当前位置:文档之家› 高二数学周测卷--导数及其应用(含答案)

高二数学周测卷--导数及其应用(含答案)

高二数学周测卷--导数及其应用(含答案)
高二数学周测卷--导数及其应用(含答案)

2019—2020学年第二学期高二数学周测试卷 2020.3.1

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设函数y =f (x )在(a ,b )上可导,则f (x )在(a ,b )上为增函数是f ′(x )>0的( )

A .必要不充分条件

B .充分不必要条件

C .充分必要条件

D .既不充分也不必要条件

解析 y =f (x )在(a ,b )上f ′(x )>0?y =f (x )在(a ,b )上是增函数,反之,y =f (x )在(a ,b )上是增函数?f ′(x )≥0?/f ′(x )>0.

答案A

2.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程是2x +y -1=0,则( )

A .f ′(x 0)>0

B .f ′(x 0)<0

C .f ′(x 0)=0

D .f ′(x 0)不存在

解析曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率为f ′(x 0)=-2<0. 答案B

3.曲线y =13x 3-2在点(-1,-5

3)处切线的倾斜角为( ) A .30° B .45° C .135° D .150° 解析y ′=x 2,k =tan α=y ′|x =-1=(-1)2=1, ∴α=45°. 答案B

4.曲线f (x )=x 3+x -2的一条切线平行于直线y =4x -1,则切点P 0的坐标为( )

A.(0,-1)或(1,0) B.(1,0)或(-1,-4) C.(-1,-4)或(0,-2) D.(1,0)或(2,8)

解析设P0(x0,y0),则f′(x0)=3x20+1=4,

∴x20=1,∴x0=1,或x0=-1.

∴P0的坐标为(1,0)或(-1,-4).

答案B

5.下列函数中,在(0,+∞)上为增函数的是( )

A.y=sin2x B.y=x3-x

C.y=x e x D.y=-x+ln(1+x)

解析对于C,有y′=(x e x)′=e x+x e x=e x(x+1)>0.

答案C

6.已知函数f(x)=x3-3x2-9x,x∈(-2,2),则f(x)有( ) A.极大值5,极小值为-27 B.极大值5,极小值为-11 C.极大值5,无极小值D.极小值-27,无极大值解析f′(x)=3x2-6x-9

=3(x+1)(x-3).

当x<-1时,f′(x)>0,

当-1

∴x=-1是f(x)的极大值点.

且极大值为f(-1)=5,在(-2,2)内无极小值.

答案C

7.函数y=2x3+x2的单调递增区间是( )

A .(-∞,-13)∪(0,+∞)

B .(-1

6,+∞) C .(-∞,-13)和(0,+∞) D .(-∞,-1

6) 解析y ′=6x 2+2x =2x (3x +1), 令y ′>0,得x <-1

3,或x >0. ∴函数y =2x 3+x 2的单调增区间为 (-∞,-1

3)和(0,+∞). 答案C

8.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f (x )在区间[-2,-1]上是增函数; ②x =-1是f (x )的极小值点;

③f (x )在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f (x )的极小值点. 其中,所有正确判断的序号是( )

A .①②

B .②③

C .③④

D .①②③④

解析由函数y =f (x )的导函数的图象可知:

(1)f (x )在区间[-2,-1]上是减函数,在[-1,2]上是增函数,在[2,4]上是减函数;

(2)f (x )在x =-1处取得极小值,在x =2处取得极大值.故②③正确.

答案 B

9.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 解析f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.

答案B

10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在?

?

???-∞,-13内 B .二个零点,分别在? ?

???-∞,-13,(0,+∞)内

C .三个零点,分别在?

?

?

??-∞,-13,?

??

??-13,0,(1,+∞)内

D .三个零点,分别在? ?

?

??-∞,-13,(0,1),(1,+∞)内

解析 利用导数法易得函数f (x )在(-∞,-1

3)内单调递减,在

? ????-13,1内单调递增,在(1,+∞)内单调递减,而f ? ??

??-13=-59

27<0,

f (1)=-1<0,故函数f (x )的图象与x 轴仅有一个交点,且交点横坐标在? ?

?

??-∞,-13内 答案A

11.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )

A .f (0)+f (2)<2f (1)

B .f (0)+f (2)≤2f (1)

C .f (0)+f (2)≥2f (1)

D .f (0)+f (2)>2f (1) 解析当1≤x ≤2时,f ′(x )≥0,则f (2)≥f (1);

而当0≤x ≤1时,f ′(x )≤0,则f (1)≤f (0), 从而f (0)+f (2)≥2f (1). 答案C

12.设f (x )是定义在R 上的可导函数,且满足f ′(x )>f (x ),对任意的正数a ,下面不等式恒成立的是( )

A .f (a )

B .f (a )>e a f (0)

C .f (a )

D .f (a )>f (0)

e a 解析 构造函数g (x )=

f (x )

e x ,则g ′(x )=

f ′(x )-f (x )e x >0,故函数

g (x )=f (x )e x 在R 上单调递增,所以g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a

f (0). 答案B

二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)

13.若函数f (x )=13x 3

-f ′(1)·x 2+2x +5,则f ′(2)=________.

解析 ∵f ′(x )=x 2-2f ′(1)x +2, ∴f ′(1)=1-2f ′(1)+2. ∴f ′(1)=1. ∴f ′(x )=x 2-2x +2. ∴f ′(2)=22-2×2+2=2.

答案2

14.过点(2,0)且与曲线y =1

x 相切的直线的方程为________.

解析:设所求切线与曲线的切点为P (x 0,y 0), ∵y ′=-1x 2,∴y ′ |x =x 0=-1

x 20

,所求切线的方程为

y -y 0=-1

x 20

(x -x 0).

∵点(2,0)在切线上,

∴0-y 0=-1

x 20

(2-x 0),∴x 20y 0=2-x 0.①

又∵x 0y 0=1,②

由①②解得?????

x 0=1,y 0

=1, ∴所求直线方程为x +y -2=0.

答案x +y -2=0.

15.设函数f (x )=x m

+ax 的导数为f ′(x )=2x +1,则数列????

??

1f (n )(n

∈N +)的前n 项和是________.

解析:f ′(x )=mx

m -1

+a =2x +1,得?

????

m =2,

a =1.

则f (x )=x 2+x ,1f (n )=1n (n +1)=1n -1

n +1

其和为? ????11-12+? ????12-13+? ????13-14+…+? ??

??1n -1n +1=1-1n +1=n

n +1.

答案

n

n +1

16.已知函数f (x )=12mx 2

+ln x -2x 在定义域内是增函数,则实数m 的取值范围为________.

解析:根据题意,知f ′(x )=mx +1

x -2≥0对一切x >0恒成立,∴m ≥

-? ????1x 2+2x ,令g (x )=-? ????1x 2+2x =-? ??

??1x -12+1,则当1x =1时,函数g (x )取得最大值1,故m ≥1.

答案 [1,+∞)

三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)

17.(10分)已知函数f(x)=13x 3

-4x +m 在区间(-∞,+∞)上有极大值283.

(1)求实数m 的值;

(2)求函数f(x)在区间(-∞,+∞)的极小值. 解 f ′(x)=x 2-4=(x +2)(x -2). 令f ′(x)=0,得x =-2,或x =2.

故f(x)的增区间(-∞,-2)和(2,+∞),减区间为(-2,2). (1)当x =-2,f(x)取得极大值, 故f(-2)=-83+8+m =28

3, ∴m =4.

(2)由(1)得f(x)=1

3x 3-4x +4, 又当x =2时,f(x)有极小值f(2)=-4

3.

18.(12分)已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在

点M ))1(,1(--f 处的切线方程为076=+-y x . (1)求函数)(x f y =的解析式; (2)求函数)(x f y =的单调区间.

解(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,

2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x 知

.

6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==?

??=-=-???=+-+-=+-∴c b c b c b c b c b 解得即故所求的解析式是 .233)(23+--=x x x x f

(2).012,0363.363)(222=--=----='x x x x x x x f 即令解得

.21,2121+=-=x x 当;0)(,21,21>'+>-

.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函

数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.

19.(12分) 已知函数323()(2)632

f x ax a x x =-++- (1)当2a >时,求函数()f x 极小值; (2)试讨论曲线()y f x =与x 轴公共点的个数

解(1)2a >时 '22

()33(2)63()(1),f x ax a x a x x a

=-++=--

由0)(>'x f 得 a

x x 2

1<>或 由0)(<'x f 得

12

<

∴()f x 极小值为(1)2

a

f =-

(2)①若0a =,则2()3(1)f x x =--,()f x ∴的图像与x 轴只有一个交点; ②若0a <, ∴()f x 极大值为(1)02a f =-

>,()f x Q 的极小值为2

()0f a

<, ()f x ∴的图像与x 轴有三个交点;

③若02a <<,()f x 的图像与x 轴只有一个交点;

④若2a =,则'2()6(1)0f x x =-≥,()f x ∴的图像与x 轴只有一个交点;

⑤若2a >,由(1)知()f x 的极大值为22133

()4()044

f a a =---<,()f x ∴的图像

与x 轴只有一个交点;

综上知,若0,()a f x ≥的图像与x 轴只有一个交点;若0a <,()f x 的图像与x 轴有三个交点。

20.(12分)设函数f (x )=a 3x 3

+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两根分别为1,4.

(1)当a =3,且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围. 解 由f (x )=a

3x 3+bx 2+cx +d ,得

f ′(x )=ax 2+2bx +c ,∵f ′(x )-9x =ax 2+2bx +c -9x =0的两根分别为1,4,

∴??

?

a +2

b +

c -9=0,16a +8b +c -36=0,

(*)

(1)当a =3时,由(*)得??

?

2b +c -6=0,

8b +c +12=0,

解得b =-3,c =12.

又∵曲线y =f (x )过原点,∴d =0. 故f (x )=x 3-3x 2+12x .

(2)由于a >0,所以“f (x )=a

3x 3+bx 2+cx +d 在(-∞,+∞)内无极

值点”,等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.

由(*)式得2b =9-5a ,c =4a . 又Δ=(2b )2-4ac =9(a -1)(a -9),

解??

?

a >0,

Δ=9(a -1)(a -9)≤0,

得a ∈[1,9],

即a 的取值范围是[1,9].

21.(12分)已知函数f (x )=ax 3+bx 2的图像经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.

(1)求实数a ,b 的值;

(2)若函数f (x )在区间[m ,m +1]上单调递增,求m 的取值范围. 解 (1)∵f (x )=ax 3+bx 2的图像经过点M (1,4), ∴a +b =4.①

又f ′(x )=3ax 2+2bx ,则

f ′(1)=3a +2b ,由条件f ′(1)(-1

9)=-1, 得3a +2b =9②

由①、②解得a =1,b =3. (2)f (x )=x 3+3x 2,f ′(x )=3x 2+6x ,

令f ′(x )=3x 2+6x ≥0,得x ≥0,或x ≤-2,

若函数f (x )在区间[m ,m +1]上单调递增,则[m ,m +1]?(-∞,-2]∪[0,+∞),

∴m ≥0,或m +1≤-2,即m ≥0,或m ≤-3, ∴m 的取值范围是(-∞,-3]∪[0,+∞). 22.(12分)已知函数f (x )=(x +1)ln x -x +1. (1)若xf ′(x )≤x 2+ax +1,求a 的取值范围; (2)证明:(x -1)f (x )≥0.

解 (1)f ′(x )=x +1x +ln x -1=ln x +1

x , xf ′(x )=x ln x +1,

题设xf ′(x )≤x 2+ax +1等价于ln x -x ≤a . 令g (x )=ln x -x ,则g ′(x )=1

x -1. 当00; 当x ≥1时,g ′(x )≤0, x =1是g (x )的最大值点, g (x )≤g (1)=-1.

综上,a 的取值范围是[-1,+∞). (2)由(1)知,g (x )≤g (1)=-1, 即g (x )+1≤0,即ln x -x +1≤0, 当0

当x ≥1时,

f (x )=ln x +(x ln x -x +1) =ln x +x (ln x +1

x -1) =ln x -x (ln 1x -1

x +1)≥0. 所以(x -1)f (x )≥0.

高二年级理科数学每周一练测试试卷

新建二中高二年级(理科)数学周练(1) 命题:董向东 9月21日 一.选择题(每小题5分,共60分) 1.下列命题正确的是( ) A .若直线的斜率存在,则必有倾斜角α与它对应 B .若直线的倾斜角存在,则必有斜率与它对应 C .直线的斜率为k ,则这条直线的倾斜角为arctan k D .直线的倾斜角为α,则这条直线的斜率为tan α 2.若),(y x M 在直线上012=++y x 移动,则y x 42+的最小值为…………… ( ) A. 2 2 B.2 C.22 D.24 3.直线()cos 1y x R αα=+∈的倾斜角的取值范围是( ) A .[0, ] B .[0, π] C .[-, ] D .30,44πππ???????????? , 4.过点()2,3P 与()1,5Q 的直线PQ 的倾斜角为( ) A .arctan 2 B .()arctan 2- C . arctan 2- D .arctan 2π- 5.过点()()2,,,4A m B m -的直线的倾斜角为arctan 2+,则实数m 的值为( ) A .2 B .10 C .-8 D .0 6.已知平面上直线l 的方向向量),5 3 ,54(-=点O (0.0) 和A (1,-2) 在l 上的射影分别 是,,A O ''则,e A O λ=''其中=λ ( ) A.511 B. 511 - C.2 D. 2- 7.与直线3x -4y +5=0关于x 轴对称的直线方程为 ( ) A. 3x +4y -5=0 B. -3x +4y -5=0 C. 3x +4y +5=0 D.-3x +4y +5=0 8.点(),P a b ab +在第二象限内,则0bx ay ab +-=直线不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若直线()2360t x y -++=不经过第二象限,则t 的取值范围是( ) A .(, +∞) B .32??-∞ ???, C .[23, +∞] D .32? ?-∞ ?? ?, 10.直线l 过点()1,2P -且与以()()2,3,3,0A B --为端点的线段相交,求直线l 的斜率的取值范围( ) A .1[,5]2- B .12??-∞- ???, C .[)152? ?-∞-+∞ ? ??,, D . [)5+∞, 11.过点()2,1M 的直线l 与x 轴、y 轴的正半轴分别交于P 、Q 两点,且2MQ MP =, 则直线l 的方程为( ) A .240x y +-= B .20x y -= C .10x y --= D .30x y +-= 12.过点)1,1(P 作直线l ,与两坐标相交,所得三角形面积为10,直线l 有………( ) A.1条 B.2条 C.3条 D.4条 二.填空题(每小题4分,共16分) 13.若直线l 的倾斜角是连接()()3,5,0,9P Q --两点的直线的倾斜角的2倍,则直线l 的斜率为 14.已知三点()()2,3,4,3,5,2m A B C ?? - ??? 在同一直线上,则m 的值为 15.一条直线过点()5,4P -,且与两坐标轴围成的三角形的面积为5的直线的方程为 16.已知△ABC 的重心13,26 G ?? ??? ,AB 的中点5 ,14D ??-- ?? ? ,BC 的中点11 ,44 E ??- ?? ? ,则顶点A 的坐标 三.解答题(17~18题每小题10分,19~20题每小题12分,共44分) 17.(本小题10分)直线:24l y x =-与x 轴的交点为M ,把直线l 绕点M 逆时针方向旋转045,求得到的直线方程。 18.(本小题10分)三条直线123,,l l l 过同一点()4,2M --,其倾斜角之比为1:2:4,已知直线2l 的方程是3440x y -+=,求直线13,l l 的方程。 19.(本小题12分)设直线l 的方程为(1)20a x y a +++-=(a R ∈) (1)求直线l 所过的定点坐标; (2)若l 在两坐标轴上的截距相等,求直线l 的方程; 2π4π6π2 π 2 π 23

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高二数学导数知识要点总结

高二数学《导数》知识要点总结 导数:导数的意义-导数公式-导数应用 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/表示过曲线y=f上P)切线斜率。V=s/表示即时速度。a=v/表示加速度。 3.常见函数的导数公式:①;②;③; ⑤;⑥;⑦;⑧。 4.导数的四则运算法则: 5.导数的应用: 利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 求极值的步骤: ①求导数;

②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; 求可导函数最大值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。 导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧! 导数是微积分中的重要基础概念。当函数y=f 的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'或df/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线

斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f,x↦f'也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数y=f在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,也在该邻域内时,相应地函数取得增量Δy=f-f;如果Δy与Δx之比当Δx →0时极限存在,则称函数y=f在点x0处可导,并称这个极限为函数y=f在点x0处的导数记为f',也记作y'│x=x0或dy/dx│x=x0

高二数学(必修五,选修2-1)周测

高二周测数学试题卷(C 班) 学校:___________姓名:___________班级:___________ 第I 卷(选择题) 一、选择题 1.已知命题与命题,若命题:为假命题,则下列说法正确 就是( ) A 、 真,真 B 、 假,真 C 、 真,假 D 、 假,假 2.若等差数列{a n }得前5项与S 5=30,且a 2=7,则a 7 = ( ) A 、0 B 、1 C 、2 D 、3 3.等比数列{}n a 前n 项与为n S ,3=q ,则=4 4a S ( ) A.940 B 、 980 C 、 2740 D 、 2780 4.“0若:,则b a 1 1<,那么“p ?”就是( ) A 、若b a >,则b a 11≥ B 、若b a >,则不一定有b a 1 1< C 、若b a ≤,则b a 11< D 、若b a ≤,则b a 1 1≥ 10.不等式022 >--x x 得解集为( ) A. }12|{-<>x x x 或 B. }21|{<<-x x C. }12|{<<-x x D. }21|{-<>x x x 或 11.点A(1,1)在直线l:mx+ny=1上,则mn 得最大值为( ) A. B. C. D.1 12.ABC ?得内角A , B , C 所对得边分别为a , b , c , 2a =, 2b =,

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

(word完整版)高二数学导数单元测试题(有答案)

高二数学导数单元测试题(有答案) (一).选择题 (1)曲线32 31y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (2) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (3) 函数13)(2 3 +-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (4) 函数,93)(2 3 -++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83 -=的图象上,其切线的倾斜角小于 4 π 的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3 ()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3 ()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x = +在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 (二).填空题 (1).垂直于直线2x+6y +1=0且与曲线y = x 3 +3x -5相切的直线方程是 。 (2).设 f ( x ) = x 3 - 2 1x 2 -2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 . (3).函数y = f ( x ) = x 3+ax 2+bx +a 2 ,在x = 1时,有极值10,则a = ,b = 。 (4).已知函数32 ()45f x x bx ax =+++在3 ,12x x ==-处有极值,那么a = ;b = (5).已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 (6).已知函数32 ()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一) 时间:120分钟总分:150分 一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx 2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则() A . a = 1, b = 1 B . a =— 1, b = 1 C . a = 1, b =— 1 D . a =— 1, b =— 1 3. 设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =( ) In2 A . e 2 B . e C^^ D . ln2 4. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( ) B . f ‘ (x) = 2 x sinx — x cosx , sinx 厂 C . f (x)= 2 x + x cosx D . f ‘ sinx 厂 (x)= 2 x — x cosx 1 -3 -3

6. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:

①f(x)在区间[—2,—1]上是增函数; ②x=—1是f(x)的极小值点; ③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数; ④x= 2是f(x)的极小值点. 其中,所有正确判断的序号是() A .①② B .②③C.③④ D .①②③④ 7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是() A. O w a w 21 B. a= 0 或a = 7 C. a<0 或a>21 D. a= 0 或a= 21 8某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)() A . 30 元B. 60 元C. 28 000元D. 23 000 元 x 9. 函数f(x) = —g(a

高二数学导数测试题(经典版)

1 / 4 一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23 或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223 πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( 3 x ). C .(3,)-+∞ D .(,3)-∞- 7.已知函数32 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小 值分别为( ). A .427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B.417 C.2ln 21 D.2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ).

高二数学周测7

高二数学周测7 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若椭圆的一个焦点是,则实数( ) A . B . C . D . 2.直线1:60l x my ++=和()2:2320l m x y m -++=平行,则m 的值为( ) A .1-或3 B .3 C .1- D .1或3- 3.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是( ) A .4x +3y =0 B .4x -3y =0或x +y +1=0 C .4x -3y =0 D .4x +3y =0或x +y +1=0 4.若双曲线(,)的一条渐近线方程为, 则其离心率为( ) A B . C D . 5.已知椭圆 的焦点在轴上,且焦距为,则等于( ) A .4 B .5 C .7 D .8 6.已知离心率为的双曲线(,)与椭圆有公共焦点,则双曲线的方程为( ) A . B . C . D . 7.已知双曲线的一条渐近线是,则双曲线的离心率是( ) A . B C . D . 8.已知圆2 2 :10210C x y y +-+=与双曲线22 221(0,0)x y a b a b -=>>的渐近线相切,则该 双曲线的离心率是( ) A B .5 3 C . 52 D 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中, 有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知点,点,直线:(其中),若直线与线段有公共点,则可能的取值是( ) A . B . C . D . 22 55x ky +=(0,2)k =521 1152522 31mx ny -=0m >0n >2y x =2 2 22 1102 x y m m +=--y 4m 222221x y a b -=0a >0b >22 184 x y + =221412x y - =221124x y -=22 13y x -=2213 x y -=2 2 2:1y C x b -=y =C 234)0,2(A )0,2(-B l 04)1()3(=--++λλλy x λ∈R l AB λ0124

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高二数学导数知识点总结

高二数学《导数》知识点总结 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。 二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。 三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。1823年

柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。 四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现

高二数学周测6

椭圆 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知两定点()()124,0,4,0F F -,点P 是平面上一动点,且128PF PF +=,则点P 的轨迹是 ( ) A . 圆 B . 直线 C . 椭圆 D . 线段 2、椭圆22 11216 x y + =的焦点坐标为 ( ) A. ()2,0± B. ()4,0± C. ()0,4± D. ()0,2± 3、设12,F F 是椭圆22 221(0)x y a b a b +=>>的左右焦点,过12,F F 作x 轴的垂线交椭圆四点 构成一个正方形,则椭圆的离心率e 为( ) A. B. C. 2 D. 4、AB 为过椭圆22 221x y a b +=中心的弦, (),0F c 为椭圆的右焦点,则AFB 面积的最 大值是( )A. bc B. ab C. ac D. 2b 5.一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为( ) A. 4 B. 2 C. 2 D. 1 2 6、若(),0F c 是椭圆22 221x y a b +=的右焦点, F 与椭圆上点的距离的最大值为M ,最小 值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是 A . 2,b c a ?? ± ??? B . 2,b c a ?? -± ?? ? C . ()0,b ± D . 不存在 7、已知,A B 是椭圆22 2:12x y E a + =的左、右顶点,M 是E 上不同于,A B 的任意一点,若直线,AM BM 的斜率之积为4 9 -,则E 的焦距为 A . B . C . 2 3 D 8、已知椭圆22 221(0)x y a b a b +=>>的左右焦点分别为12,F F ,点Q 为椭圆上一点. 12 QF F ?的重心为G ,内心为I ,且12GI F F λ=,则该椭圆的离心率为 A . 12 B . C . 13 D .

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( ). 6.函数3 ( )2f x x ax =+-在区间[1,) +∞内是增函数,则实数a 的取值范围是( ). A .[3,)+∞ B .[3,)-+∞ C .(3,)-+∞ D .(,3)-∞- 7.已知函数3 2 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为( ). '()f x

A . 427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B. 4 17 C. 2ln 21 D. 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A .01b << B .1b < C .0b > D .12 b < 10.21y ax =+的图像与直线y x =相切,则a 的值为( ). A .18 B .14 C .1 2 D .1 11. 已知函数()x x x f cos sin +=,则=)4 ('π f ( ) A. 2 B.0 C. 22 D. 2- 12.函数3 ()128f x x x =-+在区间[3,3]-上的最大值是( ) A. 32 B. 16 C. 24 D. 17 13.已知 (m 为常数)在 上有最大值3,那么此函数在 上的最小值为 ( ) A . B . C . D . 14.dx e e x x ? -+1 0)(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 二、填空题(每小题5分,共30分) 15.由定积分的几何意义可知? --2 22 4x =_________. 16.函数 )0(ln )(>=x x x x f 的单调递增区间是 . 17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 18.设 是偶函数,若曲线 在点 处的切线的斜率为1,则该曲线在 处的切线的斜率为_________.

江苏省郑集高级中学2020-2021学年高二上学期周练(一)数学试卷(无答案)

江苏省郑集高级中学高二数学周练试题 (本卷满分:150分,考试时间:120分钟) 一、单项选择题:本大题共8小题,每小题5分,共40分。 1.数列3,3,15,21,…,则33是这个数列的第( ) A .8项 B .7项 C .6项 D .5项 2.已知集合}22{},032{2<≤-=≥--=x x B x x x A ,则=B A ( ) ]1,2.[--A )2,1.[-B ]1,1.[-C )2,1.[D 3.若数列{}n a 为等差数列,99198S =,则4849505152a a a a a ++++=( ) A .7 B .8 C .10 D .11 4.已知等比数列{}n a 的前n 项和为n S ,且54S =,1010S =,则15S =( ) A .16 B .19 C .20 D .25 5.若0,0,a b c d >><<则一定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c < 6.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是( ) A .3 B .4 C .92 D .112 7.圆224210x y x y ++--=上存在两点关于直线()2200,0ax by a b -+=>>对称,则14a b +的最小值为( ) A .8 B .9 C .16 D .18 8.古希腊人常用小石子在沙滩上摆成各种形状来研究数, 例 如:他们研究过图①中的1,3,6,10,...,由于这些数能表示成 三角形,将其称为三角形数;类似地,将图②中的 1,4,9,16,...,这样的数称为正方形数.下列数中既是三角形 数又是正方形数的是( ) A .189 B .1024 C .1225 D .1378

人教A版高中数学选修《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分) 已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f

相关主题
文本预览
相关文档 最新文档