平方厘米,△ABC的面积是平方厘米. 例2 例2 (1)如图在△ABC中,D、E分别是AB,AC上的点,且AD:AB=2:5, AE:AC=4:7,△ABC的面积是16平方厘米,求△ABC的面积。 (2)如图在△ABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE 的面积是12平方厘米,求△ABC的面积。 例3 已知△DEF的面积为12平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC的面积。 例4 三角形ABC面积为1,AB边延长一倍到D,BC延长2倍到E,CA延长3倍到F,问三角形DEF的面积为多少 例5 长方形ABCD面积为120,EF为AD上的三等分点,G、H、I为DC上的四等分点,阴影面积是多大

如图,过平行四边形ABCD 内的一点P 作边AD 、BC 的平行线EF 、GH ,若PBD ?的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米 1. 如下左图,在ABC △中,D 、E 分别是BC 、AB 的三等分点,且ABC △的面积是54,求 CDE △的面积。 2. 如图,长方形ABCD 的面积是1,M 是AD 边的中点,N 在AB 边上,且12AN BN =.那么,阴影部分的面积等 于 . 3. 如图以ABC △的三边分别向外做三个正方形ABIH 、ACFG 、BCED ,连接HG 、EF 、 ID ,又得到三个三角形,已知六边形DEFGHI 的面积是77平方厘米,三个正方形的面积分别是9、16、36平方厘米,则三角形ABC 的面积是多少 4. 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使 2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积。 5. 把四边形ABCD 的各边都延长2倍,得到一个新的四边形EFGH 。如果ABCD 的面积是5 平方厘米,则EFGH 的面积是多少 家庭作业 例6 A C E

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

小学奥数几何五大模型

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示, S[sub]1[/sub]:S[sub]2[/sub]=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b; 4、在一组平行线之间的等积变形,如图③所示, S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果 S[sub]△ACD[/sub]=S[sub]△BCD[/sub], 则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理!

如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]: S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]: S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]: S[sub]△ABC[/sub]=S[sub]△ABE[/sub]: (S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC ,因此S[sub]△ADE[/sub]:S[sub]△ABC[/su b]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2, △ADE的面积为12平方厘米,求ΔABC的面积。

小学奥数-几何五大模型

模型四 相似三角形模型 (一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:。 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。 三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。 【例 1】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长 度是多少? 【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD , 所以::4:161:4BF FC BE CD ===,所以4 10814 FC =?=+. 【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。 如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大? 【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。 【例 3】 如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。 【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=, 22:2:54:25ADE ABC S S ==△△, 任意四边形、梯形与相似模型

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

小学奥数平面几何五大模型

小学奥数平面几何五大定律 一、等积模型 图(1) 图(2) 图(3) 图(4) ① 等底等高的两个三角形面积相等 如图(1):D 为BC 中点,则S△ABD=S△ACD 如图(4):l1平行于l2,则S△ACD=S△BCD ② 两个三角形高相等,面积比等于它们的底之比 如图(2): S △ABDS △ACD=BDCD ③ 两个三角形底相等,面积比等于它们的高之比 如图(3):BC=EF ,则 S △ABCS △DEF=h1h2 ④ 夹在一组平行线之间的等积变形 如图(4):l1平行于l2 ,则 S△ABD=S△ACD 反之如果S△ABD=S△ACD,则可知直线l1平行于l2 ⑤ 等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平 行四边形) ⑥ 三角形面积等于与它等底等高的平行四边形面积的一半 ⑦ 两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底 相等,面积比等于它们的高之比 二、共角定理(鸟头定理) 两个三角形中有一个角相等或互补(两个角之和=180O ),这两个三角形叫做共角三角形. D B h A B D C h1 h2 l2 l2 B C h1 F E D h2 B C D h

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 共角 互补角 图(1) 图(2) 如图(1):在△ABC 中,D 、E 分别是AB 、AC 上的点,△ABC 与△ADE 共∠A 如图(2):D 在BA 的延长线上,E 在AC 上;∠BAC+∠BAC =180O (互补), 则: S △ABC :S △ADE =(AB ×AC):(AD ×AE);或 S △ABCS △ADE=AB × ACAD × AE 三、相似模型 数学上,相似指两个图形的形状完全相同,其中一个图形能通过放大、缩小、平移、旋转、镜像等方式变成另一个。 相似比:是指两个相似图形的对应边的比值。 相似符号:“∽” 相似三角形:三角分别相等,三边成比例的两个三角形叫做相似三角形 相似三角形传递性:如果图A 相似于图B ,图B 相似于C ,则 A 相似C 即:图A ∽图B ,图B ∽图C ;则,图A ∽图B ∽图C a 顺时针旋转90度 a 翻转 a 缩小 图(1) 图(2) 图(3) 图(4) c a d b A B C D E A D E F C B D E O B A

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

小学奥数几何五大模型(蝴蝶模型)

模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系 (“蝴蝶定理”):S 4S 3 S 2S 1O D C B A ①12 43::S S S S 或者1324S S S S ②124 3::AO OC S S S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是 6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 根据蝴蝶定理求得312 1.5AOD S △平方千米,公园四边形ABCD 的面积是123 1.57.5平方千米,所以人工湖的面积是7.5 6.920.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵ :AG GC ?A B C D G 321 ⑴根据蝴蝶定理,123BGC S ,那么6BGC S ;⑵根据蝴蝶定理,:12:361:3AG GC .(???)任意四边形、梯形与相似模型

【例2】四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形 BCD 的面积的1 3,且2AO ,3DO ,那么CO 的长度是DO 的长度的_________倍。A B C D O H G A B C D O 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形” ,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件 :1:3ABD BCD S S ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知 条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造 这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学 生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ,∴236OC , ∴:6:32:1OC OD . 解法二:作AH BD 于H ,CG BD 于G .∵1 3 ABD BCD S S ,∴1 3AH CG ,∴13AOD DOC S S ,∴13AO CO ,∴236OC , ∴:6:32:1OC OD . 【例3】如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是 2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。 O G F E D C B A ⑴根据题意可知,BCD △的面积为244616,那么BCO △和CDO 的面积都是162 8,所以OCF △的面积为844;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862, 根据蝴蝶定理, ::2:41:2COE COF EG FG S S ,所以::1:2GCE GCF S S EG FG ,那么1 1 2 21233 GCE CEF S S .【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

相关主题
文本预览
相关文档 最新文档