当前位置:文档之家› 原子吸收分光光度计实验数据

原子吸收分光光度计实验数据

原子吸收分光光度计实验数据
原子吸收分光光度计实验数据

铝合金铸件中Cu、Fe和Zn含量分析

一、实验目的:

1.学习了解原子吸收分光光度计的工作原理及适用范围;

2.熟练掌握风光光度计的使用方法;

3.分析检测铝合金铸件中Cu、Fe和Zn的含量。

二、实验原理:

原子吸收分光光度计用于测定元素原子化时的吸光度,使用预测含量较少的元素含量。本试验通过将少量合金样品配成溶液,并用光度计测量溶液中元素的波长,采用作图法来得到样品中个元素的浓度,从而得到样品中各组分含量。

三、实验步骤:

1.割取小块铝合金铸件样品,称量得m=0.5120g

2.溶解样品:将样品至于50ml(最好采用100ml)烧杯中,加入30ml盐酸,再加入10ml硝酸。将烧杯至于磁力加热搅拌器上加热搅拌以加速样品溶解。样品不断溶解并伴有气泡的产生。溶液颜色不见变深。

3.带合金溶解完毕后,继续加热搅拌至溶液挥发20ml左右为止。约耗时1h。

4.过滤浑浊液,滤液直接由100ml容量瓶接收。第一次过滤结束后,用蒸馏水洗涤滤渣3次,继续回收滤液。待此过程结束后,向容量瓶中加入蒸馏水配制100ml溶液5.注意事项:

①溶解合金所需酸需用优级纯等级的;

②用磁力加热搅拌器加热时要注意控制温度,以免溶液溢出;

③当烧杯内有大量气泡冒出时,将烧杯移至一旁并用玻璃棒搅拌,直至起泡消失

再放回原处加热搅拌;

④若烧杯升温过慢,可将铁片围起以减少铁片的热损失;

⑤过滤时所用滤纸要为定量滤纸,万不能使用定性滤纸。

6.确定标准液浓度范围:现将Cu、Fe、Zn的标准液分别稀释1000、100、1000倍测量其吸光度

7.将样品溶液稀释50倍得1#溶液。

8.Cu的测定

将Cu的标准溶液分别稀释500、625、5000/6、1250、2500和5000倍,测其吸光度有:

A b s

浓度(mg/L)

通过工作点,作工作曲线,得线性方程如下:

Y=0.02454+0.13798X ,R=0.99989

经计算,样品中Cu 的含量=[(0.2646-0.02452)/0.13798]*50*0.1/(0.5120*1000)=1.699% 9. Fe 的测定

将Fe 的标准溶液分别稀释200、500、1000和2000倍,测其吸光度有:

0.0

0.10.20.3

0.4

0.5

A b s

浓度(mg/L)

通过工作点,作工作曲线,得线性方程如下:

Y=0.01603+0.10769X R=0.99826 经计算,样品中Fe 的含量=[(0.0914-0.01603)/0.10769]*50*0.1/(0.5120*1000)=0.6835%

10. Zn 的测定

将Zn 的标准溶液分别稀释5000/6、1250、2500和5000倍,测其吸光度有:

A b

s

浓度(mg/L)

通过工作点,作工作曲线,得线性方程如下:

Y=0.05148+0.24183X; R=0.99607

经计算,样品中Zn 的含量=[(0.1138-0.05148)/0.24183]*50*0.1/(0.5120*1000)=0.2517%

原子吸收实验讲义

原子吸收实验讲义-CAL-FENGHAI.-(YICAI)-Company One1

实验一火焰原子吸收光谱法测定水样中的铜含量—标准加入法一、实验目的 1.了解原子吸收光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系和影响,确定各项条件的最佳值。 3.学习使用标准加入法进行定量分析。 二、方法原理 在原子吸收光谱分析中,分析方法的灵敏度、精密度、干扰是否严重,以及分析过程是否简便快速等,在很大程度上依赖于所使用的仪器及所选用的测量条件。因此,原子吸收光谱法测量条件的选择是十分重要的。 原子吸收光谱法的测量条件,包括吸收线的波长,空心阴极灯的灯电流,火焰类型,雾化方式,燃气和助燃气的比例,燃烧器高度,以及单色器的光谱通带等。 本实验通过铜的测量条件,如灯电流,燃气和助燃气的比例,燃烧器高度和单色器狭缝宽度的选择,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.TAS-990F型原子吸收分光光度计(北京普析通用)。 2.铜空心阴极灯。 3.铜标准溶液5μg?mL-1。 4. 25 mL比色管。 四、实验步骤 1.铜标准系列的配制 于5支10mL比色管中,各加入1mL未知样品溶液,然后从第二支比色管开始分别准确移取10μg?mL-1铜标准溶液,,, mL,用去离子水稀释至刻度,摇匀。另取一支比色管直接用去离子水定容至刻度,用作空白溶液。 2.仪器操作条件的设置 (1)初选测量条件 表1测量初选条件 (2)燃烧器高度的选择 用上述初选测量条件,固定空气流量,改变燃烧器高度(也称测量高度,见表2)测量其吸收值,选用有较稳定的最大吸收值的燃烧器高度。

原子吸收分光光度计使用说明书

GGX-5型火焰原子吸收分光光度计使用说明书 1 GGX-5火焰原子吸收分光光度计的使用 1.1 仪器特点 原子吸收是指基态自由原子对光辐射能的共振吸收。通过测量自由原子对光辐射能的吸收程度而推断出样品中的某一元素的量大小,根据这一原理研制的分析测试仪器称原子吸收分光光度计。仪器主要由原子化系统、光学系统、信号检测放大输出系统及附属设备组成。下面先将仪器部分结构的性能和特点概述一下: (1) 元素灯, 光源稳定, 寿命较长,我站较常使用的铜、铅、镉、锰、铁、镍等元素灯, 使用五至六年后才更换(具体点灯时间没有统计) 。在使用期内光源是十分稳定的,当一旦出现光能量下降得利害且光源不稳时,需反接处理或更换元素灯。 (2) 原子化系统, 现在很多生产厂家采用石英玻璃喷雾器, 玻璃喷雾器具有耐腐蚀、干扰小的优点, 出厂前已将玻璃喷雾器出口的碰撞球的位置调节固定好, 无须使用者再调节球的位置。同时配有各种口径的毛细吸液管, 使用者可根据需要选择提升量大小, 以调节最灵敏、最稳定的雾化率达到理想的检测效果。(3) GGX-5型, 由于生产厂吸取了国外同行的先进电子线路和技术, 仪器的数据输出相当稳定, 工作曲线线性、数据重复性和准确性等技术指标都能达到比较理想的水平, 部分使用同型号仪器的用户亦有同感。 1.2 原子吸收分光光度计的开关机原则“先开后关, 后开先关”原则。如开机程序“电源→A 键→B 键→C 键”, 关机时必须是“C 键→B 键→A 键→电源”。气路必须先开空气压缩机, 待一定空气压力和流量后, 才能开乙炔气点火, 关机时必须关闭(切断) 乙炔气源后, 才关空气压缩机。如果开关机程序操作混乱, 极容易损伤或烧毁电气设备, 甚至发生严重安全事故。GGX-5型采用了燃气安全阀系统, 该系统只有当仪器主机电源开通后, 空气压力和流量达到一定的条件下, 燃气阀门才能撞开, 这种装备为安全使用仪器加了一道非常实用有效的防线。开关机除了要严格按程序外, 还必须严格地、准确地将各功能键调到应处的位置。要

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

原子吸收分光光度计操作规程 (含原理图)

原子吸收分光光度计(火焰法)使用规程 一、开机 1.打开主机电源,预热30分钟。 2.安装空心阴极灯,通过主机键盘输入工作灯电流,预热15分钟。 二、测试条件选择 3.主机和空心阴极灯预热结束,打开计算机,然后打开工作站。 4.选择测定元素。 5.输入一定负高压后,调整灯位。 6.对光路和调节燃烧器高度。 7.选择测定波长和调节能量值。 8.输入积分时间和测定次数。 三、样品测试(火焰法) 9.开空气压缩机。 10.打开乙炔钢瓶开关,调节减压阀至压力为0.075kp a。 11.输入标准溶液浓度。 12.打开乙炔开关,调节流量为1.5,按点火按钮点火。 13.燃烧3分钟后吸喷去离子水,燃烧状态稳定后按增益键调零。 14.测试标准溶液。 15.测试样品。 四、关机 16.测试完毕,吸喷1%硝酸溶液5~10分钟,然后吸喷去离子水15分钟。17.关闭燃气。 18.排去空气压缩机内的水分,关空气压缩机。 19.排去管路中的乙炔和空气。 20.退出工作站,关灯和主机。 21.关排气扇。 22.倒干净废液罐中的废液,并用自来水冲洗废液罐。 23.待燃烧器冷却后,卸下燃烧器,用自来水从颈部冲洗燃烧器内部,然后用去离子水冲洗,最后用干毛巾和滤纸擦干水。 24.清洁燃烧室、实验桌、仪器室。 25.登记仪器使用情况,关好门窗水电。

仪器原理 1、原子吸收光谱分析的基本过程: (1)用该元素的锐线光源发射出特征辐射; (2)试样在原子化器中被蒸发、解离为气态基态原子; (3)当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子吸收而减弱,通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度成线性关系,从而进行元素的定量分析。 元素在燃烧器或者热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL , 式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 2、原子吸收分光光度计的基本部件: 原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、分光系统(单色仪)和数据处理系统(包括光电转换器及相应的检测装置以及显示系统),如下图: 原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。但氧化亚氮—乙炔火焰安全性较差,应用不普遍。空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm级(10-6),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。 石墨炉原子吸收分光光度计,可以测定近50种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/ml级。而且石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右;用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

原子吸收分光光度计操作方法

原子吸收分光光度法测定溶液中CU含量 一、实验目的 1.掌握原子吸收分光光度法的特点及应用; 2.了解原子吸收分光光度计的结构及其使用方法。 二、实验原理 原子吸收光谱分析是基于从光源中辐射出的待测元素的特征光波通过样品的原子蒸气时,被蒸气中待测元素的基态原子所吸收,使通过的光波强度减弱,根据光波强度减弱的程度,可以求出样品中待测元素的含量。 利用锐线光源在低浓度的条件下,基态原子蒸气对共振线的吸收符合朗伯—比尔定律,即: A=lg(I0/I)=KLN0 (1) 式中,A为吸光度,I0为入射光强度,I为经原子蒸气吸收后的透射光强度,K为吸光系数,L为辐射光穿过原子蒸气的光程长度,N0为基态原子密度。 当试样原子化,火焰的绝对温度低于3000K时,可以认为原子蒸气中基态原子的数目实际上接近原子总数。在固定的实验条件下,原子总数与试样浓度c的比例是恒定的,则等式(1)可记为 A==K’c (2) 式(2)就是原子吸收分光光度法定量分析的基本关系式。常用标准曲线法、标准加入法进行定量分析。 三、仪器与试剂 1.原子吸收分光光度计 2.标准溶液1~4号 3.样品溶液1~2号 四、操作步骤 1.开机前先检查水封是否有水,乙炔管道有无泄漏(空气中有无乙炔气味) 2.打开抽风机 3.打开电脑以及原子吸收分光光度计电源开关 4.分析方法设计

进入软件→点文件→选择新建→选择分析方法(火焰法、石墨法、氢化物法等)→分析任务选择(Cu、Pb、Ca等)→填写数据表(批数、个数、测量次数、稀释倍数)→展开→完成→仪器控制→点击自动波长→精调→完成→检测(准备两杯水,一杯调零,另一杯洗样管) 5.将元素灯预热30min 6.打开空压机,将压力调到0.3Mpa 7.打开乙炔钢瓶阀,将出气阀压力调到0.05~0.06Mpa之间 8.调整燃烧器高度,对好光路 9.旋开仪器上的乙炔伐,按点火开关,点火,调节火焰大小,开始检测 10.标准空白(纯水)读数5次,平均 11.标液1~标液4各读数5次,平均 12.建立标准曲线,相关系数应在0.995以上。 13.未知样品读数5次,平均。从标准曲线中求得结果。 14.检测完毕后,保存数据 15.点火吸去离子水10min,在关乙炔伐,使管道中气体烧完再关仪器、电脑、空压机。 五、结果处理 1.记录操作条件 灯电流 燃烧器高度 狭缝宽度 乙炔流量 空气流量 2.根据标准曲线计算样品中Cu含量。

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

原子吸收实验

一、实验目的 1、学习HITACHI180-80型偏振-塞曼原子吸收分光光度计的工作原理及基本结构; 2、了解HITACHI180-80型偏振-塞曼原子吸收分光光度计的仪器性能及应用范围; 3、掌握HITACHI180-80型偏振-塞曼原子吸收分光光度计的操作流程及注意事项。 二、仪器的工作原理及基本结构 (一)概述 在使用原子吸收光谱法测定时,将试液喷成细雾,并与燃气混和送至原子化器,被测元素转化为原子蒸气。气态的基态原子吸收从空心阴极灯(光源)发射出的与被测元素吸收波长相同的特征谱线,使该谱线的强度减弱,再经单色器分光后,由光电倍增管将光信号转变为电流,经放大后由读出装置显示出原子吸收光谱图或吸光度值。 原子吸收分光光度计的部件及其功能 项目 光源原子化系统 色散元件 检测器 读出装置 火焰非火焰 部件 空心阴极灯 燃烧器 石墨炉 光栅或棱镜 光电倍增管 微机、表头、记录仪 功能 产生锐线光源使试液原子化,产生气态基态原子将被测元素共振线与邻近谱线分开浓度变换成电流显示吸光度值或原子吸收光谱图 (二)类型 有单光束、双光束及双道双光束三种类型。单道单光束和单道双光束型的仪器由于结构比较简单,价格相对较低,因而应用比较普遍;单道双光束型的仪器可测定透光信号与参比信号之比,可抵消光源波动和减轻基线漂移;双道双光束型原子吸收分光光度计的结构较复杂而且价格相对较高,但这种仪器可同时测定两种元素,可作内标分析不但补偿光源波动而且补偿喷雾系统和火焰系统所引起的干扰,还可用氘灯作背景校正。 (a)单道单光束原子吸收光谱仪 (b)单道双光束原子吸收光谱仪 (c)双道双光束原子吸收光谱仪 1.空心阴极灯 2.切光器 3.原子化器 4.分光系统 5.光电检测器 6.放大显示器

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

原子吸收分光光度计的结构说明

原子吸收分光光度计的结构说明 原子吸收分光光度计分为单光束型和双光束型。其结构可分为五个部分:光源、原子化器、光学系统、检测系统与数据处理系统。1、光源 为测出待测元素的峰值吸收,须采用锐线光源,应满足以下一些要求:辐射强度大、辐射稳定、发射普线宽度窄。空心阴极灯是目前原子吸收光谱仪器使用的主光源,属于辉光放电气体光源。 空心阴极灯是一种由被测元素或含有被测元素的材料制成的圆筒形空心阴极和一个阳极(钨、钛或锆棒),密封在充有低压惰性气体的带有石英窗的玻璃壳内的电真空器件。 当在两极之间施加几百伏的高压,两极之间会产生放电,电子将从空心阴极内壁射向阳极,并在电子的通路上又与惰性气体原子发生碰撞并使之电离,带正电荷的惰性气体离子在电场的作用下,向阴极内壁猛烈地轰击,使阴极表面的金属原子溅射出来,而这些溅射出来的金属原子再与电子、惰性气体原子及离子发生碰撞并被激发,于是阴极内的辉光便出现了阴极物质的光谱。 空心阴极灯的阴极材料的纯度必须很高,内充气体也必须为高纯,以保证阴极元素的共振线附近不含内充气体或杂质元素的强谱线。 空心阴极灯的操作参数是灯电流,灯电流的大小可决定其所发射的谱线的强度。但是需根据具体操作情况来选择灯电流的大小。 通常情况下,空心阴极灯在使用前需预热10~15min。 2、原子化系统 原子吸收光谱中常用的原子化技术是:火焰原子化和电热原子化。此外还有一些特殊的原子化技术如氢化发生法、冷原子蒸气原子化等。 1)火焰原子化系统——火焰原子化器 火焰原子化器由雾化器、雾化室、燃烧器三部分组成。常见的燃烧器有全消耗型和预混合型。目前主要使用的是预混合型燃烧器。 2)、电热原子化系统——石墨炉原子化器 非火焰原子化器中适用广的是管式石墨炉原子化器。组成部分为:石墨管、炉体、电源。样品直接放置在管壁上或放置在嵌入管内的石墨平台上,用电加热至高

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L(x G 21A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-= -=?2 11 2 Ω=a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

原子吸收分光光度计工作原理

原子吸收分光光度计应用及维护 工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。 应用 一、实验部分 1.1、试剂 Cr标准溶液1000ug/ml Cr空心阴极灯 1.2、仪器工作条件 干燥120℃,斜坡10s,保持10s,180℃,斜坡5s,保持10s;灰化1300℃,斜坡10s,保持15s;原子化2600℃,4s,停气;清洗2800℃,5s 1.3、标准使用溶液的配置 铬标准使用溶液:吸取铬标准储备液(1mg/ml)10.0ml于100ml容量瓶中,加入2%硝酸至刻度、此溶液的浓度为100ug/ml。在逐级稀释,可分别得到标准系列溶液如下: 铬:0ug/L、5.0.0ug/L、10.0ug/L、15.0ug/L、20.0ug/L 2.试样的置备:

取空心胶囊0.50g,置氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法,在357.9nm 测定,含铬不得过百万分之二

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

原子吸收试题-答案

原子吸收分光光度计试卷 答卷人:评分: 一、填空题(共15 分1 分/空) 1. 为实现峰值吸收代替积分吸收测量,必须使发射谱线中心与吸收谱线中心完全重合,而且发射谱线的宽度必须比吸收谱线的宽度窄。 2. 在一定条件下,吸光度与试样中待测元素的浓度呈正比,这是原子吸收定量分析的依据。 3. 双光束原子吸收分光光度计可以减小光源波动的影响。 4. 为了消除火焰发射的干扰,空心阴极灯多采用脉冲方式供电。 5. 当光栅(或棱镜)的色散率一定时,光谱带宽由分光系统的出射狭缝宽度来决定。 6. 在火焰原子吸收中,通常把能产生1%吸收的被测元素的浓度称为特征浓度。 7. 与氘灯发射的带状光谱不同,空心阴极灯发射的光谱是线状的光谱。 8. 用原子吸收分析法测定饮用水中的钙镁含量时,常加入一定量的镧离子,其目的是消除磷酸根离子的化学干扰。 9. 使用火焰原子吸收分光光度法时,采用乙炔-空气火焰,使用时应先开空气,后开乙炔。 10. 待测元素能给出三倍于空白标准偏差的吸光度时的浓度称为检出限。 11. 采用氘灯校正背景时,空心阴极灯测量的是原子吸收+背景吸收(或AA+BG)信号,氘灯测量的是背景吸收(或BG)信号。 12、空心阴极灯灯电流选择的原则是在保证放电稳定和有适当光强输出的情况下,尽量选择低的工作电流。 二、选择题(共15 分1.5 分/题) 1.原子化器的主要作用是( A )。

A.将试样中待测元素转化为基态原子; B.将试样中待测元素转化为激发态原子; C.将试样中待测元素转化为中性分子; D.将试样中待测元素转化为离子。 2.原子吸收的定量方法—标准加入法,消除了下列哪种干扰?( D ) A.分子吸收B.背景吸收C.光散射D.基体效应 3.空心阴极灯内充气体是( D )。 A.大量的空气 B. 大量的氖或氮等惰性气体 C.少量的空气D.低压的氖或氩等惰性气体 4.在标准加入法测定水中铜的实验中用于稀释标准的溶剂是。(D )A.蒸镏水 B.硫酸 C.浓硝酸 D.(2+100)稀硝酸 5.原子吸收光谱法中单色器的作用是( B )。 A.将光源发射的带状光谱分解成线状光谱; B.把待测元素的共振线与其它谱线分离开来,只让待测元素的共振线通过;C.消除来自火焰原子化器的直流发射信号; D.消除锐线光源和原子化器中的连续背景辐射 6.下列哪个元素适合用富燃火焰测定?( C ) A.Na B.Cu C. Cr D. Mg 7.原于吸收光谱法中,当吸收为1%时,其对应吸光度值应为( D )。 A.-2 B.2 C.0.1 D.0.0044 8.原子吸收分析法测定钾时,加入1%钠盐溶液其作用是( C )。 A.减少背景B.提高火焰温度 C.减少K 电离D.提高K 的浓度 9.原子吸收光谱法中的物理干扰可用下述哪种方法消除?( D ) A.释放剂B.保护剂C.缓冲剂D.标准加入法

原子吸收分光光度计的原理及应用

陕西理工学院学年论文 原子吸收分光光度计的原理及应用 作者:张慧 (陕理工生物科学与工程学院生物科学专业041班,陕西汉中 723000) 指导教师:秦公伟 [摘要]:本文综述了原子吸收光谱法的使用方法及各使用方法的测定技术、优缺点、应用及与其它技术的联用,并对其发展趋势作了讨论。 [关键词]:火焰原子吸收光谱法石墨炉原子吸收光谱法氢化物原子吸收光谱法 引言:原子吸收光谱法自1955年作为一种分析方法问世以来,先后经历了初始的序幕期、爆发性的成长期、相对的稳定期和智能化飞跃期这个不同的发展时期,由此原子吸收光谱法得以迅速发展与普及,如今已成为一种倍受人们青睐的定量分析方法[1]。 二十世纪二十年代,Dymond首先将导数测量技术应用于仪器分析领域,用一阶导数技术来提高质谱检测气体激发电位的灵敏度。在随后的几十年中,导数技术本身日趋完善,在分光光度法、荧光法等领域得到越来越广泛的应用。导数技术的引进,使得这些分析方法的灵敏度、检出限得到了不同程度的改善,并且在提高方法的分辨能力和进行光谱校正方面也显示出一定的优越性。1953年,Hammond和Price 首次提出导数技术在分光光度法中的应用。六十年代末期,Morney和Butter等许多科学工作者开始将注意力转移到计算机导数技术上,低噪音运算放大器应运而生,并成功地应用于早期的导数发光光谱和导数红外光谱中。1974年,导数技术开始被应用于荧光分析领域。由于导数荧光技术能有效地解决测定过程中的背景干扰和谱带重叠问题,因而得到广泛的应用。近年来,有关利用导数光谱法校正高纯物质的ICP-AES分析中的光谱干扰的报道相继出现。导数光谱法只要求在分析线附近的一段较窄的波长范围内,干扰线强度在仪器动态范围内,因而比传统的干扰系数法和离峰分析法有更大的适用性,能有效地消除各种背景干扰[2]。 本文针对其原理、测定技术、特点、联用、应用及其进展进行综述。 1 原子吸收分光光度计使用方法 1.1 原子吸收光谱法原子化法 原子吸收光谱法作为分析化学领域应用最为广泛的定量分析方法之一,是测量物质所产生的蒸气中原子对电磁辐射的吸收强度的一种仪器分析方法。原子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用,原子化效率的高低直接影响到测量的准确度和灵敏度。无论是传统的原子化法,还是近些年才有的原子化法,都为不同元素的测定提供了较为高效的原子化方式,以下将对不同的原子化法分别讨论。 1.1.1 火焰原子化法(FAAS) 适用于测定易原子化的元素,是原子吸收光谱法应用最为普遍的一种,对大多数元素有较高的灵敏度和检测极限,且重现性好,易于操作[3]。 1.1.2 石墨炉原子化法 石墨炉原子吸收也称无火焰原子吸收,简称CFAAS。火焰原子化虽好,但缺点在于仅有10%的试液被原子化,而90%由废液管排出,这样低的原子化效率成为提高灵敏度的主要障碍,而石墨炉原子化装

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

原子吸收光度法实验报告

原子吸收光谱分析实验 一、目的要求 1.了解原子吸收光谱仪的基本构造、原理及方法; 2.了解利用原子吸收光谱仪进行测试实验条件的选择; 3.掌握原子吸收光谱分析样品的预处理方法; 4.学会应用原子吸收光谱分析定量测量样品中的常/微量元素含量。 二、实验原理 1、原子吸收光谱分析的原理 当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的基态原子浓度成正比。 当实验条件一定时,蒸气相中的原子浓度与试样中该元素的含量(浓度)成正比。因此,入射辐射减弱的程度与该元素的含量(浓度)成正比。 朗伯—比尔吸收定律:cL 1lg lg 0K T I I A === 式中:A —吸光度 I —透射原子蒸气吸收层的透射辐射强度 I 0—入射辐射强度 L —原子吸收层的厚度 K —吸收系数 c —样品溶液中被测元素的浓度 原子吸收光谱分析法就是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。 2、原子吸收光谱仪的结构及其原理

原子吸收光谱分析法所使用的仪器称为原子吸收光谱仪或原子吸收分光光度计,一般由四部分构成,即光源、原子化系统、分光系统和检测显示系统组成。 图4-1 原子吸收光谱仪结构示意图 (1)光源 光源的作用是辐射待测元素的特征谱线,以供测量之用。要测出待测元素的特征谱线和峰值吸收,就需要光源辐射出的特征谱线宽度必须很窄,目前空心阴极灯是最能满足要求的理想的锐线光源。 (2)原子化系统 样品的原子化作为原子吸收光谱测试的主要环节,在很大的程度上影响待测样品中元素的灵敏度、干扰、准确度等。目前原子化技术有火焰原子化和非火焰原子化两类。常用的原子化器有混合型火焰原子化器、电热石墨炉原子化器、阴极溅射原子化器和石英炉原子化器等。 (3)分光系统 分光系统的作用是把待测元素的共振线(实际上是分析线)与其他谱线分离出来,只让待测元素的共振线能通过。该系统主要由色散元件(常用的是光栅),入射和出射狭缝,反射镜等组元素组成,其中色散原件(光栅、棱镜)是分光系统中的关键部件。 (4)检测显示系统 检测显示系统主要由检测器,放大镜和对数变换器及显示装置组成。检测器

原子吸收分光光度法原理

原子吸收分光光度法测定矿石中的铜 原子吸收光谱法基于从光源发出的被测元素的特征辐射通过样品蒸气时,被待测元素基态原子所吸收,由辐射的减弱程度求得样品中被测元素的含量。 在锐线光源条件下,光源的发射线通过一定厚度的原子蒸气,并被基态原子所吸收,吸光度与原子蒸气中待测元素的基态原子数间的关系遵循朗伯-比耳定律: A=log I0/I =KLN 式中A为吸光度;I0为入射光强度;I为经过原子蒸气吸收后的透射光强度;K 为吸光系数,L为光波所经过的原子蒸气的光程长度,N为基态原子密度。 在火焰温度低于3000K的条件下,可以认为原子蒸气中基态原子的数目实际上接近于原子总数。特定的实验条件下,原子总数与试样浓度c B的比例是恒定的,所以,上式又可以写成: 这就是原子吸收分光光度法的定量基础。常用的定量方法为标准曲线法和标准加入法等。 原子吸收分光光度计主要组成部分包括光源、原子化器、分光系统和检测系统。

其光路如图32-1所示。 图32-1 原子吸收分光光度计光路图 1.空心阴极灯;2.火焰;3.入射狭缝;4.凹面反射镜;5.光栅;6.出射 狭缝;7.检测器 原子吸收分光光度计的光源用空心阴极灯,它是一种锐线光源。灯管由硬质玻璃制成,一端由石英或玻璃制成光学窗口,两根钨棒封入管内,一根连有由钛、锆、钽等有吸气性能金属制成的阳极,另一根上镶有一个圆筒形的空心阴极。筒内衬上或熔入被测元素,管内充有几百Pa低压载气,常用氖或氩气。当在阴阳两极间加上电压时,气体发生电离,带正电荷的气体离子在电场作用下轰击阴极,使阴极表面的金属离子溅射出来,金属原子与电子、惰性气体的原子及离子碰撞激发而发出辐射。最后,金属原子又扩散回阴极表面而重新沉积下来。通常,改变空心阴极灯的电流可以改变灯的发射强度。在忽略自吸收的前提下,其经验公式为I=ai n,其中a、n均为常数,i为电流强度。n与阴极材料、灯内所充气体及谱线的性质有关。对于Ne、Ar等气体,n值在2~3之间,由此可见,灯的发光强度受灯电流的影响较大,影响吸光度值。

相关主题
文本预览
相关文档 最新文档