当前位置:文档之家› 基因工程(现代生物技术)应用前景与发展

基因工程(现代生物技术)应用前景与发展

基因工程(现代生物技术)应用前景与发展
基因工程(现代生物技术)应用前景与发展

基因工程的发展现状及前景

摘要:

从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一近年来随着生物工程技术的发展,许多基因工程抗体陆续问世。基因工程研究和应用围涉及农业、工业、医药、能源、环保等许多领域。

关键字:

基因工程;基因工程抗体;前景;现状;发展

一、基因工程介绍

1、基本定义

生物学家于20世纪50年代发现了DNA的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。美国从1991年起,准备用15年时间完成人体基因组测序计划。[5]

基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体),使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。除了少数RNA病毒外,几乎所有生物的基因都存在于DNA结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination)。另外,DNA重组分子大都需在受体细胞中复制

扩增,故还可将基因工程表征为分子克隆或基因的无性繁殖(Molecular cloning)。

广义的基因工程定义为DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是外源基因重组、克隆和表达的设计与构建(即狭义的基因工程);而下游技术则涉及到含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。因此,广义的基因工程概念更倾向于工程学的畴。值得注意的是,广义的基因工程是一个高度统一的整体。上游DNA重组的设计必须以简化下游操作工艺和装备为指导思想,而下游过程则是上游基因重组蓝图的体现与保证,这是基因工程产业化的基本原则。[1]

二、基因工程发展

1、基因工程在农业生产

基因工程在农牧业生产上的应用主要是培育高产、优质或具有特殊用途的动植物新品种。近几年来,利用基因工程方法培养的转基因动植物在农业和畜牧业生产上取得了一系列的突破,尤其是在农业生产上推出了一批创新品种,显示出了巨大的发展潜力。

基因工程在农业方面的应用主要表现在两个方面。首先,是通过基因工程技术获得高产、稳产和具有优良品质的农作物。例如,用基因工程的方法可以改善粮食作物的蛋白质含量。

1981年,科学家将菜豆储存蛋白的基因转移到向日葵中,培育出了“向日葵豆”植株。如果以此作为技术基础,把大豆蛋白的基因转移到水稻、小麦等粮食作物中,就可以提高这些作物的蛋白质含量,改善它们的品质。

其次,是用基因工程的方法培育出具有各种抗逆性的作物新品种。自然界中细菌的种类是非常多的,在细菌身上几乎可以找到植物所需要的各种抗性,如抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等。如果将这些抗性基因转移到作物体,将从根本上改变作物的特性。1982年科学家把细菌中的抗卡那霉素基因转移到烟草、向日葵和胡萝卜等作物中,一举获得成功。此后短短的几年中,科学家又培育出了数十种具有抗病毒、抗虫、抗除草剂的作物新品种。如抗虫的

烟草、番茄、马铃薯、玉米、大豆、油菜、棉等作物,抗黄瓜花叶病毒、苜蓿花叶病毒的作物,以及抗除草剂的植物等。1993年,中国农业科学院的科学家成功地将云金芽孢杆菌中的抗虫基因转入棉植株,培育成了抗棉铃虫的转基因抗虫棉。[6]基因工程在畜牧养殖业上的应用也具有广阔的前景,科学家将某些特定基因与病毒DNA构成重组DNA,然后通过感染或显微注射技术将重组DNA转移到动物受精卵中。由这种受精卵发育成的动物可以获得人们所需要的各种优良品质,如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等。

1982年,美国科学家将人的生长素基因和牛的生长素基因分别注射到小白鼠的受精卵中,得到了体型巨大的“超级小鼠”。人们还用同样的方法,陆续获得自然界中从来就不曾有过的“超级绵羊”和“超级鱼”等动物。

科学家进行上述试验的目的,不仅在于培育出体型巨大品质优良的动物,更重要的是利用某些特定的外源基因在哺乳动物体的表达,从这些动物的乳腺细胞中获得人类所需要的各类物质,如激素、抗体及酶类等。

基因工程还可以为人类开辟新的食物来源。据报道,科学家用鸡蛋白基因在大肠杆菌和酵母菌中表达获得成功。这表明,有朝一日,人们将能够用发酵罐培养的大肠杆菌或酵母菌来生产人类所需要的卵清蛋白。不久的将来,人们还可以用基因工程的方法从微生物中获得人们所需要的糖类、脂肪和维生素等产品。(1)转基因技术转基因技术就是按照人们预先设计的生物蓝图,把所需要的基因从一种生物的细胞提取出来,在体外进行“外科手术”,然后把所需要的基因导入另一种生物的细胞中,从而有目的地改造生物的遗传特性,创造出符合人类需要的新品种。转基因技术能培养出多种快速生长的转基因鱼、转基因羊、产奶量高的转基因牛等,还能培育出抗旱、抗涝、抗盐碱、抗枯萎病和抗除草剂的转基因作物,还培育出抗虫作物,科学家将杀虫基因转入植物体后,植物体就能合成霉素蛋白,产生这种霉素蛋白基因的作物有烟草、马铃薯、番茄、棉花和水稻等,其中效益最大的是抗虫棉。[7](2)基因克隆技术“多莉的诞生”意味着人类可以利用动物的一个组织细胞,像翻录磁带或复印文件一样,大量生产出相同的生命体。利用它可以拯救濒临灭迹的物种,或是复制一些优良品种等等。然而在进一步细想克隆,却也着实让人深虑。首先,若是无节制地“复制”某种物种,就会打破自然界的生态平衡,破坏优胜劣汰的自然法则,给自然界带来了混乱。其次,

从理论上说“克隆”哺乳动物的成功,即为“克隆”人类准备了前提条件,再经过技术的不断改善,毫无疑问,不久以后就能“克隆”出人。对此大学生命科学院院长、省生物工程学会副理事长黄纯农教授认为,不必过分担心。他说,当前“克隆”技术还有完善的过程,暂时达不到大量“复制”人的地步。再者各地已相继制定了法令,为“克隆”人进行限制。当然,“克隆”技术的产生,归根到底是利大于弊,它将被广泛应用于人类,前景灿烂,方兴未艾。科学的进步和人的观念的变化,是无法阻止的。(3)应用基因技术的优点从前面可以看出,基因技术的突破,是科学家得以用传统育种专家难以想象的方式改良动植物品种,其优点是显而易见的。第一,可降低生产成本。一个品种的基因加入另一种基因,会使该品种特性发生变化,具备原品种所不具备的因子,从而增强了抗病、抗杂草或抗虫害能力。由此可减少植物农药和除草剂的用量,降低种植成本。并且动物死亡率明显降低,从而提高养殖业的经济效益。第二,可提高动植物产量。一种动植物的基因改良后,更容易适应环境,能更有效抵御各种灾害的袭击,并使产量更高。第三,转基因技术可以使开发动植物的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的品种,而基因工程技术培育出一种全新的动植物品种,时间可缩短一半。因此,有专家认为,不出多少年,转基因技术将改变世界。第四,转基因技术还可根据人们的需要,赋予农作物新的特性。例如可以使农作物自己释放出杀虫剂,可以使农作物在旱地或盐碱地上生长,或者生产出营养更为丰富的食品。

2、基因工程在医学上的发展

(1)基因工程制药

生产基因工程药品在药品生产中,有些药品是直接从生物体的组织、细胞或血液中提取的。由于受原料来源的限制,价格十分昂贵。用基因工程方法制造的“工程菌,可以高效率地生产出各种高质量、低成本的药品。如胰岛素、干扰素和乙肝疫苗等。基因工程药品是制药工业上的重大突破。

胰岛素是治疗糖尿病的特效药。一般临床上给病人注射用的胰岛素主要从猪、牛等家畜的胰腺中提取,每100 kg胰腺只能提取4~5 g胰岛素。用这种方法生产的胰岛素产量低,价格昂贵,远远不能满足社会的需要。1979年,科学家将动物体能够产生胰岛素的基因与大肠杆菌的DNA分子重组,并且在大肠杆菌表

达获得成功。这样,用2 000 L大肠杆菌培养液就可以提取100 g胰岛素,相当于从2 t猪胰腺中提取的量。1982年,美国一家基因公司用基因工程方法生产的胰岛素开始投入市场,其售价比用传统方法生产的胰岛素的售价降低了30%~50%。

干扰素是病毒侵入细胞后产生的一种糖蛋白。由于干扰素几乎能抵抗所有病毒引起的感染,如水痘、肝炎、狂犬病等病毒引起的感染,因此,它是一种抗病毒的特效药。此外,干扰素对治疗乳腺癌、骨髓癌、淋巴癌等癌症和某些白血病也有一定疗效。传统的干扰素生产方法是从人血液中的白细胞提取的,每300 L 血液只能提取出1 mg干扰素。1980~1982年,科学家用基因工程方法在大肠杆菌及酵母菌细胞获得了干扰素,从每1 kg细菌培养物中可以得到20~40 mg干扰素。从1987年开始,用基因工程方法生产的干扰素进入了工业化生产,并且大量投放市场。

目前,用基因工程方法生产的药物已经有六十余种,除胰岛素、干扰素外,还有白细胞介素、溶血栓剂、凝血因子、人造血液代用品,以及预防乙肝、狂犬病、百日咳、霍乱、伤寒、虐疾等疾病的各类疫苗。其中一部分药品已经商品化,还有一部分处于临床试验阶段。我国的第一个生物工业园区──生物技术工业园区已经正式兴建。1997年,我国自己生产的白细胞介素-2、干扰素、乙肝疫苗、人生长激素等几种基因工程药物也已经投产。[10]

用于基因诊断与基因治疗基因工程技术还可以直接用于基因的诊断和治疗。基因诊断是用放射性同位素(如32P)、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本上的遗传信息,达到检测疾病的目的。例如,肝炎病毒引起的传染病易于传播,给诊断和治疗都带来了很多困难,利用DNA 探针可以迅速地检出肝炎患者的病毒,为肝炎的诊断提供了一种快速简便的方法。目前用基因诊断方法已经能够检测出肠道病毒、单纯疱疹病毒等许多种病毒。基因诊断技术在诊断遗传性疾病方面发展得尤为迅速。目前人们已经可以对几十种遗传病进行产前诊断。例如,用β-珠蛋白的DNA探针可以检测出镰刀状细胞贫血症,用苯丙氨酸羟化酶基因探针可以检测出苯丙酮尿症。此外,基因诊断技术在肿瘤诊断中的应用也取得了重要成果,例如,用白血病患者细胞中分离出的癌基因制备的DNA探针,可以用来检测白血病。[8]

基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。例如,有一种人类遗传病叫做半乳糖血症,患这种病的人,由于细胞半乳糖苷转移酶基因缺陷而缺少半乳糖苷转移酶,因此当乳糖分解成半乳糖后,不能继续转化为葡萄糖,过多的半乳糖在体积聚,会引起肝、脑等功能受损。1971年,美国的一位科学家在体外做了这样一个试验,他用带有半乳糖苷转移酶基因的噬菌体侵染患者的离体组织细胞,结果发现这些组织细胞能够利用半乳糖了。这表明,用基因替换的方法治疗这种遗传病是可能的。当然,这仅仅是在人体外完成基因的表达,而要将基因转移到人体的细胞,还有许多技术上的难题需要解决。但是我们相信,不久的将来,人类一定能够用基因工程的方法治疗白化病、苯丙酮尿症等许多遗传病。随着基因工程的不断发展,许多疑难病症,如恶性肿瘤、艾滋病、心血管疾病,以及糖尿病等,也都可以被人类征服。[3]

(2)基因工程抗病毒疫苗为人类抵御病毒侵袭提供了用武之地。基因工程乙型肝炎疫苗、狂犬病疫苗、流行性出血热病毒疫苗、轮状病毒疫苗等应用于临床,提高了人类对各种病毒病的抵御能力。比如,乙型肝炎病毒疫苗的问世,使我国新生儿不再遭遇乙型肝炎病毒的侵袭,也降低了人群肝癌的发病率。又如,为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”,就是按照人类的设计,把“生物导弹”发射出去,精确地命中癌细胞,并炸死癌细胞而不伤害健康的细胞。就单克隆细胞而言,单克隆细胞在肿癌的诊断检测、显示定位、监测病变、监测疗效等方面也有重要价值。人类还通过基因工程生产抵御各种病菌、血吸虫、虐原虫等疫苗,提高人体对各种传染病的免疫力。脱氧核糖核酸或者基因疫苗的问世,变革了机体的免疫方式。如今,人们翘首关注困扰人类的艾滋病病毒(人类免疫缺陷病毒)疫苗的早日问世。基因工程抗体技术的发展,为克服单克隆抗体生产细胞株在生产过程中的不稳定性,为生产大量高效抗病毒疫苗提供了先进的生产工艺。

(3)基因工程治疗疾病临床实践已经表明,基因治病已经变革了整个医学的预防和治疗领域。。例如,有一种人类遗传病叫做半乳糖血症,患这种病的人,由于细胞半乳糖苷转移酶基因缺陷而缺少半乳糖苷转移酶,因此当乳糖分解成半乳糖后,不能继续转化为葡萄糖,过多的半乳糖在体积聚,会引起肝、脑等功能受损。1971年,美国的一位科学家在体外做了这样一个试验,他用带有半乳糖苷转

基因工程应用实例及基因工程前景展望

基因工程应用实例及基因工程前景展望 高一(6) 陈韬 1、什么是基因工程(又称基因拼接技术和DNA重组技 术)? 是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 2、原理? 基因重组:通过将外源基因通过体外重组后导入受体细胞内,从而使这个基因能在受体细胞内复制、转录、翻译表达。它是用人为的方法将所需要的某一供体生物的——DNA 提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中进行正常的复制和表达,从而获得新物种。 3、应用? (1)农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。

(2)环境保护 基因工程做成的DNA 探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 (3)医药卫生 1.基因工程药品的生产: ⑴基因工程胰岛素 ⑵基因工程干扰素 ⑶其它基因工程药物 2.基因诊断与基因治疗: ◆SCID 的基因工程治疗 1. 转基因鱼 2. 转基因牛 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 8.特殊动物 9.抗虫棉

对生物技术的认识与展望

对 生 物 技 术 的 认 识 与 展 望 系别:xxx 专业:xxx 姓名:xxx 学号:xxx

生物技术,有时也称生物工程,是指人们以现代生命科学为基础,结合其他基础科学的科学原理,采用先进的科学技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的。生物工程是20世纪70年代开始兴起的一门综合性学科。生命科学的飞速发展大大推动了生物工程的新技术开发和利用,其应用领域涉及到各个行业,并推动了一些领域的革命性变革。当前的生物技术还处于研究开发的初阶段,但是科学家断言,21实际将是以生物技术为代表的生命科学的世纪。生物技术是人们利用微生物、动植物体对物质原料进行加工,生产有价值的产物或进行有益过程的一门科学技术。通常它分为以下几个分支:发酵工程、基因工程、细胞工程、酶工程和生化工程。现代生物技术与计算机微电子技术、新材料、新能源、航天技术等被列为高科技,被认为是21世纪科学技术的核心。 全国生物技术的工厂数量在快速增加,目前在中国约有500多家民营的生物技术公司,其中约有300多家企业集中在生物医药技术领域。政府出台了一些优惠政策,在税收、金融、人才引进、进出口等方面对生物技术企业给予了大力支持。经过20多年的发展,中国的生物技术与产业已经开始了从引进仿制到自主创新的转变,从探索发现到产业化的转变。为促进生物产业加快发展,中央财政安排每年都安排几百个亿的资金,同时带动企业投资到11个科技重大专项,其中包括重大新药创制、艾滋病、转基因生物新品种培育和病毒性肝炎等重大传染病防治等。国内越来越多涉及生物技术的企业获得投资机构的投资。 根据《国家发改委生物产业十一五规划》,2005年,全球生物药品销售额达到600多亿美元,占整个医药工业的比重从1995年的不到4%迅速提高到11%;全球转基因农作物种植面积达到9000万公顷,10年间增长了50倍。全球范围内正在研制的2000多种生物药物80%已进入临床试验,6000多例转基因动植物经批准正在进行试验。同时,生物制造、生物能源、生物环保等一批新兴产业正在快速形成。生物科技革命将为人类社会发展提供新资源、新手段、新途径,引发医药、农业、能源、材料等领域新的产业革命,有效缓解人类社会可持续发展所面临的健康、食品、资源等重大问题,生物产业具有广阔的发展空间。预计到2020年,生物医药占全球药品的比重将超过1/3,生物质能源占世界能源消费的比重将达到5%左右,生物材料将替代10%-20%的化学材料。继信息产业之后,生

(word完整版)现代农业高技术的发展现状、方向和趋势

类别:综述 现代农业高技术的发展现状、方向和趋势 龚德平 现代农业是市场化、工业化、科学化、集约化、社会化、补贴与福利化以及可持续发展的农业。发展现代农业,就是用现代物资条件装备农业,用现代科学技术武装农业,用现代产业体系组织农业,用现代经营形式管理农业,用现代市场发展理念引领农业,用培养知识文化型农民发展农业。现代农业高技术是发展现代农业的核心。 (一)、现代农业高技术的发展现状 随着生物技术、信息技术、新材料技术等高技术的不断发展,现代农业高技术发展迅速。以生物技术、信息技术为代表的高技术不断向农业科技领域渗透和融合,逐渐形成了分子育种技术、转基因技术、数字农业技术、节水农业技术、食品加工技术、航天育种技术等农业高技术体系。 1、农业生物技术发展迅速,成为经济发展新的制高点,对科学、技术、方法、理念、产业、社会与伦理产生一系列的革命性影响。现代分子育种学与传统动植物育种技术的结合,促进了新兴分子育种技术的发展。近年来由于转基因生物对生态环境和人类健康影响尚存在一些科学意义上的不确定性,科技界纷纷把研究重点转向动、植物分子标记辅助选择技术,该技术具有高效、安全的突出优点,已经展示出部分常规育种技术无法比拟的优越性。以转基因为核心的现代生物技术产业成为当今世界发展最快、最活跃的农业高技术产业领域之一。农业生物药物技术研究取得了一

批重大突破,成为农业高技术研究领域角逐的重点领域,目前以基因重组技术为代表的生物技术是农业生物药物研究的核心技术。生物技术在理论和技术上不断取得突破,为现代农业高技术的孕育、成熟、发展创造了条件。同时,生物技术的迅猛发展,越来越直接地影响着人类的精神生活,冲击着传统的伦理观念,衍生出许多新的伦理道德问题。 2、农业信息技术与数字化技术日新月异,对传统农业的改造显示出强劲的动力。农业信息化技术与数字化技术的应用主要有数据库技术、农业专家系统、3S技术、农业网络技术以及精确农业技术等。农业专家系统最早于1986年出现在美国,现在专家系统通过网络传送到田间和饲养场正成为一种趋势;以3S技术(遥感技术、地理信息系统、全球定位系统)与精确农业技术为基础的精确农业已经成为当今世界农业发展的新潮流;农业现代高技术装备迅速地吸收应用电子与信息技术、新材料技术发展成就开发出智能、高效、多功能和大型化农业现代装备。与此同时,农业信息技术与数字化技术的不断发展,对社会物资生活、精神生活方式、以及人类物资、精神文明空间的拓展与延伸产生深刻的变革。 3、高技术引领驱动和支撑农业生产方式转变,成为世界现代化农业发展的根本标志。现代生物技术、信息技术和新材料技术的迅猛发展,为解决农业资源高效利用、生态环境保护等现代农业综合发展问题提供了新的技术途径,农业资源利用与生态环境技术研究主要集中在节水农业技术、新型肥料技术、农业废弃物综合利用技术等方面。目前节水农业研究的目标是不断提高作物水分利用率和利用效率,依据作物生理需水确定作物用水;在新型肥料技术方面,目前主要研究主要集中在纵横向动态平衡施肥

基因工程及其应用图文稿

基因工程及其应用文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

第2节基因工程及其应用(第1课时)知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA 重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究

传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的 水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是 指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么? 七、基因重组与基因工程比较

基因工程的发展与前景

基因工程的发展与前景 摘要:基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。本文将从基因工程的概况、发展、应用与前景进行介绍和总结。 关键词:基因工程;发展;前景 1 基因工程的概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔生医奖颁给发现DNA 限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。2000年,国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程。 2 基因工程的发展 1860至1870年,奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年,丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年,3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年,美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年,科学家成功分离出第一个基因。 1980年,科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年,科学家首次培育出世界第一个转基因植物转基因烟草。 1988年,K.Mullis发明了PCR技术。 1990年10月,被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1994年,中科院曾邦哲提出转基因禽类金蛋计划和“输卵管生物反应器

生命科学与生物技术对社会发展有何作用

生命科学与生物技术对社会发展有何作用 首先,生物技术对经济发展有着深远的影响。一方面,它可以改善农业生产,解决食品短缺问题,目前,世界人口仍然在大量地增加,许多国家首先要解决的就是人民的温饱问题,然而,耕地面积不但不会增加,反而还有减少的趋势,因此,用现代生物技术增加粮食产量是必经之路。具体的体现在以下五个方面: 一、利用生物技术可以提高作物产量和品质,科学家通过基因工程技术对生物进行基因转移,使生物体获得新的优良品性,培育抗逆的作物优良品系。目前设计的作物种类有马铃薯、油菜、烟草、玉米、水稻、番茄、甜菜、棉花、大豆等。对我国来说,人多地少,国家对生物技术极为重视,已经培育了水稻、棉花、小麦、甘蔗、橡胶等一大批作物新品系,有效提高作物产量和品质。 二、利用细胞工程技术和植物组织培养技术对优良品种进行大量的快速无性繁殖,实现植物种苗的工业化生产。利用植物微繁殖技术还可以培育出不带病毒的脱毒苗,由于植物的根尖或茎尖分生细胞常常是不带病毒的,用这种细胞在试管中进行无菌培养而繁育的小苗也是不带病毒的,减少了病毒感染的可能性,这一生物技术也广泛应用于花卉、果树、蔬菜、药用植物和农作物快速繁殖,实现商品化生产,提高经济效益。 三、利用生物技术还可以培育品质好、营养价值高的作物新品种。 四、利用生物技术进行生物固氮,减少化肥的使用量。现代农业均以化学肥料为施肥肥料,化肥的使用不可避免地带来了土地的板结和土壤肥力的下降,化肥的生产也导致了环境的污染。科学家正在利用生物技术将具有固氮能力的细菌的固氮基因转移到作物的根际周围的微生物体内,期待微生物固氮,减少化肥使用,既可以减少经济化肥,又可以预防环境污染。 五、利用生物技术发展生物农药,生产绿色食品。由于化学农药的毒副作用以及筛选新农药的艰难,生物农药的研究开发和利用显得十分重要。 另一方面,生物技术也利用于发展畜牧业生产。畜牧业在国家经济比例中占有重要位置,对国民经济的提高有很大支持作用。但是由于森林和草原资源有限,新型病毒的感染,传统的畜牧业发展已经不能满足现代生活的需要。利用生物技术将很大程度上解决这些棘手的问题。具体体现在以下两个方面: 一、动物的大量快速无性繁殖。“多莉”的产生,意味着动物细胞具有全能性,同样有可能进行动物的大量快速的无性繁殖, 它们具有更优良的品质。在这些优良品质的动物中,它们的抗病性、抗感染性得到提高,不容易发生瘟病,而且许多人类食用的动物蛋白质含量增加,脂肪量下降,提高人类健康。同时,科学家也致力研究优良草种和饲料,让动物减少患病,增强免疫力,更快的生长,而且具有更高的营养价值。由于品质的优良,畜牧业更加走向高端市场或国外,将有力带动养殖户和农场经济效益的提高,创造更多经济价值和社会财富。 其次,生物技术对社会的发展也有很深刻的影响。一方面,利用生物技术,可以提高生命质量,延长人类寿命。生物技术在医药领域的应用以及新药物开发、新诊疗技术、预防措施、新的治疗技术方面发展提供了最有效的手段。具体体现在以下几个方面: 二、利用生物技术进行疾病的预防和诊断,科学家研制出许多新型疫苗进入人体试验,有效控制了一些传染性疾病。利用细胞工程技术可以生产单克隆抗体,既可以用于疾病治疗,又可以用于疾病诊断。又如基因芯片是近年来发展起来的一种高通量、高特异性的DNA诊断新技术,用途十分广泛。 三、利用生物技术进行基因治疗,导入正常的基因来治疗由于基因缺陷而引起的疾病,目前已有设计恶性肿瘤、遗传病等多个治疗方案在实施中。 四、人类基因组计划,利用生物技术从整体上研究人类的基因组,将使人们深入认识到许多困扰人类的重大疾病的发病机制。另一方面,利用生物技术将能够解决能源危机,治理环境污染。众所周知,目前世界的能源危机普遍存在,能源短缺严重,

生物技术发展

学高身正明德睿智 云南省唯一的省属重点师范大学 学校:云南师范大学 学院:生命科学学院 专业:生物科学10级B班 姓名: 学号: 学制: 四年

浅谈现代生物技术发展历史 摘要:现代生物技术是通过生物化学与分子生物学的基础研究而快速发展起来的。医药生物技术起步最早、发展最快,目前世界已有2000多家生物技术公司,其中70%从事医药产品的开发。生物技术工业总体日趋成熟,正在由风险产业变成以商业为动力,以市场为中心的产业。应用生物技术已有可能产生几乎所有的多肽和蛋白质,基因工程技术的应用已使新药研究方法和制药工业的生产方式发生重大变革。 关键字:现代生物技术历史现状研究 导言科学家们认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占主导地位。21世纪称为生命科学的世纪,生物技术称为21世纪的朝阳产业。生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。在生物技术领域取得的突破性进展可以彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量等。一些成果还可以帮助人类加速植物和动物的人工进化以及改善生态环境对人类的影响等。 一.分类 生物技术的发展可分为三个阶段,即传统生物技术、近代生物技术和现代生物技术。 (一)传统生物技术阶段 指19世纪末到20世纪30年代前,以发酵产品为主干的工业微生物技术体系。这一时期的生物技术主要是通过微生物的初级发酵来生产食品,其应用仅仅局限在化学工程和微生物工程的领域,通过对粗材料进行加工、发酵和转化来生产纯化人们需要的产品,如乳酸、酒精、面包酵母、柠檬酸和蛋白酶等。 (二)近代生物技术阶段 近代生物技术是以20世纪4O年代抗菌素的提取,50年代氨基酸的发酵到60年代酶制剂工程为线索,仍以微生物发酵技术为技术特征的。这一时期抗生素工业、氨基酸发酵和酶制剂工程相继得到发展,细胞工程相关技术日臻完善,但从技术特征上看还不具备高新技术诸要素,因此只能被视为近代生物技术。 (三)现代生物技术阶段 现代生物技术以20世纪70年代DNA重组技术的建立为标志,以世界上第一家生物技术公司——Gene-Tech的诞生(1976)年为纪元。此后,越来越多的科学

1.3 基因工程的应用

1.3 基因工程的应用 1.举例说出基因工程的应用及取得的丰硕成果。(重点) 2.了解基因工程的进展。3.了解基因工程在农业和医疗等方面的应用。(难点)

一、植物基因工程的成果(阅读教材P17~P20) 植物基因工程技术主要用于提高农作物的抗逆能力,以及改良农作物的品质和利用植物生产药物等方面。 1.抗虫和抗病转基因植物 2. (1)抗逆基因:调节细胞渗透压的基因使作物抗盐碱、抗干旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因使作物抗除草剂。 (2)成果:烟草、大豆、番茄、玉米等。 3.利用转基因改良植物的品质

植物基因工程成果表现 “三抗一优良”,三抗是指“抗虫”“抗病”和“抗逆”,一优良是指转入的优良基因表达的性状表现优良。 二、动物基因工程的前景(阅读教材P20~P21)

三、基因工程药物(阅读教材P21~P23) 1.药物来源:转基因的“工程菌”。 2.成果:重组人胰岛素、细胞因子、抗体、疫苗、激素等。 四、基因治疗(阅读教材P23~P24) 1.概念:把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 2.成果:将腺苷酸脱氨酶基因转入患者淋巴细胞中,治疗复合型免疫缺陷症。 3.方法 (1)体外基因治疗:先从病人体内获得某种细胞,如T淋巴细胞,进行培养。然后,在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。 (2)体内基因治疗:直接向人体组织细胞中转移基因的治病方法。 连一连 判一判

(1)转基因抗虫棉的Bt毒蛋白基因能抗病毒、细菌、真菌。(×) (2)“转基因植物”是指植物体细胞中出现了新基因的植物。(×) 分析:转基因植物是指细胞中被转入了外源基因的植物,并非出现新基因。 (3)(2018·宿迁高二检测)基因工程中,要培育转基因植物和动物,选用的受体细胞都是受精卵。(×) (4)利用工程菌可生产人的胰岛素等某些激素。(√) (5)(2018·绵阳高二期末)直接在患者组织细胞中,进行改造致病基因的方法为体内基因治疗。(×) (6)基因治疗又叫基因诊断。(×) 三种转基因生物的生产过程

基因工程的现状及发展

基因工程的现状及发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因工程的现状及发展 研究背景: 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 目的意义: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。 内容摘要: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 成果展示:

现代生物技术与社会发展。

现代生物技术在环境保护中的应用和前景 摘要:随着人口的大量增长和经济的快速发展,自然资源的消耗量也急剧增长,在这个过程中,也产生了很大污染,使人类的生存环境遭到了威胁。针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。 关键词:现代生物技术环境保护应用前景 一.我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8 000万人和6 000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2 500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。二.现代生物技术与环境保护 现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪 80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。 1.生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2.利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,

国内外生物技术发展现状

国内外生物技术发展概况 (2010-10-21 18:00:05) (一)国内外生物技术发展动态 1、国际生物技术发展现状生物技术是近 20 年来发展最为迅猛的高新技术,越来越广泛地应用于农业、医药、轻工食品、海洋开发、环境保护及可再生生物质能源等诸多领域,具有知识经济和循环经济特征,对提升传统产业技术水平和可持续发展能力具有重要影响。近 10 年来,生物技术获得突破性发展,生物技术产业产值以每 3 年增长 5 倍的速度递增,以生物技术为重点的第四次产业革命正在兴起,预计到 2020 年,全球生物技术市场将达到 30,000 亿美元。在发达国家,生物技术已成为新的经济增长点,其增长速度大致是 25%-30%,是整个经济增长平均数的 8-10 倍。在生物技术制药领域,包括基因工程药物、基因工程疫苗、医用诊断试剂、活性蛋白与多肽、微生物次生代谢产物、药用动植物细胞工程产品以及现代生物技术生产的生物保健品等研究成果迅速转化为生产力,其中与基因相关的产业发展最强劲。全球医药生物技术产品占生物技术产品市场的 70%以上,占药物市场的 9% 左右,以高于全球经济增长 5 个百分点的速度快速发展,仅单克隆抗体市场销售额就达 40 亿美元。农业生物技术产业已经成为各国政府未来农业发展的战略重点,应用基因工程、细胞工程等高新技术培育的农林牧渔新品种、兽用疫苗、新型作物生长调节剂及病虫害防治产品、高效生物饲料及添加剂等已推广运用,产生了巨大的经济效益。 1996 年,全球转基因作物才 170 万公顷,以后逐年直线上升,到 2004 年已经达到 8100 万公顷,8 年间全球转基因作物种植面积增加近 48 倍。照此增长速度预计 2010 年世界范围内 50%的耕地将种植转基因作物,2020 年将增至 80%。尤其是抗虫、抗除草剂转基因作物的推广,大幅度提高劳动生产率并减少化学农药施用量,经济效益极为显著。全球转基因作物市场价值 1995 年仅 7500 万美元, 1997 年达 6.7 亿美元,2002 年为 45.2 亿美元,预计到2010 年将达 200 亿美元。本文章来自生物科学博览网站,欢迎您的光临食品生物技术产业产值约占生物产业总产值的 15-20%,目前国际市场上以生物工程为基础的食品工业产值已达 2500 亿美元左右,其中转基因食品市场的销售额 2010 年将达到 250 亿美元。此外,保健食品行业是全球性的朝阳产业,市场增长迅速。环境生物技术是生物技术、工程学、环境学和生态学交叉渗透形成的新兴边缘学科,是 21 世纪国际生物技术的一大热点。环境生物技术兼有基础科学和应用科学的特点,在环境污染治理与修复、自然资源可持续再生等方面发挥着日益重要的作用。能源生物技术主要目标是利用生物质能源。生物质能一直是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居世界能源消费总量第四位的能源。目前,全球储量为亿吨,相当于 640 亿吨石油。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,主要是开发生物柴油和生物乙醇汽油。尽管生物质液化燃料开发还处于初级阶段,市场份额还不大,但由于岂疫有环保和再生性特点,前景非常广阔。 2.国内生物技术发展现状我国政府一直把生物技术作为重点支持的战略高技术领域,提出了“加强源头创

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

生物技术在现代社会的发展及应用.2doc

生 物 技 术 在 当 今 社 会 的 应 用 和 发 展 姓名:孙永振 班级:电气12-7班 学号:311208001622 完成日期:2014.4.16

生物技术在现代社会的应用和发展 现代生物技术又称生物工程,是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视。应用生物技术是当今世界发展最快、潜力最大、影响最深远的一项高新技术。被视为是21世纪人类彻底解决人口、资源、环境三大危机,实现可持续发展的有效途径之一。所以世界各国都将生物技术确定为增强国力和经济实力的关键技术之一。我国也十分重视生物技术,并组织力量追踪和攻关。 基因工程 基因工程又称DNA重组技术,是指根据人们的意愿进行基因改造,产生人们所期望的产物或创造出具有新的遗传特征的生物类型,以满足人类社会的需要。基因工程在农业生产中已得到广泛的应用。如苏芸金芽孢杆菌 (Bt)晶体毒蛋白基因被转入棉花、玉米、烟草、番茄、马铃薯、水稻等多种作物,并取得了良好的抗虫效果。利用鼠类有关促进角蛋白形成的基因获得了经遗传改良的绵羊,羊毛产量大大提高。 细胞工程 细胞工程是指应用细胞生物学和分子生物学方法,改造生物遗

传特性和生物学特性,以获得特定的细胞、细胞产品或新生物体的一门科学技术。植物体细胞杂交则可以将两个来自不同植物的体细胞融合成一个杂种细胞,并培育成新的植物体。袁隆平运用体细胞杂交技术获得了具有远缘杂种优势的超级杂交水稻,亩产可达1600斤。细胞融合可以将动物细胞融合形成能产生单克隆抗体的杂交瘤细胞。用于病原检测和疾病治疗以及食品安全领域。 酶工程 酶工程是具有的生物催化功能将相应的原料转化成有用物质的一门科学技术。主要应用于食品、轻工、化工、能源以及医药工业中。早期的酶工程技术主要是从动物、植物微生物材料中提取的,并将其应用于化工、食品和医药等工业领域。但大多数酶不能耐受高温、强酸、强碱、有机溶剂,稳定性较差。通过酶的固定可以克服这些不足。固定化酶正在化工医药、轻工、食品等领域发挥着巨大的作用。在轻工业中主要用于洗涤剂制造(加酶洗衣粉等)、毛皮加工、牙膏和化妆品的生产、废水废物处理和饲料加工等。在医药工业方面,用于临床的各类酶类产品不断增加。溶菌酶作为一种存在于人体正常体液及组织中的非特异性免疫因子具有多种药理作用,它具有抗菌、抗病毒、抗肿瘤的功效。酶作为检测试剂可以快速、灵敏、准确地测定体内某些代谢产物。另外,在全世界能源日益紧缺的形势下,利用微生物菌体或酶制剂生产生物燃料开辟了一条新途径。例如,利用农

最新生物技术的发展和应用

生物技术地发展和应用 自2001年初,生物技术产业便显现出一片诱人地前景。人类基因组草图地即将完成,带动各生物技术地不断飚升。人们普遍认为这将导致医学与药物研究地繁荣,并会带来滚滚地财富。随着基因组测序地完成,许多科学家和投资者开始把目光投向生物技术向个学科地渗透,如今生物技术已经在芯片、医学等领域都取得丰硕地成果。下面对生物芯片、基因治疗及微生物地研究地基本问题作简单地介绍。 (一)生物芯片 20世纪90年代初开始实施地人类基因组计划取得了人们当初意料不到地巨大进展,而由此也诞生了一项类似于计算机芯片技术地新兴生物高技术———生物芯片。 生物芯片主要是指通过微加工和微电子技术在固体芯片表面构建微型生物化学分析系统,以实现对生命机体地组织、细胞、蛋白质、核酸、糖类以及其他生物组分进行准确、快速、大信息量地检测。目前常见地生物芯片分为三大类:即基因芯片、蛋白芯片、芯片实验室或称微流控芯片等。生物芯片主要特点是高通量、微型化和自动化。生物芯片上高度集成地成千上万密集排列地分子微阵列,能够在很短时间内分析大量地生物分子,使人们能够快速准确地获取样品中地生物信息,检测效率是传统检测手段地成百上千倍。使用基因芯片分析人类基因组,可找出癌症、

糖尿病由遗传基因缺陷引起疾病地致病地遗传基因。生物医学研究人员可以在数秒钟内鉴定出导致癌症地突变基因。借助一小滴测试液,医生们能很快检测病菌对人体地感染。利用基因芯片分析遗传基因,可以使糖尿病地确诊率达到50%以上。生物芯片在疾病检测诊断方面具有独特地优势,它可以在一张芯片上同时对多个病人进行多种疾病地检测。仅用极小量地样品,在极短时间内,向医务人员提供大量地疾病诊断信息,这些信息有助于医生在短时间内找到正确地治疗措施。对肿瘤、糖尿病、传染性疾病、遗传病等常见病和多发病地临床检验及健康人群检查,具有十分重要地应用价值。 (二)基因治疗 众里盼她千百度,如今,基因治疗已近走出实验室,进入实践阶段,如:癌症地基因治疗,肿瘤地基因治疗属于一种生物治疗手段,是一大类治疗策略地总称。根据治疗机理不同,目前至少可以分为以下几方面: (1)免疫基因治疗:指地是通过基因修饰地瘤苗或抗原呈递细胞体内回输,或者免疫基因地直接体内导入,激发或增强人体地抗肿瘤免疫功能,达到治疗肿瘤地目地,它也是一大类治疗地总称。治疗基因包括肿瘤相关抗原基因、细胞因子基因或者MHC基因等。

现代生物技术的发展与前景

在当今世界各国纷纷建立以基因为核心的知识产权保护,抢占21世纪国际生物技术制高点的新形势下,参加北京“国际周”现代农业高层论坛的专家呼吁,要密切关注现代农业生物技术领域日益显现的研究成果商品化、研究方式规模化和基因资源争夺白热化的趋势,在即将到来的生物世纪里,真正占据自己的位置。 农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应

用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。 ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。 据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。 ——基因资源争夺呈白热化。在商业利益驱使下,发达国家各主要生物技术公司对生物资源及其知识产权展开了激烈争夺,其核心就是对基因的争夺。谁掌握了基因,谁就掌握了生物技术的制高点,就掌握了未来竞争的主动权。有专家称,转基因植物技术知识产权很可能就是未来国际贸易中市场准入、贸易壁垒问题产生的主要原因。

生物技术是双刃剑

生物技术是双刃剑

生物技术是双刃剑 ——挑战与对策 生物技术是双刃剑,它的发展既为人类造福,又可能给人类带来灾难。因此如何加速发展以给人类带来经济和社会效益,同时又预防与制止灾害的发生是当务之急。 一、解决21世纪的挑战要靠生命科学和生物技术 21世纪人类将面临着人口、能源、资源和环境的严重挑战,生命科学将担当关键的和最重要的角色。我在学习和思考医药、环境、能源、资源、海洋等方面的问题时,越来越感到最终解决的办法离不开生命体和“回归自然”。 医药(包括诊断和治疗药物):人类基因组和基因组的成就越来越竭示,发现和治疗人类疾病的最有效途径仍然是人类或生物中存在和产生的大小天然分子,因此几万种治疗药物中生命力最长的还是天然提取或经改性的化合物,这一类分子在体内作用后大多又分解为C、N、S、P、H 2 O排除体外,残存和积累最少,最安全。 能源:除太阳能、风能、核能外,目前人类使用最多的煤、石油、天然气 均是在生物的贡献,生物可利用太阳能、CO 2、H 2 O合成生物质能源,是取之不尽, 用之不竭的重要能源。 地球的生态系统是亿万年来长期自然优化的结果,人口的增加、工业的发展,急剧地改变着地球的生态环境。亿万年来以化学,物理及生物途径固定于地壳中的C、N、P、S、CI、F等被人们释放出来,污染了大气和水,影响了人类的健康,微生物——植物——动物的生物链遭到破坏。从一个工厂、一条生产线来讲,对废气、废水、废渣的回收或利用,使用物理方法和化学方法来达到排放的要求可能更有效。但作为全球环境的净化最终还需依赖生物方法,能直接利用太阳能固定C、N、S、P微量元素等最廉价和有效的方法是利用微生物和植物转化,自然生态已被改变甚至破坏,治理地球环境只能重新建立起人工的生态优化系统,因此研究生物处理方法尤为重要。 资源包括食物和使用资源,前者完全靠生物体生产,后者也越来越靠生物

光电技术在生物医学中的应用一现状与发展

论文题目: 光电技术在生物医学中的应用——现状与发展 学院 专业名称 班级学号 学生 2013年12月19日

摘要: 简要介绍光电技术在生物医学应用中的发展概况,从基因表达与蛋白质——蛋白质相互作用研究方面,重点讨论了生物分子光子技术的特点与优势,阐明基于分子光学标记的光学成像技术是重要的实时在体监测手段,最后简要讨论了医学光学成像技术在组织功能成像和脑功能成像中的应用原理。 关键词:光电技术,医学诊断与治疗,分子光子学,医学成像

1.生物医学光子学发展简介 光电技术在生物医学中的应用实质上就是生物医学光子学的研究畴。生物医学光子学是近年来受到国际光学界和生物医学界广泛关注的研究热点。在国际上一般称为生物医学光子学或生物医学光学。 光子学以量子为单位,研究能量的产生、探测、传输与信息处理。光子技术在生物与医学中的应用即定义为生物医学光子学,其相应产业涉及人类疾病的诊断、预防、监护、治疗以及保健、康复等。研究容包括:光子医学与光子生物学,X-射线成像,MRI ,PET等。近年来,生物医学光子学在生物活检、光动力治疗、细胞结构与功能检测、对基因表达规律的在体观测等问题上取得了可喜研究成果,目前正在从宏观到微观多层面上对大脑活动与功能进行研究。美国《科学》杂志在最近儿年已发表相关论文近20篇。随着光子学技术的发展,生物医学光子学将在多层次上对研究生物体特别是人体的结构、功能和其他生命现象产生重要影响。 在国际上已经成立了国际生物医学光学学会(International Biomedical Optics Society),简称IBOS。IBOS每年与国际光学工程学会(SPIE)联合举办学术会议。国外 学术交流方面,作为生物医学工程和光学工程领域重要国际会议的“生物医学光学国际学术研讨会”(International BiomedicalOptics Symposium,简称BIOS)每年在美国和欧洲各举办一次。在国,国家自然科学基金委员会生命科学部与信息科学部联合发起并承办的全国光子生物学与光子医学学术研讨会已经举办了六届。在第六届学术会议上发表学术论文75篇,论文摘要27篇。 从光电技术(或光子技术)在生物医学中的应用现状可以看到,光子医学与光子生物学的研究和应用围是广泛而且深入的,并正在形成有特色的学科和产业。例如,由于生物超微弱发光与生物体的细胞分裂、细胞死亡、光合作用、生物氧化、解毒作用、肿瘤发生、细胞和细胞间的信息传递与功能调节等重要的生命过程有着密切的联系,基于生物超微弱发光的生物光子技术在肿瘤诊断、农业、环境监测、食品监测和药理研究等方面己经得到应用。 下面主要从生物分子光子技术和医学光学成像技术两个方面介绍当前的研究现状 与发展趋势。

相关主题
文本预览
相关文档 最新文档