当前位置:文档之家› 边界层--文献综述

边界层--文献综述

边界层--文献综述
边界层--文献综述

文献综述

前言

本人正在做平板壁面上流体边界层求解的数学模型实验,因此查询了一些有关边界层的一些文献。在这里,我要对边界层是如何形成的、它的定义、边界层的理论要点及其重要性和作用进行综述。

正文

1.边界层的形成

实际流体在固体边界上没有滑动,流体相对于边界的速度为零。结果,速度梯度与切应力均在边界上有极大值,而在流体内部逐渐减小。在那种情况下靠近边壁处速度梯度的陡度变得很大,而仅在贴近边界的较薄层内才发生明显的粘性剪切。在此薄层之外,速度梯度迅速坦化,而粘性切力变小,此狭窄区域即称边界层。

2.边界层定义

由于流体的黏滞性,在紧靠其边界壁面附近,流速较势流流速急剧减小,形成的流速梯度很大的薄层流体。

3.边界层理论

3.1 边界层理论的概念

根据黏性流体的黏附条件,当实际流体沿固定不动的固体壁面运动时,紧贴壁面的一层流体将黏附在壁面上而不滑脱。黏附于壁面上的这层流体的速度为零。在与壁面相垂直的法线方向上,流速由壁面处的零值迅速增大,并最终趋近于一定值。Prandtl认为,在固体壁面附近存在着一流体薄层,此流层中的壁面法线方向上的速度梯度很大。称这一流体层为边界层。根据Prandtl边界层理论,在边界层中,既要考虑惯性力的作用,也要考虑黏性力的作用,即把流动视作黏性流体的有旋流动。在边界层之外的流动区域中,壁面法向上的速度梯度极小,表明固体壁对流动的阻滞作用十分微弱,称此区域为主体流动区域。在主流区域内,黏性力较惯性力小很多,因而无需考虑黏性力的影响,把流动看成是理想流体的有势流

动。

3.2 边界层的主要特征

边界层内的流动同时受粘性力和惯性力的作用,且由于存在流速梯度,流动是有涡流。边界层厚度较一般物体的特征长度要小得多,即/ 1.0L δ<<。

边界层内既然是粘性流动,必然也存在层流和紊流两种流态,与其相应的边界层分别称为层流边界层和紊流边界层。如图(1)所示的平板绕流,边界层从板端开始,在前部由于边界层厚度很薄,流速梯度很大,流动受粘性力作用控制,边界层内为层流,即层流边界层。随流动距离x 增大,边界层厚度增加,流速梯度逐渐减小,黏性作用逐渐减弱,惯性作用逐渐增强,直到某一断面(δ=δc)处,由层流转变成紊流边界层,该转变处称为转换点(X =Xc),与转据点相对应的是临界雷诺数R e 。应该注意,影响边界层从层流逐渐发展为紊流的

影响因素很多,且很复杂,所以层流与紊流的转换不是在某个断面突然发生并完成的,而是在一个过渡区内逐渐完成的,转捩点处只是流态转变的开始。转据点的位置依靠实验确定。对于平板边界层内的雷诺数,其特征长度可用边界层厚度δ,也可用平板的距离长度x 表示,即

0R e U v δδ

=

0R e x U x v

=

用式(1),流态转换点的临界雷诺数0R e 2700~8500c c U v δ=

=,若用式(2),则转换点处临界雷诺数为 0R e c c x U x v =

对于光滑平板,临界雷诺数的范围56Re 310~310c x =??,一般取5Re 510c x =?。影

响临界雷诺数的主要因素是:来流的紊动强度,壁面的粗糙情况以及边界层外流动的压强分布。如绕流平版长度为L ,若0R e R e c x x U L v =

<,则该平板上全部为层流边界层;若0R e R e c x x U L

v =>,则该平板在c x 以前是层流边界层.,在c x 以后(L —c x )为紊流边界

层。 在紊流边界层内,最靠近壁面之处,流速梯度x

du dy 很大,黏滞切应力起主要作用,使

其流态仍为层流。即在紊流边界层中,紧贴边壁表面也有一层极薄的黏性底层。

3.3 层流边界层和紊流边界层

当实际液体在雷诺数很大的情况下以均匀流速U ∞。平行流过静止平板,经过平板表面

前缘时,紧靠物体表面的一层液体由于粘性作用被贴附在固体壁面上,速度降为零。稍靠外的一层液体受到这一层液体的阻滞,流速也大大降低,这种粘性作用逐层向外影响,使沿着平板法线方向(y 方向)上流速分布不均匀,以至在乎板附近具有较大的速度梯度,如图(2)所示(为了清晰起见,图中加大了纵向比例)。这样,即使液体的粘性较小(如水、空气),由于速度梯度较大也会产生较大的切应力。固壁上切应力沿水流方向的合力,即为摩擦阻力。普朗特把贴近平板边界存在较大切应力、粘性影响不能忽略的这一薄层液体称为边界层(Boundary —Layer)。

这样,绕物体的流动可分为两个区域:在固壁附近边界层内的流动是粘性液体的有旋流动;边界层以外的流动可以看做理想液体的有势流动。

边界层的厚度在前缘点0处等于零,然后沿流动方向,逐渐增大其厚度。层内沿壁面法线方向速度分布也很不均匀,理论上要到无限远处才不受粘性影响,流速才能真正达到U ∞,边界层内部速度梯度也不相等,自边界沿法线方向向外迅速减小,因而离壁面稍远处,粘

性影响就很微小了。因此人为规定,当层内流速沿y 方向达到0.99 U ∞时,就算到了边界

层的外边界,即从平板沿外法线到流速u =0.99 U ∞。处的距离是边界层的厚度,以δ表示。

边界层的厚度沿程增大,即δ是“的函数,可写为δ(x)。

边界层内流动也可分为层流与紊流,边界层开始于层流流态。当层流边界层厚度沿程增加时,流速梯度逐渐减小,粘性切应力也随之减小,边界层的流态经过一个过渡段便转变为紊流边界层,见图(2)。因过渡段与被绕流物体的特征长度相比通常很短,所以可把它缩小当成一点,叫转捩点,如转捩点离平板前缘距离用x *表示,在x= x *处,边界层由层流转变成紊流相应的雷诺数为: *

*R e u x ν∞=

称为临界雷诺数。临界雷诺数并非常量,而是与来流的紊动程度有关。如果来流已受到干扰,脉动强,流动状态的改变发生在较低的雷诺数;反之,则发生在较高值。光滑平板边界层的临界雷诺数的范围是: *5*6310Re 310u x ν∞?<=

1.)*R e ?R e L u L ν∞=

<时,整个平板为层流边界层; 2.)*R e

?R e L u L ν∞=>时,x=0~x=x *段为层流边界层;x *处为转捩点,x *

处以后为紊流边界层。

在紊流边界层内最靠近平板的地方,流速梯度依然很大,特性切应力仍起主要作用,紊流附加切应力可以忽略,使得流动型态仍为层流,所以,在紊流边界层内存在一个粘性底层

(或层流底层),见图(2)。

3.4 边界层厚度

前面曾提到根据边界层的概念可把液流分成两个区域,边界层内为粘滞液流,边界层外

为理想液体势流。但该两区域是无法截然划分的,因为流速分布曲线是连续的,并以与y

轴平行的直线为渐近线,所以从理论上讲,固体边界对水流影响范围应扩展至无穷远处。但

事实上在离开固体表面不远处流速即迅速自零增至接近IJ。,因此将固体表面沿法线方向分

布的流速达到99%U。之处即视作边界层的外边界并无多大误差,因为在此范围以外,流速

已接近U

,流速梯度极小,可以近似地把液流看作是无内摩擦力发生的理想液体。以后我0,

们所称边界层厚度即指这一范围内的厚度而言。

3.5 边界层分离

边界层流动从物体表面脱离的现象。二维边界层分离有两种情况,一是发生在光滑物面上,另一是发生在物面有尖角或其他外形中断或不连续处。光滑物面上发生分离的原因在于,

边界层分离

边界层内的流体因克服粘性阻力而不断损失动量,当遇到下游压力变大(即存在逆压梯度)

时,更需要将动能转变为压力能,以便克服前方压力而运动,这种情况越接近物面越严重。

因此边界层内法向速度梯度越接近物面下降越甚,当物面法向速度梯度在某位置上小到零

时,表示一部分流体速度已为零,成为“死水”,边界层流动无法沿物面发展,只能从物面

脱离,该位置称为分离点。分离后的边界层在下游形成较大的旋涡区;但也可能在下游某处

又回附到物面上,形成局部回流区或气泡。尖点处发生边界层分离的原因在于附近的外流流

速很大,压强很小,因而向下游必有很大的逆压梯度,在其作用下,边界层即从尖点处发生

分离。三维边界层的分离比较复杂,是正在深入研究的课题。边界层分离导致绕流物体压差

阻力增大、飞机机翼升力减小、流体机械效率降低、螺旋桨性能下降等,一般希望避免或尽

量推迟分离的发生;但有时也可利用分离,如小展弦比尖前缘机翼的前缘分离涡可导致很强

的涡升力。

4 边界层的发展

十九世纪末叶,流体力学这门科学开始沿着两个方向发展,而这两个方向实际上毫无共

同之处,一个方向是理论流体动力学,它是从无摩擦、无粘性流体的Euler运动方程出发发展起来的,并达到了高度完善的程度。然而,由于这种所谓经典流体动力学的结果与实验结果有明显的矛盾——尤其是关于管道和渠道中压力损失这个非常重要的问题以及关于在流体中运动物体的阻力问题——所以,它并没有多大的实际意义。正因为这样,注重实际的工程师为了解决在技术迅速发展中所出现的重要问题,自行发展了一门高度经验性学科,即水力学。水力学以大量的实验数据为基础,而且在方法上和研究对象上都与理论流体动力学大不相同。本世纪初,L.Prandtl因解决了如何统一这两个背道而驰的流体动力学分支而著称于世。他建立了理论和实验之间的紧密联系,并为流体力学的异常成功的发展铺平了道路。就是在Prandtl之前,人们就已经认识到:在很多情形下,经典流体动力学的结果与试验结果不符,是由于该理论忽略了流体的摩擦的缘故。而且,人们早就知道了有摩擦流动的完整的运动方程(Navier-Stokes方程)。但是,因为求解这些方程在数学上及其困难(少数特殊情况除外),所以从理论上处理粘性流体运动的道路受到了阻碍。此外,在两种最重要的流体,即水和空气中,由于粘性很小,一般说来,由粘性摩擦而产生的力远小于其它的力(重力和压力)。因为这个缘故,人们很难理解被经典理论所忽略的摩擦力怎么会在如此大的程度上影响流体的运动。在1904年Heidelberg数学讨论会上宣读的论文“具有很小摩擦的流体运动”中,L.Prandtl指出:有可能精确地分析一些很重要的实际问题中所出现的粘性流动。借助于理论研究和几个简单的实验,他证明了绕固体的流动可以分成两个区域:一是物体附近很薄的一层(边界层),其

边界层的发展

中摩擦起着主要的作用;二是该层以外的其余区域,这里摩擦可以忽略不计。基于这个假设,Prandtl成功地对粘性流动的重要意义给出了物理上透彻的解释,同时对相应的数学上的困难做了最大程度的简化。甚至在当时,这些理论上的论点就得到一些简单实验的支持,这些实验是在Prandtl亲手建造的水洞中做的。因此他在重新统一理论和实践方面迈出了第一步。边界层理论在为发展流体动力学提供一个有效的工具方面证明是极其有成效的。自20世纪以来,在新近发展起来的空气动力学这门学科的推动下,边界层理论已经得到了迅速的发展。在一个很短的时间内,它与其他非常重要的进展(机翼理论和气体动力学)一起,已成为现代流体力学的基石之一。

5 边界层重要性和应用

5.1 边界层在低比转速离心泵叶片设计中的应用

边界层理论可以用于低比转速离心泵叶片设计中,在该设计中提出了一种将湍流边界层理论应用于圆柱形叶片型线的设计方法.该方法以N-S方程为基础,给出了雷诺方程,在边界层内对其进行量级比较,得到边界层动量微分方程;对其积分,得到边界层动量积分方程;通

过变换的动量积分方程,求得了损失厚度近似解的表达式.分析了叶片边界层内的速度分布规律,运用尾流律推导出各种边界层厚度的表达式,作为求解边界层厚度的辅助关系式;运用了结合湍流边界层厚度系数kν和动量损失厚度δ<,2>由无离心流动计算逐渐逼近离心流动来求解动量损失厚度的计算方法,它是进一步判定边界层分离的基础.依据对主流区速度场的分析,给出了含有速度系数的离心泵叶片型线参数方程;并分析了速度系数边界层分离和理论扬程的关系.最后,分析了上述理论在叶片设计中应用的计算过程.通过对上述方法的研究,取得以下结论:在进行叶片设计时,既要考虑叶轮参数的情况,又考虑叶片表面中间的流动状态;叶片型线的设计,其整体水平是特别重要的,尤其是结合叶片的沿程变化规律来探索出入口参数的方法更显得有意义。

5.2 边界层在高超声速飞行器气动热工程算法中的应用

边界层可用于高超声速飞行器气动热工程算法的研究.基于Prandtl的边界层理论,将流场分为边界层外的无粘流场和边界层内粘性主导的区域,将边界层外无粘流场的数值求解和边界层内粘性主导区域的工程算法相结合,发展了一套高超声速气动热的计算方法.首先,对国内外发展的各种高超声速气动热计算方法进行了系统的分析、归类和比较,综合了各种经典的热流预测方法.在此基础上,对于无粘流区,采用牛顿法、切楔/切锥法等工程方法确定物体表面压力分布,利用等熵条件确定边界层外缘参数;在边界层内部,则采用上述经典热流公式确定物体表面的气动加热.采用此方法对一些二维及简单三维外形进行了气动热计算,结果证明本方法具有较高的精度.基于已有的高超声速无粘Euler解算程序,对上述气动热计算方法中的无粘流区采用基于非结构网格的数值模拟,利用无粘数值结果来确定边界层外缘参数,从而发展出一套快速、高效、适用于复杂外形的高超声速气动热计算方法.通过对钝锥、钝双锥、飞船等外形有攻角情况下气动热的计算表明,采用这种方法计算飞行器表面热流,结果与实验值及Navier-Stokes方程计算值比较,吻合的很好,而计算效率又远远高于数值方法,非常适用于设计阶段.

5.3 基于边界层理论的叶轮的仿真

泵是水力输送系统的关键设备,固液混合物输送时,由于效率和寿命的原因,一般不能使用传统的清水泵,所以离心式固液两相流泵的叶轮设计需要采用两相流理论进行设计。目前,固液速度比设计理论、三项合并理论和边界层理论,都是离心式固液两相流泵的设计理论。近年来,边界层理论得到了很大的发展,但是并未应用到生产实际中,因此建立基于边界层理论叶轮模型必将推动该理论的发展。

6 参考文献

1、夏清陈常贵主编姚玉英主审《化工原理》上册2005版

2、江苏大学罗惕乾主编《流体力学》第2版机械工业出版社,2003.8

3、裘俊红编著《传递原理及其应用》化工工业出版社,2007.1

4、[美] W. 戴莱 D.R.F 哈里曼著郭子中陈玉璞等译《流体动力学》

储层构型研究方法及实例

储层构型研究方法及实例 摘要:储层构型研究是推进沉积学和储层地质学进一步深化的重要方法,目前河流相储层构型研究主要侧重于露头和现代沉积,河流相储层构型研究比较成熟。本文着重介绍了储层构型研究的方法并将河流相作为实例进行了储层构型研究分析。最后指出了储层构型分析方法的适用性。 关键词:储层构型;河流相;构型单元分析;适用性 前言 储层构型亦称为储层建筑结构,是指不同级次储层构成单元的形态、规模、方向及其叠置关系[1]。储层构型分析研究实质上是描述储层内部的非均质性,最终用于进一步挖潜剩余油,提高油气采收率[2]。储层构型方法是著名河流沉积学家Miall于1985年首先运用于河流相构型研究。 过去沉积模式是沉积相和沉积环境研究的一个重要方法。但是沉积模式是依据一维(钻井剖面)和二维(地震剖面或露头剖面)研究建立的。有时也是仅依据二维研究结果,拟想勾画出块状图表示沉积相和沉积环境三维的空间展布。实践证明,许多沉积环境相当复杂。用二维是不可能反映它的特征和复杂性,或者说不能全面地反映它们的特征,特别是空间的几何形态。三维构型的提出可以解决一维、二维难以解决的问题。 储层的不均匀性是当今储层地质学中最大的难题。构型研究方法的出现,可以解决这个问题,国外不少学者已采用构型研究方法对不同沉积体储层进行了构型研究,较详细地划分出不均一体。这些构型研究的结果,对于各地区的油气勘探与开发都起着指导作用。由此,可以看出,构型研究方法是推进当今沉积学和储层地质学进一步深化的重要方法。 1 储层构型单元分析 构型单元分析就是结合古水流数据对露头横剖面进行岩石相、界面和构型单元的划分,以揭示沉积体系的三维展布,恢复沉积体系的演化史。其中,界面和构型单元的划分是关键所在。构型单元分析的步骤如下[3]:①对露头照像,建立剖面的镶嵌照片,并记录剖面的尺度和方向:②划分岩石相;③进行古水流测量,并记录其在剖面上的位置;④划分界面;⑤结合岩相和古水流数据划分构型单元; ⑤对露头剖面进行解释,恢复其沉积史;⑦综合岩石相、构型单元和古水流数据,推导该沉积体系的沉积模式;⑧测量每个级别上的沉积单元的尺度和几何形态,并记录储层的非均质性。 在进行构型单元分析的过程中,必须注意以下几点:①界面和构型单元的解

流体力学学习心得

竭诚为您提供优质文档/双击可除 流体力学学习心得 篇一:我对流体力学的认识 我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及 其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。1738年伯努利出版他的专著时,首先

采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体 力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且

储层微观孔隙结构研究

储层微观孔隙结构研究进展 1.储层微观孔隙结构的影响因素和成因分析 储层微观孔隙结构受多因素影响,成因分析是储层孔隙结构研究的最基本的内容,它能帮助研究者从深层次准确把握储层孔隙结构的特征,受到研究者的高度重视。 1.1地质作用对储层微观孔隙结构的影响 储层物性受沉积作用、成岩作用、构造作用的共同控制。沉积作用对碎屑岩结构、分选、磨圆、杂基含量等起到明显的控制作用,不同的沉积环境对碳酸盐岩的结构组分影响很大。从沉积物脱离水环境之后,随着埋藏深度的不断加深,一系列的成岩作用使得储层物性进一步复杂化。一般而言,压实作用、压溶作用、胶结作用对储层物性起破坏性作用;交代作用、重结晶作用、溶蚀作用对储层物性起到建设性作用。而构造作用产生的裂缝等对物性的改造有较为显著地影响,使储层的非均质性更加明显,而这一点在碳酸盐岩储层中尤为突出。 1.2油气田开发对储层微观孔隙结构的影响 储层孔隙结构影响着储层的注采开发,同时,随着注水、压裂等一系列油气田开发增产措施的实施,储层孔隙结构也相应发生了变化。王美娜等研究了注水开发对胜坨油田坨断块沙二段储层性质的影响,发现注水开发一定程度上改善了储层孔隙结构。唐洪明等以辽河高升油田莲花油层为例,研究了蒸汽驱对储层孔隙结构和矿物组成的影响。结果表明,蒸汽驱导致储层孔隙度、孔隙直径增大,喉道半径、渗透率减小,增强了孔喉分布的非均质性。 2.储层微孔隙结构研究方法 2.1成岩作用方法 该方法通过对各种成岩作用在储层孔隙结构演化中的作用进行梳理,从而了解储层孔隙结构对应发生的变化。该方法的优点是对孔隙结构的成因可以有比较深入的认识,缺点是偏向于定性分析,难以有效的定量化表征。刘林玉等对白马南地区长砂岩成岩作用进行了分析,认为压实作用和胶结作用强烈地破坏了砂岩的原生孔隙结构,溶蚀作用和破裂作用则有效地改善了砂岩的孔隙结构。 2.2铸体薄片观察法 该方法是将带色的有机玻璃或环氧树脂注入岩石的储集空间中,待树脂凝固

地下古河道储层构型的层次建模研究_吴胜和

中国科学 D 辑:地球科学 2008年 第38卷 增刊Ⅰ: 111 ~ 121 https://www.doczj.com/doc/6b10034701.html, https://www.doczj.com/doc/6b10034701.html, 111 《中国科学》杂志社 SCIENCE IN CHINA PRESS 地下古河道储层构型的层次建模研究 吴胜和① *, 岳大力① , 刘建民② , 束青林② , 范峥 ①③ , 李宇鹏① ① 中国石油大学(北京)资源与信息学院, 北京 102249; ② 中国石油化工股份有限公司胜利油田分公司, 山东 257000; ③ 北京泰隆恒业高新技术公司, 北京 100085 * E-mail: reser@https://www.doczj.com/doc/6b10034701.html, 收稿日期: 2007-04-20; 接受日期: 2008-03-21 教育部高等学校博士点专项科研基金(编号: 20060425004)资助 摘要 目前河流相储层构型研究主要侧重于露头和现代沉积, 而地下储层构型分析及建模研究甚少, 未形成有效的定量预测储层构型的方法, 难以满足地下油藏剩余油分布预测的需要. 为此, 提出了层次约束、模式拟合和多维互动的地下储层构型分析与建模思路, 并以济阳坳陷孤岛油田馆陶组曲流河储层为例, 论述地下古河道储层构型的层次建模思路与方法. 曲流河储层构型可分为3个层次, 包括河道砂体层次、点坝层次和侧积体层次. 将不同级次的定量构型模式与地下井资料(包括动态监测资料)分级别进行拟合, 并且在分析过程中, 使一维井眼、二维剖面和平面以及三维空间之间相互印证, 从而建立不同层次的储层构型三维模型. 同时, 建立了活动河道宽度与点坝规模的定量关系, 并应用水平井资料确定了侧积体和泥质侧积层的定量规模. 这一研究不仅对地下地质学的发展具有重要的意义, 而且对提高油田开发效益具有很大的实用价值. 关键词 储层构型 层次建模 曲流河 点坝 侧积体 储层构型(reservoir architecture), 亦称为储层建筑结构, 是指不同级次储层构成单元的形态、规模、方向及其叠置关系. 在油气勘探开发领域, 地下储层构型研究主要用于油气田开发. 随着油气田开发程度的不断深入, 砂体内部的剩余油挖掘逐渐成为油田开发的主要目标. 在现有经济技术条件下, 我国油气平均采收率只有30%左右, 这意味着还有近70%的油气滞留在地下, 其中35%左右的油气是由于储层内部的非均质性, 特别是储层构型(导致储层内部的渗流屏障和渗流差异)的影响而滞留于地下成为可动宏观剩余油的. 因此, 地下储层构型研究是提高油气采收率、最大限度地开发油气资源的关键所在, 这对我国石油工业乃至国民经济的可持续发展具有十分重大的现实意义. 河流相储层研究由来已久, 但河流相储层构型研究则开始于上世纪80年代[1]. 以Allen 和Miall 为代表的欧美学者对储层构型层次、要素、模式、沉积机理做了开拓性的研究工作. 然而, 国内外学者主要侧重于对河流相露头和现代沉积的构型研究[1~8], 而对地下储层构型分析及建模研究甚少. 地下储层构型分析与建模的目标是应用有限的资料恢复地下储层构型的面貌. 以河流相为例, 主要是恢复地下古河道及其河道内部构型单元的三维空间分布. 面临的主要难点是地下井资料少, 因为即使是在油田开发中后期的密井网条件下, 井距(如100 m 井距)仍大于构型单元的规模(如横向上数米规模的点坝内部泥质侧积层), 在此条件下, 应用井间数学插值很难再现地下实际的储层构型面貌. 因此, 虽然已

流体力学分支和概述

流体力学分支及其概述 : 班级:硕5015 学号: 2015/12/20 目录

流体力学分支 (2) 地球流体力学 (2) 学科的形成 (2) 研究的地球流体运动类型: (2) 水动力学 (4) 研究容 (5) 水动力学的应用 (6) 气动力学 (7) 容介绍 (7) 渗流力学 (9) 物理-化学流体动力学 (10) 研究对象 (11) 研究容 (11) 等离子体动力学和电磁流体力学 (12) 环境流体力学 (12) 生物流变学 (12)

流体力学分支 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体。所以流体力学是与人类日常生活和生产事业密切相关的。 地球流体力学 流体力学的一个分支,研究地球以及其他星体上的自然界流体的宏观运动,着重探讨其尺度运动的一般规律。它是 20世纪 60年代发展起来的一个新学科。geophysical fluid dynamics按字义为"地球物理流体力学",由于考虑到地球和自然界还有包含化学反应的许多流动过程也日渐成为这一学科的研究容,故以译作地球流体力学为宜。另外,这个学科在国际上还有一些别的名称,其中一个比较流行的是"自然流体力学"(natural fluid dynamics)。 学科的形成 近百年来,人类对天气预报、航海和海洋资源开发的需要不断增长,大气大尺度运动和海洋大尺度运动的研究得到了发展,逐渐形成了大气动力学和海洋动力学。随着空间科学技术的发展,研究近地空间和其他星体的流体运动已成为现实,而随着地质和地球物理学的发展,研究地幔运动也成为重要的课题。流体力学的一般原理虽然也适用于上述自然界流体运动,但像天气系统和大洋环流等流体运动是由自然界中巨大的能源所推动,其时间尺度和空间尺度都比气体动力学和水动力学(见液体动力学)等与生产技术有关的流体运动的尺度要大得多,而引力、星体的自旋以及能量的交换和转移过程又在其中起着主要作用,因而这些流动具有非常鲜明的特点和共同的基本规律。研究这些共同的基本规律能使人类对大气或海洋等各种具体运动的特点和规律有深刻的认识。地球流体力学正是在这种背景下逐渐形成的。 研究的地球流体运动类型: 地球流体运动按空间尺度或性质可分为下列数种类型:重力-惯性波、行星波、埃克曼流、大气和大洋环流、涡旋、重力波和对流等。后三者为一般流体

储层多点地质统计学随机建模方法研究论文

储层多点地质统计学随机建模方法研究论文 一、引言 在油气开发过程中必然会涉及到相关数据测量,测量过程中就会不可避免的出现误差,这些数据误差会给油气地质储层建模带来直接的影响。另外得到确定性的地质变量空间变 量模型是不太现实的,那么在这个过程中就需要引用到概率论方法来完善数据建模。举例 来说对于储层中流体的流动而言就需要结合微分方程系数等参数来进行探讨。在利用传统 方法的建模过程中正常情况下都会使用内插方法得到储层参数但同时也会对流动方程造成 影响那么就会产生一定的偏差。因此在油气地质储层建模的过程中需要根据实际条件来对 数据模型进行调整并筛选合理的模型来进行构建让油气产量预测可靠性得到保障。 二、多点地质统计学与训练图像 基于变差函数的传统地质统计学随机模拟是目前储层非均质性模拟的.常用方法。然而,变差函数只能建立空间两点之间的相关性,难于描述具有复杂空间结构和几何形态的 地质体的连续性和变异性。 针对这一问题,多点地质统计学方法应运而生。该方法着重表达空间中多点之间的相 关性,能够有效克服传统地质统计学在描述空间形态较复杂的地质体方面的不足。多点地 质统计学的基本工具是训练图像,其地位相当于传统地质统计学中的变差函数。对于沉积 相建模而言,训练图像相当于定量的相模式,实质上就是一个包含有相接触关系的数字化 先验地质模型,其中包含的相接触关系是建模者认为一定存在于实际储层中的。 三、地质概念模型转换成图像训练 地质工作人员擅于根据自己的先验认识、专业知识或现有的类比数据库来建立储层的 概念模型。当地质工作人员认为某些特定的概念模型可以反映实际储层的沉积微相接触关 系时,这些概念模型就可以转换或直接作为训练图像来使用。利用训练图像整合先验地质 认识,并在储层建模过程中引导井间相的预测,是多点地质统计学模拟的一个突破性贡献。 可以将训练图像看作是一个显示空间中相分布模式的定量且直观的先验模型。地质解 释成果图、遥感数据或手绘草图都可以作为训练图像或建立训练图像的要素来使用。理想 状态下,应当建立一个训练图像库,这样一来建模人员就可以直接选取和使用那些包含目 标储层典型沉积模式的训练图像,而不需要每次都重新制作训练图像。 四、二维和三维训练图像 二维训练图像就是在纵向上没有变化,比如人工划相图,因此二维训练图像又称为伪 三维训练图像。二维训练图像在纵向上不能反映河道微相的加积,在横向上也不能反映各 沉积微相的迁移。因此二维训练图像比不能很好的反映沉积构型。在三维训练图像中,可

三角洲沉积储层构型研究进展

三角洲沉积储层构型研究进展 读书报告 报告编写人:蒋民心(1002040135) 年级:2010级 课程:油气储层研究进展 任课教师:赵晓明 西南石油大学地球科学与技术学院 2014年3月24号

三角洲沉积储层构型研究进展 蒋民心(1002040135) 西南石油大学地球科学与技术学院成都 610500 摘要:本文从储层构型概念出发,大致概括了国内学者对三角洲沉积领域的储层构型研究方法和取得的成果,针对油田三角洲储层精细表征及剩余油挖潜,以河控三角洲河口坝地下储层构型以及东营凹陷永安镇油田沙二段三角洲储层为例,利用地震、测井、地质等资料,研究三角洲储层沉积旋回、层次界面等不同层次构型要素,界定和划分构型单元,建立三角洲储层构型模式,分析构型单元对剩余油分布的控制作用.结果表明:三角洲前缘水下分流河道发育是单一河口坝边界识别的重要标志;构型单元韵律变化是造成剩余油局部富集的重要因素,正韵律水下分流河道砂体中上部剩余油相对集中,反韵律河口坝砂体下部剩余油富集。在此基础上了归纳总结了现阶段储层构型研究所遇到问题,针对目前的研究现状和存在的问题,并根据所查阅的文献分析了储层构型研究的发展趋势。 关键词:储层构型;河流相;储层非均质;剩余油分布;东营凹陷;永安镇油田;沙二段;三角洲相;构型单元 1.储层构型概念的提出 储层构型是指沉积砂体内部由各级次沉积界面所限定的砂质单元和不连续“薄夹层”的几何形态、规模大小、相互排列方式与接触关系等结构特征[1]。其概念在储层沉积学研究方面的应用可以追溯到上个世纪70 年代。1977 年Allen,J.R.L.在第一届国际河流沉积学会议上明确提出了储层构型的概念,用以描述河流层序中河道和溢岸沉积的几何形态及内部组合。1985 年,Miall,A.D.第一次完整地提出了河流相的储层构型分析法[3],全面介绍了该方法中的界面等级、岩相类型、结构单元等概念,这代表了储层构型分析法的诞生。之后Maill,A.D.对该方法进行了完善,并最终将河流相划分为6 级界面、20 种岩相类型、9 种结构单元。1989 年,第74 届AAPG 年会将这套理论列为当今油气勘探领域三大进展之一。 2.三角洲储层构型研究现状 储层构型研究方法在Miall,A.D.提出后,立即引起国外许多地质学家的高度重视,并开始对储层构型进行了多方面的研究。自从柯保嘉[4]首先将储层构型分析法介绍到国内学术界以来,众多国内学者在储层构型研究方面也进行了诸多有益尝试,并取得了一些进展。 (1)构型研究的资料基础

第五章 边界层理论

1 Transport Phenomena, Xu Jian, 2009 第五章边界层理论 边界层概念 边界层方程 边界层分离 2 Transport Phenomena, Xu Jian, 2009 5.1 边界层概念 在上述层流动量传递的若干实例的分析中,(1)形状简单;(2)引入了假设:管道无限长、忽略进口段影响。实际问题要复杂得多。 边界层理论,粘滞力对动量传递影响的一般理论,是粘性流体力学的基础,也与热量传递过程和质量传递过程有着密切的关系。 3 Transport Phenomena, Xu Jian, 2009 5.1 边界层概念 Prandtl(1904)提出边界层概念,把统一的流场,划分成两个区域,边界层和外流区;其流体流动(沿流动方向和沿与流动方向垂直的方向)有不同的特点。 边界层:流体速度分布明显受到固体壁面影响的区域。 边界层的形成: ?壁面处流体的“不滑脱”no-slip ?流体的“内摩擦”作用 边界层厚度δ?U =0?0.99 U 0 4 Transport Phenomena, Xu Jian, 2009 5 Transport Phenomena, Xu Jian, 2009 5.1 边界层概念 流过一物体壁面的流体分成两部分 ?边界层,粘性流体,不能忽略粘滞力?外流区,理想流体,可以忽略粘滞力 6 Transport Phenomena, Xu Jian, 2009 边界层理论的要点 边界层厚度δ的变化 ?前缘处,δ=0 ?x ↑, δ↑;沿壁面的法向将有更多的流体被阻滞?δ<

边界层分离

C4.6 压强梯度的影响:边界层分离 边界层分离又称为流动分离,是指原来紧贴壁面流动的边界层脱离壁面的现象。边界层脱离壁面后的空间通常由后部的倒流流体来填充,形成涡旋,因此发生边界层分离的部位一般有涡旋形成。当流体绕曲壁流动时最容易发生这种现象,图C4.6.1为典型的例子,在圆柱后部发生的流动分离形成一对涡旋,称为猫眼。下面以具有顺压和逆压梯度的曲壁边界层流动为例说明边界层分离的原因和特点。 (图C4.6.1) 1.分离的物理原因

正如C4.3所述,外流的压强可透过边界层,直接作用到壁面上。在顺压梯度区(图C4.6.2中BC段)壁面附近的流体元将受到压力的推动前进;在零压强梯度区(C点)流体微团靠自身的动能克服粘性阻力前进;在逆压梯度区(CE段)流体元受到逆压和粘性力双重阻力逐渐减速,至S点时动能耗尽,速度为零。在后部(SE段)倒流的流体挤压下,脱离壁面流向内部。S点称为分离点,SE称为脱体区。 (用氢气泡技术演示圆柱绕流分离点和分离区) 2.速度廓线特点 普朗特边界层方程(C4.3.2)式为 (C4.3.2) 在壁面上u = 0, v = 0, 由上式可得 (C4.6.1)

上式表明在壁面上速度廓线的二阶导数与方向的压强梯度符号相同。如图 C4.6.2所示,在顺压梯度区BC段< 0,由函数微分性质知速度廓线外凸;在 压强极小值点C处,= 0,C点为拐点;在逆压梯度区CE段,>0,速 度廓线内凹,且沿流动方向曲率逐渐增大,拐点上升,至S点,= 0,速度廓线与y轴方向相切;过S点后速度廓线继续内凹,速度变为负值,出现倒流。SS’线称为间断面,SS’线后为分离区(图C4.6.2)。 (图 C4.6.2)

流体力学常用英语词汇

流体动力学 fluid dynamics 连续介质力学 mechanics of continuous media 介质 medium 流体质点 fluid particle 无粘性流体 nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学 fluid kinematics 水静力学 hydrostatics 液体静力学 hydrostatics 支配方程 governing equation 分步法 fractional step method 伯努利定理 Bernonlli theorem 毕奥-萨伐尔定律 Biot-Savart law 欧拉方程 Euler equation 亥姆霍兹定理 Helmholtz theorem 开尔文定理 Kelvin theorem 涡片 vortex sheet 库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution 达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number 施特鲁哈尔数 Strouhal number 随体导数 material derivative 不可压缩流体 incompressible fluid 质量守恒 conservation of mass 动量守恒 conservation of momentum 能量守恒 conservation of energy 动量方程 momentum equation 能量方程 energy equation 控制体积 control volume 液体静压 hydrostatic pressure 涡量拟能 enstrophy 压差 differential pressure 流[动] flow 流线 stream line 流面 stream surface 流管 stream tube 迹线 path, path line 流场 flow field 流态 flow regime 流动参量 flow parameter 流量 flow rate, flow discharge 涡旋vortex 涡量 vorticity 涡丝 vortex filament 涡线 vortex line 涡面 vortex surface 涡层 vortex layer 涡环 vortex ring 涡对 vortex pair 涡管 vortex tube 涡街 vortex street 卡门涡街 Karman vortex street 马蹄涡 horseshoe vortex 对流涡胞 convective cell 卷筒涡胞 roll cell 涡 eddy 涡粘性 eddy viscosity 环流 circulation 环量 circulation 速度环量 velocity circulation 偶极子 doublet, dipole 驻点stagnation point 总压[力] total pressure 总压头 total head 静压头 static head 总焓 total enthalpy 能量输运 energy transport 速度剖面 velocity profile 库埃特流 Couette flow 单相流 single phase flow 单组份流 single-component flow 均匀流uniform flow 非均匀流 nonuniform flow 二维流 two-dimensional flow 三维流 three-dimensional flow 准定常流 quasi-steady flow 非定常流 unsteady flow, non-steady flow 暂态流 transient flow 周期流 periodic flow 振荡流 oscillatory flow 分层流 stratified flow 无旋流 irrotational flow 有旋流 rotational flow 轴对称流 axisymmetric flow 不可压缩性 incompressibility 不可压缩流[动] incompressible flow 浮体floating body 定倾中心 metacenter 阻力 drag, resistance

井震结合的曲流河储层构型表征方法及其应用——以秦皇岛32-6油田为例

第3〇卷第1期中国海上油气Vol. 30 No. 1 2018 年 2 月 C H I N A O F F S H O R E O I L A N D G A S Feb. 2018 文章编号:1673-1506(2018)01-0099-11 D O I:10. 11935/j. issn. 1673-1506. 2018. 01. 012 井震结合的曲流河储层构型表征方法及其应用$ —以秦皇岛32-6油田为例 岳大力1胡光义3李伟1范廷恩3胡嘉靖1乔慧丽1 (中国石油大学(北京)地球科学学院北京12249; 2.油气资源与探测国家重点实验室北京12249; 3.海洋石油髙效开发国家重点实验室北京1028; 4.中海油研究总院有限责任公司北京1028) 岳大力,胡光义,李伟,等.井震结合的曲流河储层构型表征方法及其应用—以秦皇岛36油田为例[J].中国海上油气,2018,⑴:99-109. Y U E Dali,H U Guangyi,LI W e i,et a l. Meandering fluvial reservoir architecture characterization method and application by combining well log-ging and seismic data:a case study of QIID32-6 oilfield[J]. China Offshore Oil and Gas^ 2018,30(1) :99-109. 摘要以曲流河定量构型模式为指导,采用地震正演、分频地震属性分析与分频反演相结合的方法,在海 上大丼距条件下,对渤海秦皇岛32-6油田明化镇组曲流河储层进行了多级次精细构型解剖。首先,提出了 先优选地震数据频段,再优选地震属性的分频属性优选方法,精细刻画了复合曲流带的分布;次,采用“井震结合”“规模控制”“动态验证”的方法,在复合曲流带内部识别了单一曲流带和单一点坝。研究结果表明:①三种河道边界砂体叠合方式均表现为在叠合部位振幅减弱的特征,正演响应规律为应用波形预测井间砂 体分布提供了可靠依据;分频地震属性优选方法明显提高了地震属性与砂体厚度的相关性,从而提高了复 合曲流带预测精度;在研究区目的层地震数据中心频率55H z的情况下,采用分频地震属性分析、分频反 演和正演相结合的方法,在大丼距条件下精确刻画了单一曲流带及内部点坝分布,在研究区识别出了 5个单 一曲流带与1个保存完整的点坝,将对秦皇岛32-6油田下一步高效开发与剩余油挖潜起到有效的指导作 用。本文提出的方法对相似沉积特征和资料基础的油田构型分析具有借鉴意义。 关键词地震正演;震属性;分频反演;流带;坝;皇岛32-6油田 中图分类号:T E11文献标识码:A Meandering fluvial reservoir architecture characterization method and application by combining well logging and seismic d ata:a case study of QHD32-6 oilfield Y U E D a l i1'2H U G u a n g y i3,4L I W e i1,2F A N T i n g e n3,4H U J i a j i n g'2Q I A O H u i l i1'2 (1. C ollege o f G eosciences,C hina U niv ersity o f P e tro le u m,102249, 2. o f P etro leu m Resources a n d P ro s p e c tin g,B e ijin g12249,C hina; 3. S tate K ey L ab o ra to ry o f O ffs h o re O il E x p lo ita tio n,B e ijin g 100028, C h in a;4. C N O O C R esearch In stitu te Co. ,L t d.,B e ijin g 100028, C h in a) Abstract:M i n g h u a z h e n F o r m a t i o n in QHD32-6 oilfield is m e a n d e r i n g fluvial reservoir. W i t h t he g u i d a n c e of m e a n-dering fluvial quantitati-ve architecture m o d e l,t he reservoir architecture is characterized finely b y c o m b i n i n g f o r w a r d seismic m o d e l i n g,s p e c t r a l-d e c o m p o s e d seismic attributes analysis a n d s p e c t r a l-d e c o m p o s e d inversion u n d e r the condition of relatively sparse well data. Firstly? this p a p e r p r o p o s e s a n effecti-ve m e t h o d of seismic attritjutes opti-m i z ation that optimizes the f r e q u e n c y in a d v a n c e of seismic attritjutes,a n d the distribution of c o m p o u n d m e a n d e r belt w a s depicted accurately w i t h th e o p t i m i z e d seismic attributes. S e c o n d l y,a p p l y i n g the m e t h o d s of well logs a n d seismic data c o m b i n a t i o n,architecture scale controlling, p r o d u c t i o n verification, m o s t single point bars a n d single m e a n d e r belts w e r e recognized finely in c o m p o u n d m e a n d e r i n g belt. T h e result s h o w s:?T h e positon at b o u n d a-ries of three t y pes of s t a c k e d c h a n n e l s is characterized b y the decrease of amplitude. T h e r e s ponse patterns of seis- $十二五”国家科技重大专项“海上开发地震关键技术及应用研究(编号:2011ZX05024-001)”、国家自然科学基金青年科学基金项目(编 号:40902035) ”、教育部博士点新教师基金项目(编号:20090007120003) ”部分研究成果。 第-作者筒介:岳大力,男,博士,中国石油大学⑴京)副教授,从事油气田开发地质方面的教学与科研工作。地址:北京市昌平区府学路 1 号(⑴编:102249)。E-mail: yuedali@cup. edu. cn。

油藏描述研究现状

油藏描述研究现状 摘要油藏描述是对油藏的各种参数进行三维空间的定量描述和表征。几十年来发展很快,本文针对油藏描述技术进行分析,调研国内外资料,研究了相关技术的发展,指出油藏描述中存在的问题和进一步的发展方向。 关键词油藏描述;层序地层;非均质性 油藏描述是伴随迅速发展的计算机技术而发展起来的对油藏各项参数进行三维空间定量描述和预测的一项综合性技术,贯穿于油田勘探开发的始终。 1 油藏描述技术发展历程 总体上看,油藏描述大致经历了四个大的发展阶段[1]:以地质为主体的油藏描述(20世纪70年代以前的开发地质研究)、以测井为主体的油藏描述(20世纪70年代初由斯仑贝谢公司最早提出)、以物探(测井、地震)为主体的油藏描述(20世纪80~90年代)、多学科一体化综合油藏描述(现代油藏描述,20世纪90年代以来)。 起初,斯仑贝谢公司[2]以测井服务为目的,从单井处理发展到多井对比,从单井数据分析到对储层横向展布进行研究。在20世纪80年代中期,随着斯伦贝谢测井技术的引进,油藏描述被国内引进。 随着油藏开发难度变大,油藏描述不再仅仅局限于测井资料为主,而是逐步转向以地质为核心,出现了新的技术手段。储层非均质性研究的层次和分类概念、地质统计学应用、岩石物理流动单元的提出与发展,丰富了油藏描述的研究方法。 20世纪90年代以来,油藏描述在多学科继续发展基础上,逐步向精细化[3]、数字化、多学科一体化、过程自动化、成果可视化方向发展,形成了精细油藏描述技术,油藏描述强调更精细、准确、定量地预测出揭示剩余油的分布,提高油田采收率。 这一阶段,高分辨率层序地层学、储层随机建模技术、储层建筑结构和定量知识库方面的研究,进一步促进油藏描述研究的发展。 2 油藏描述技术特点 现代油藏描述的突出特点是其整体性、综合性、预测性、阶段性、先进性和早入性。 (1)整体性:油藏描述是个系统工程,油藏各属性是一个完整的系统,油藏描述始于一维井剖面描述,再到二维层的描述,最后三维整体描述。

储层构型分析法研究现状与展望

储层构型分析法研究现状与展望 滕彬彬,武爱俊,邓文秀 (中国石油大学(华东),山东东营 257061) 摘 要:本文概括论述了20多年来储层构型分析法的重大研究进展:从对野外露头和现代沉积的研究逐渐转入到对地下储层的分析;从简单的露头剖面测量到多种新技术、新手段的应用;储层构型分析法与其它分析方法相结合;从对河流沉积体系的研究逐渐应用到其它冲积沉积体系中去,但目前仍以河流沉积研究为主,以曲流河点砂坝研究最多。最后,本文指出了储层构型分析法存在的问题以及发展趋势。 关键词:储层构型分析法;储层非均质性;河流相;地下储层 储层构型分析研究实质上是描述储层内部的非均质性,最终用于进一步挖潜剩余油,提高油气采收率。自M iall于1985年正式提出储层构型分析方法至今的20多年时间里,储层构型分析方法不断完善,应用也越来越广泛。众多国内外地质学者们掀起了储层构型分析的热潮,他们纷纷投入到对野外露头沉积和地下储层的储层构型分析研究中去,并将储层构型分析法与各种新技术、新手段相结合,取得了一定的成果和认识,从而使储层构型分析方法研究得到了很大发展。 1 储层构型分析法的提出 1977年,Allen在第一届国际河流沉积学会议(卡尔加里)明确提出了fluv ial architectur e的概念,将其描述为河流层序中河道和溢岸沉积的几何形态及内部组合。1985年,加拿大多伦多大学地质系教授A.D.M iall[1]吸纳Allen思想之精髓,提出了应用于河流沉积相分析的储层构型分析方法(architectural elem ent analy sis),主要研究内容为岩相类型划分、沉积界面划分和构型单元描述。其核心思想是,地层由代表沉积间隔的界面和连续沉积的沉积单元构成,界面和沉积单元由于跨越了不同的时间尺度而组成了一个等级体系,其中不同等级的界面限定了不同的沉积单元,而由三级到五级界面限定的基本沉积单元即是构型单元,具有各自不同的岩石相组合、外部几何形态、展布方向和垂向剖面。Miall最初在对河流相沉积研究时划分出6级沉积界面[1],后来又将界面等级体系扩大到冲积体系中的8级界面,并归纳总结出20种岩石相类型和9种基本构型单元[2-4]。随着M iall对储层构型分析方法的不断完善,该方法逐渐被众多国内外地质学者们所接受和认可,他们纷纷掀起了储层构型分析研究的热潮,储层构型分析方法研究得到了巨大的发展。 2 储层构型分析法研究现状 2.1 从对野外露头和现代沉积的研究转入到对地下储层的分析 最早的储层构型分析源自对河流相沉积的野外露头和现代沉积研究[1-6]。到目前为止,国内外众多学者做了大量的研究工作并且取得一定的成果。他们根据M iall所提出的储层构型分析方法研究思路,从岩相类型划分、沉积界面划分和构型单元特征三个方面开展储层构型分析研究,并根据各自研究地区的特点和研究对象的复杂程度排列沉积界面序列和定义构型单元类型[7],建立起了高精度的储层建筑结构模型[8-11],加深了人们对河流相储层内部建筑结构形态的感性认识。 然而进行储层构型分析,建立储层建筑结构模型的最终目的在于挖潜剩余油、提高油气采收率。因此人们在通过野外露头和现代沉积建立的高精度储层建筑结构模型基础之上,根据M iall所提出的储层构型分析研究思路,充分利用一切能够获取地下有用信息的资料对地下储层进行构型分析[12,13]。通过对取心井进行岩心观察识别出各种岩相类型[12]。1990年,第十三届国际沉积学大会上明确指出,研究沉积界面体系(界面层次或界面等级)是搞清砂体内部建筑结构的关键[14]。然而地下储层沉积界面的 111  2009年第17期 内蒙古石油化工 收稿日期:2009-05-04 作者简介:滕彬彬(1983-),女,2006年毕业于中国石油大学(华东)资源勘查工程专业,现为中国石油大学(华东)硕士研究生。

流体力学概述.

流体力学概述 经管学院经济学系冷静054105 风是怎样形成的,河水为什么有时和缓有时湍急,庞然大物的飞机是如何如飞鸟一样翱翔蓝天的……自然界中,生产、生活中,有很多看似简单,却不容易解释的现象。其实他们中很多要应用流体力学的知识来解释。而流体力学本身也是经过了漫长的发展、探索才形成了今天这样完善、严谨的体系。 流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用和流动的规律。流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。此外,在气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理等许许多多的问题中,都会广泛地用到流体力学知识。随着科学技术的飞速发展,许多现代科学技术所关注的问题都不可避免的要用到流体力学的知识,同时他们也促进了流体力学不断地发展。 一、流体力学的形成及简要发展过程 任何一门学科的形成都包含了成千上万的科学家苦心钻研的成果,也包含了对以前成果的继承和创新。回顾流体力学的漫长发展史,对流体力学学科的形成作出第一个贡献的是古希腊伟大的数学家、物理学家阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的重要基础,流体力学的万丈高楼才得以在其基础上建立起来。但另人扼腕的是,此后千余年间,流体力学没有重大发展和突破。直到15世纪,我们熟知的在许多学科都颇有建树的意大利画家达·芬奇在其著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。 流体力学,尤其是流体动力学作为一门严密的科学,与力学的关系是密不可分的。因此,它是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才真正逐步形成的。“17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。”[1]

计算流体力学概述-转载

(计算流体力学概述) CFD仿真 3月20日309 计算流体力学概述 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 计算流体力学的发展 计算流体动力学(Computational Fluid Dynamics)简写为CFD,是20世纪60年代起伴随计算科学与工程(Computational Science and Engineering, 简称CSE)迅速崛起的一门学科分支,经过半个世纪的迅猛发展,这门学科已经是相当的成熟了,一个重要的标志就是近几十年来,各种CFD通用软件的陆续出现,成为商品化软件,服务于传统的流体力学和流体工程领域,如航空、航天、船舶、水利等。随着CFD通用软件的性能日益完善,应用的范围也不断的扩大,在化工、冶金、建筑、环境等相关领域中也被广泛应用。 现代流体力学研究方法包括理论分析,数值计算和实验研究三个方面。这些方法针对不同的角度进行研究,相互补充。理论分析研究能够表述参数影响形式,为数值计算和实验研究提供了有效的指导;试验是认识客观现实的有效手段,验证理论分析和数值计算的正确性;计算流体力学通过提供模拟真实流动的经济手段补充理论及试验的空缺。 更重要的是,计算流体力学提供了廉价的模拟、设计和优化的工具,以及提供了分析三维复杂流动的工具。在复杂的情况下,测量往往是很困难的,甚至是不可能的,而计算流体力学则能方便的提供全部流场范围的详细信息。与试验相比,计算流体力学具有对于参数没有什么限制,费用少,流场无干扰的特点。出于计算流体力学如此的优点,我们选择它来进行模

相关主题
文本预览
相关文档 最新文档