当前位置:文档之家› 浅析同程式热水采暖系统不热问题的解决措施

浅析同程式热水采暖系统不热问题的解决措施

浅析同程式热水采暖系统不热问题的解决措施
浅析同程式热水采暖系统不热问题的解决措施

浅析同程式热水采暖系统不热问题的解决措施

2014-03-25 14:07:46 作者:来自:字体大小:【大】【中】【小】

【摘要】本文分析了高层建筑同程式热水采暖系统不热的原因,并从设计原因和非设计原因两方面提出了解决办法。【关键词】高层建筑;同程式热水采暖系统;不热;原因;解决措施On the hot water ...

?定制论文

?发表论文

【摘要】本文分析了高层建筑同程式热水采暖系统不热的原因,并从设计原因和非设计原因两方面提出了解决办法。

【关键词】高层建筑;同程式热水采暖系统;不热;原因;解决措施

On the hot water heating system does not solve the problem with the program of measures

Hui Yong

(China Railway 21 Bureau Group IV Engineering Ltd Xining Qinghai 810000)

【Abstract】This paper analyzes the high-rise building with no heat hot water heating system program causes and proposed solutions from design and off-design reasons for two reasons.

【Key words】High-rise buildings;Same program hot water heating system;Not hot;Reasons;

Solutions

采暖系统中按热媒在供水干管和回水干管中循环路程的异同分为同程式和异程式。异程方式的特点是回水干管管道行程较短,节省初投资,易于施工。然而这种系统具有一定的局限性,系统各环路阻力不平衡,易在远近立管处出现流量失调而引起水平方向冷热不均,也就是每组散热器的水流量不同,前端散热器的回水因为离主管道比较近,回的比较快,而后端回水就较慢,可能造成远端暖气不热或不够热的现象,设计者需要通过选择管径和设调节阀门等措施来降低其不平衡率,不然会出现较为严重的不平衡现象。

1. 采暖工程概况

青藏花园四期住宅楼(1#~15#高层)采暖工程热源由2台20吨燃气热水锅炉独立供给,二次换热站按区域设在地下室。住宅地区采暖热媒为85/60℃热水。建筑栋楼围护结构计算耗热负荷为1223Kw;中区413Kw;高385Kw。采暖综合热指标q=41w/m2;供暖系统高区为高位膨胀水箱定压(设在区域最高楼水箱间内),低中区均为落地式水箱定压,在换热站内设计布置。本系统竖向划分为高中低三个系统:1~11层为低区;12~22层为中区;23~32层为高区,设计采用同程式系统。分户采暖管道敷设在本层地面下的垫层内,采用耐热RPAP5对接焊铝塑复合管,工作温度和压力分别为95℃,1.25MPa;连接散热器处预留管道槽,埋地管道仅连接散热器处可采用相同材质的专用连接件热熔连接,其他部位不应设置连接配件,连接散热器支管为同侧客厅为下供下回,大于16片采用异侧连接。

2. 散热器不热的原因分析

本工程二次换热站采用机械循环热水采暖系统,交工后第一个采暖期发现整个工程大面积不热的问题,通过从设计原因和非设计原因进行分析,最终解决了散热器不热的问题。

2.1 设计原因造成的暖气不热。

2.1.1 采暖系统上层过热,下层不热。

对于上行下给式单管采暖系统,普通存在上层过热、下层不热的现象,一般温差在2℃~3℃,多则6℃~8℃。造成这种情况的原因很多,就常见的现象分析,在冷风渗透的计算时,未考虑建筑物的热压作用,下层算的比实际少,上层则相反。另外在单管系统中,主要是计算散热器时,未考虑管道散入房间的热量,将房间的热负荷全部作为散热器的热负荷,还有散热器片数化整时总是往上进位。这样上层(即顺水流方向起始处)的散热器和管道合在一起的散热量大于房间热负荷,而下层散热器的表面温度将低于设计值。另外,上层的散热器越多,水温降越大,使进入下层散热器的水温就越低。因为未考虑管道温降,水温低于计算值,其散热量也就小于计算值,就出现了上层过热下层不热的现象。要解决此问题,在计算散热器时,应扣除管道的散热量后再计算散热器的片数,如有尾数化整时,应按水流方向,上游舍去,下游进上。同时应计算散热器的管道降温,或做适当附加,即考虑到散热的影响。上层的立管上加跨越管,在跨越管上加阀门,或在供水支管上装三通调节阀,是解决上、下温度不均匀的有效措施。经过调查分析,导致上层过热下层不热的一种原因是大部分住户装修时加大了散热器数量。另一种原因就是因为垂直失调。双管系统上、下层垂直水头的差别很大,设计时要仔细计算,因此,对此种供热系统,做设计时应做水力平衡计算,特别要考虑重力水头的影响。最好做成下行上给式双管系统,这种系统上下温差较小。

2.1.2 采暖系统中,前端热、末端不热。

(1)垂直系统末端立管不热。

垂直系统中,末端立管不热的原因有两种,一为末端有气塞,中断了末端立管的循环,这是由于自动排气阀的位置不好或集气罐设在最末一根立管的干管上,但其后干管的坡度不对,形成末端立管存气。二是采暖系统水平失调,特别是异程系统,主要由每环的立管数目较多时,末端立管中流量过少所致。由前者的原因造成的不热,改正坡度即可,若为后者原因所致,应采用同程式系统。

(2)水平系统末端散热器不热。

热水采暖系统末端不热是最常见的问题,无论是同程系统还是异程系统,都在一定程度上存在着末端比始端不利的情况。由于系统中沿途水温降低,末端水中混入的空气过多,末端的压差在异程系统中为最小,所以应当在计算的基础上应适当放大末端的管径,以保证设计的热量和流量。

2.2 非设计原因造成的暖气不热。

2.2.1 整栋楼暖气不热。

整个青藏花园四期高层住宅楼1#~11#楼,交工前调试时正常,交工后出现整栋楼某个区暖气不热,但该楼的采暖设计是合理的。遇到这种情况,首先检查换热站网干管上的分路阀门是否打开,再检查该栋楼热力入口处的阀门是否开启,有无闸板掉落的情况,入口装置及分户过滤器有无被堵等。经检查,阀门工作正常,即可排除。 2.2.2 末端立管不热。

每个区特别是低区末端(底部)立管不热是由于室内系统水平失调、末端立管水流量少形成的。针对这种情况,首先进行调节,解决立管的排气问题。

2.2.3 整栋楼多组散热器的无规律不热。

整栋楼多组散热器的无规律不热指的是各层皆有散热器不热的情况,无规律性。这往往是上水过程中因阀门未全部开启造成系统中空气未排净的缘故,以致出现散热器忽冷忽热的

现象。要彻底解决这一问题,应将全楼的水泄空,重新上水,上水之前务必将全楼的阀门都打开。冲水时每个集气罐有专人负责排气。要注意的是,上水对上供下回系统一定要从回水管自下而上进行,严禁从供水干管上水,而下供上回系统则由供水干管上水,若供、回水干管均在地下室中(或管道层或地沟内)时,应先从回水干管中上水。

2.2.4 个别散热器不热。

一般有以下几种情况:

(1)散热器的支管坡向不对或中间有弯,在支管内形成空气塞,造成不热。此时,应调整坡向,改正支管。

(2)散热器存气,可通过散热气的放风门排除窝在散热器里空气,没有放风门的,在散热器上端的堵头打眼加装放风门。

(3)因新系统清理不彻底,留下杂物或多年老系统的大量的氧化物,将支管堵塞,此时应除去堵塞物。

2.2.5 系统失调导致散热器不热。

一般供热管网水力失调首先要解决热网循环水泵与管网,热负荷的匹配问题,对于热网循环水泵的具体工作点要结合管网的特性来确定,而不是依据水泵铭牌所标注的流量和扬程。

2.2.5.1 外网热负荷分布符合技术规范要求按照采暖管网布局习惯,外网的布局应统一规划,并且对未来的建设有一个预期和评估。但是我处所负责供热区域采暖管网的建设并没有经过合理的规划,布局较凌乱。造成部分区域采暖负荷与实际需求不能匹配,出现“赢余”或者“不足”的现象,需要人员进行热平衡调节。另外,由于采暖系统中阀门的安装一般均采用闸阀控制,导致维修人员在调节时完全依靠摸索,会有一定的盲目性。

2.2.5.2 水力失调导致局部用户不热的表现形式及原因分析:

(1)建筑物上层热下层不热(上热下冷)楼房的采暖系统是上供下回式,其立管间水平水力失调会导致立管流量分配不均,各立管的温降不相同,流量小的立管温降必然过大,使下层散热器进出水温过低,而上层由于流量大其温度变化不大,导致上层过热下层过冷现象的出现。上热下冷现象不仅出现在上供下回式单管系统中,而且在上供下回式双管系统中也经常出现,是上供下回热水采暖系统一个比较突出的问题,一般上下层室内温差为2°C~3°C,严重的可达6°C~8°C。

(2)供热管网末端整栋楼的散热器不热此种现象是由于供热管网的水平水力失调所致,其主要原因是:在管网布置时水力平衡考虑不周,造成流入离锅炉房较近的建筑物水量过多,或流入离锅炉房较远的建筑物水量过少,从而使离锅炉房较远建筑物暖气不热。

(3)建筑物内个别立管或散热器不热此种现象的主要原因一般是系统采用了异程式,而异程式不利于水力平衡,或者是一支立管上散热器组数过多。

2.2.5.3 部分采暖管网系统存在堵塞现象,造成热量滞留。

(1)管线氧腐蚀通径变小。

(2)散热器腐蚀结垢导致散热器换热效果差。

(3)设计的不规范、施工标准低或施工过程中管理不善造成偷工减料现象的发生,导致建筑物内系统阻力大于供暖系统的压力。

2.2.5.4 采暖系统内积存空气在热水采暖系统内,管道内如果存在空气,就会在管道内形成气泡,使水流中断或者系统循环不良,也是通常所说的“气塞”现象,造成局部暖气不热。解决水力失调措施的思考:

(1)一次系统的调节主要是利用换热站内或管道上设置的检测仪表(流量计、压力表等)对网路上或换热站内的平衡调节阀按水力计算结果进行调整。

(2)二次系统的调节同直接式供热系统的调节一样,即借助检测仪表,按水力计算结果,对管网上和热用户入口处各平衡阀门进行调节。二次系统采用的是自力式流量平衡阀,自力式流量平衡阀的工作原理是依靠被调介质因流量变化而产生的压差变化,来自动调节阻力大小,控制流量不变,从而消除压差变化产生的影响,稳定流量。其作用对象是系统的流量,当外网压力波动时被控系统不受影响,可准确地控制各支路的流量,降低了能量的消耗。

2.2.6 系统污水造成暖气不热。

系统污水没有及时补上,也会造成暖气不热。污水的原因有两种:

(1)初次向系统通水时,未能做到自上而下缓慢流动,系统内空气未被彻底排除,系统顶层及其他部分未被水充满而循环不良,此时应将水补满。

(2)系统丢水,有时因暖气不热而放水,水污了,更不热,造成恶性循环,此时要查明暖气为何不热而不能靠放水解决。

2.2.7 锅炉循环水泵的问题。

(1)虽然有时候循环水泵扬程与设计一致,但其选型比设计小,即流量比设计流量小;或者水泵内叶轮缺失、不完整,使水泵的扬程下降,此时,换泵即可。

(2)施工不好和运行管理不善也是造成采暖系统不热的原因,所以,采暖工程的施工一定要按设计和施工规范进行,工程投入使用后,也要加强对运行的管理,才能保证满足设计要求。

3. 解决方案和措施

热水暖不热的具体原因及解决方案:热量达不到,水温低的解决方案:提高一次管网水温。如果二次网水温低流量达不到要求,二次热量小,换热器小,增加换热器加以解决。管路堵塞无非两种情况:物堵和气堵。

(1)物堵:固体颗粒物或粘泥、水垢、氧化物等杂物,一般堵在除圬器,过滤器、定期清除,或加药清洗。物堵有人为堵塞,水处理设备老化水质不好造成氧化物多,水垢多等。安装过程中,进入焊渣圬物,冲洗不干净造成物堵塞。

(2)气堵:管道及散热器内窝气产生。

(3)主循环泵是决定系统水循环关键的动力设备,相当于人的心脏,它的选型、质量决定了采暖系统的效果、安全稳定性,因循环系统是一个恒量,只要选择匹配的水泵无需变频调节,扬程是克服管网阻力,应根据不同的系统、不同的管路来确定合理的扬程,以达到供暖效果。

(4)换热器是换出热量的多少,是影响供热效果的关键设备。

(5)用户放系统热水使用影响系统缺水,不断补冷水,造成整个系统水温低,局部不热现象。加臭味剂和颜色等办法来解决。

(6)操作人员不认真,误操作,该投热时要加热开阀。

(7)更换止回阀,阻力大的截止阀为闸板阀或蝶阀。

(8)流量分配不合理,管道变径位置不对,管径大小不合理,三通用法不对,不要采用T字型三通,要做成Y式或倒μ型。

(9)加装平衡阀的位置,应设在系统回水,不要安在进水管。

(10)有高低层小区供暖,措施采用中间逐级换热方式解决或加高区稳压阀来保证高区定压,低区定压分开,以免产生压力过高,影响散热器或地暖寿命及供热效果。

4. 结论和建议

经过分析后,根据青藏花园小区供暖的特殊性,及高原地区气候特点,从管路系统检查,换热系统检查,锅炉房检查以及系统压力、供回水温度、换热站循环泵流量等,最后进行设计论证,发现回水立管底部管径偏小,提出每隔两次增加DN40旁通管的方式选择其中不热现象最明显的一栋楼进行试验处理,处理后经观察效果较好,可见同程式系统对于解决系统失调是比较成熟可靠的热水暖系统。

住宅室内采暖系统节能设计方案

1、引言 节能是我国一项长远的战略方针。我国政府对节能工作高度重视,特别是改革开放以后节能工作出现了欣欣向荣的局面。节能对于供热行业来说潜力是相当大的。供热行业是能耗大户,能耗支出占据其大部分成本。由于以往的住宅供暖按面积收取热费,存在很大的不合理性,且不便于用户进行局部调节,造成供热用热浪费很大。随着人们生活水平的提高和供暖事业的不断发展,对供暖系统实现用热量的分户计量和独立控制的呼声越来越高。 近年来节能问题在供暖系统设计中越来越被人们重视。因此有必要在新建住宅中采用更合适的供暖系统形式来满足热费按户计量的需要。在节能问题上,尤其要特别重视能源利用过程前的处理,即在规划设计整个供暖系统时,应该考虑该系统的节能前景及经济效益。建设部《建筑节能“九五”计划和2010年规划》明确指出,“对集中供暖的民用建筑安装热表及有关调节设备并按户计量收费的工作,1998年通过试点取得成效,开始推广,2000年在重点城市新建小区中推行,2010年全面推广”。因此,在进行住宅室内采暖系统设计时,设计人员应考虑热用户分户及分室控制温度的需要。据初步测算,采取供暖分户计量,可以实现采暖节能20%以上。本文就几种适宜分户计量的采暖系统做一浅析。 2、旧式采暖系统的基本形式及其优缺点 长期以来,我国城市住宅室内采暖系统设计基本上都采用单管垂直系统的方案进行设计。(如图1)这种设计方案有许多优点:1系统简单;2施工方便;3造价低等,但是也存在一定缺陷,主要是不便于用户进行局部调节,因而造成能源的浪费。随着能源结构的变化及节能和物业管理的要求,这一缺陷越来越明显,使得此种供暖系统不得不被逐步替代。

[工业设计,1,天然气,锅炉,采暖]天然气锅炉采暖方式的比较分析

天然气锅炉采暖方式的比较分析-工业设计(1) 摘要本文对燃气锅炉采暖三种方式的投资、运行费用、单位面积采暖耗气量和污染物排 放量进行了全面的比较。比较结果表面对居民采暖用户应优先选用壁挂燃气锅炉,公共建筑和商业建筑应优先采用模块式燃气锅炉采暖,区域燃气锅炉采暖有宜推广,这样天然气耗量最省,污染物排放量最少,运行费用最低。 一、概述 随城市能源结构的调整,天然气已经成为采暖的一种重要能源燃气锅炉采暖。分为以下三种形式:家用燃气锅炉单户采 暖、分散燃气锅炉采暖、集中区域燃气锅炉采暖,一般都采用热水采暖。 二、单户然气采暖 家用燃气锅炉采暖就是以每个住户为单位,采用家用燃气锅炉采暖。家用燃气锅炉可用于取暖、洗澡和生活用水,属于多功能型燃气用具。 1 特点 优点:家用燃气锅炉效率高、功能多。一家一户自成系统,同时解决采暖和热水供应问题。单户燃气热水采暖具有很大的调节灵活性,使用完全独立,采暖温度可以自主调节,采暖时间可自行控制,各个房间温度可自如的控制,无锅炉房和外热网热损失,节省外网建设投资。符合按热量收费的原则,可准确计量耗气量,用气量可由用户自主控制,加上这种供热系统的效率高(一般在90%以上),避免了集中供热按面积收费造成的能源过渡浪费,因而能促进节约燃气,从而为推广使用优质洁净燃料创造了条件。同时采暖循环的动力消耗低,节省电能,提高燃气管线的利用率和使用经济效益。 存在问题:目前家用燃气炉在推广使用中,质量标准不统一,售后服务不完善,影响用户的正常使用;烟气一般是无组织排放,产生局部污染;部分燃气炉的运行噪音大;在寒冷北方地区用户长期外出防冻比较麻烦;人们还对其安全性有担心。 2 耗热量 家用燃气锅炉单户采暖效率主,无热浪费现象。根据对北京、天津的抽样调查统计,单户采暖的耗气指标为7~8m3/m2。建筑耗气指标的主要影响原因有室内温度、维护结构的保 温性能和密封性、建筑的外墙面积大小、采暖系统运行调节方式以及锅炉的热效率等,耗气量低于其他两种燃气采暖方式。 3 用途

供热系统节能技术措施(2021新版)

供热系统节能技术措施(2021 新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0606

供热系统节能技术措施(2021新版) 1.安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2.加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程; 3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅炉直接补自来水或河水;

4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3.采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。 对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高

供热系统节能技术措施正式样本

文件编号:TP-AR-L4404 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 供热系统节能技术措施 正式样本

供热系统节能技术措施正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1. 安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2. 加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程;

3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3. 采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以

室内采暖系统水压试验及调试

1.适用范围 适用于本建筑工程当中精品B区室内采暖热水温度不大于130℃的采暖系统的水压试验和调试。 2.施工准备 2.1 技术准备 1.熟悉设计图纸,了解掌握本系统水压试验、冲洗,调试标准和要求。校核系统是否与图纸、洽商相符。 2.工程规模大、系统复杂时,应编制调试方案;工程规模小、系统简单可编写技术安全交底。 3.系统调试应邀请建设单位、监理单位及参施单位共同参与,相互配合。 2.2 材料要求 系统水压试验、冲洗、调试时应备全、备足所用的材料,一般应有:铅油、青麻、耐热橡胶垫(板)、麻布、棉纱、石笔、管件、拖布、水桶、铁锨、扫把等。 2.3 主要机具 1.机具:电动试压泵、手动试压泵等。系统大、压力高应用电动试压泵(管线总长超过500m、试验压力大于0.6MPa);系统小、压力低可用手动试压泵(管线总长在500m以内、试验压力在0.6MPa以下)。 2.工具:管钳、扳手、钳子、钢锯、压力表、通信工具等。 2.4 作业条件 1.系统安装项目全部完成。 2.水源、电源、热院满足调试要求。 3.参试单位、人员已通知到位。 4.环境温度应高于5℃。当低于5℃时,室内门、窗、洞口要进行封闭,并达到所要求温度。 3.施工工艺 3.1工艺流程 系统试压→系统冲洗→系统通热测试→系统验收 3.2操作工艺 3.2.1系统试压 (1)系统试压前应进行全面检查,核对已安装好的管道、管什、阀门、紧固件及支架等质量是否符合设计要求及有关技术规范的规定,同时检查管道附件是否齐全、螺栓是否紧固、焊接质量是否合格。 (2)系统试压前应将不宜和管道一起试压的阀门、配件等从管道上拆除。管道上的甩口应临时封堵。不宜连同管道一起试压的设备或高压系统与中、低压系统之间应加装盲板隔离,盲板处应有标记,以便试压后拆除。系统内的阀门应开启,系统的最高点应设置不小于管径DNl5的排气阀,最低点应设置不小于DN25的泄水阀。 (3)试压前应装2块经校验合格的压力表,并应有铅封。压力表的满刻度应为被测压力最大值的1.5~2倍。压力表的精度等级不应低于1.5级,并安装在便干观察的位置。 (4)采暖系统安装完毕,管道保温前应进行水压试验。试验压力应符合设计要求,当设计未注明时,应符合下列规定: 1)蒸汽、热水采暖系统,应以系统顶点工作压力加0.1MPa做水压试验,同时在系统顶点的试验压力不小于O.3MPa。

供热系统节能技术措施方案

整体解决方案系列 供热系统节能技术措施(标准、完整、实用、可修改)

编号:FS-QG-15021供热系统节能技术措施 Energy-saving technical measures for heating systems 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1.安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2.加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程; 3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅

炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3.采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。 对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。中原

浅谈住宅采暖系统的节能设计

浅谈住宅采暖系统的节能设计 采暖系统是住宅里的耗电大户,每年的电费中采暖系统耗电所占比例较大,因此对于住宅采暖系统的节能设计就显得非常重要,有着非常好的经济效益和社会效益,住宅采暖系统的节能设计本身就是一项系统工程,需要不断努力。本文从建成太阳能供热的建筑;让节能新材料引领住宅采暖未来;建筑节能先治窗户散热;改变现在的供暖方式,实现“集中供暖、分户计量”等方面就住宅采暖系统的节能设计进行了深入的研究,具有一定的参考价值。 标签住宅;采暖系统;节能设计 1 前言 近年来,随着我国社会经济的进一步深入发展.人民生活水平不断提高,住宅采暖系统的应用范阔越来越广,但是不可否认的是,采暖系统是住宅里的耗电大户,每年的电费中采暖系统耗电所占比例较大,因此对于住宅采暖系统的节能设计酒显得非常重要,有着非常好的经济效益和社会效益。本文就住宅采暖系统的节能设计进行研究。 2 建成太阳能供热的建筑 以北京市为例,全市在2012年将建成太阳能供热的建筑100万平方米,届时,北京全市建筑的单位面积平均采暖能耗将降低17%,其中住宅建筑采暖平均能耗降低23%,公共建筑采暖能耗降低14.5%。 目前,北京市尚有9300多万平方米非节能住宅,其中建于1976年后,按照8度抗震设防建造的具有节能改造价值的住宅有6300多万平方米。这些住宅冬冷夏热,采暖和空调能耗较高。预计到2012年,北京全市建筑能耗将达到1981万吨煤,比2004年增长37%,建筑能耗将占北京市总能耗的30.5%。 为此,2012年前,北京市供热系统热效率将平均提高10%,实际平均能耗降低10%以上。北京市建成采用太阳能进行供热的建筑100万平方米,建成采用地热源、污水源等可再生能源进行供热的建筑1500万平方米。 此外,今后开发商在售房合同书、房屋质量保证书中,必须向消费者承诺建筑节能工程质量和建筑能效,必须签订有节能设计标准和赔偿条款的购房合同。 3 让节能新材料引领住宅采暖未来 节能新材料的应用无疑给住宅采暖系统的节能设计带来了新的希望,地面采暖兴起以来一直受到用户的青睐。据了解,它已经被称为“最具舒适、最具环保、最具节能性”的采暖方式,采用该种供暖方式也正在成为房地产项目的大卖点,受到了百姓的关注。

热水采暖系统

本文由along74贡献 doc文档 0、引言设置系统定压装置的目的在于供暖系统能在稳压状态下运行,保证系统内不倒空、不汽化。目前供热系统定压方式主要有膨胀水箱定压,即静水柱定压,补水泵定压,补水泵变频调速定压,气体定压罐定压等。以下对几种定压方式进行分析 1、膨胀水箱定压因其必须设在整个系统的最高点距离锅炉房较远,管理不方便,使高位水箱的应用受到了限制。 2、补水泵定压补水泵连续补水定压的供热系统,其定压装置是由补水箱、补水泵及调节器组成,在系统正常运行时,通过压力调节器作用,使补水泵连续补给的水量与系统泄漏量相适应,从而维持系统动水压曲线的位置,但这种定压方式,一般需连续运行,耗电大。而采用补水泵配稳压罐的方式定压,又使设备变得复杂,且增大了锅炉房的占地面积。 3、稳压罐定压经调查分析,国内生产的稳压罐主要有以下几个问题:①设计方法仍沿用冷水罐的设计方法,大多数的定压罐是冷水罐的变形。②罐与系统的连接只是简单地照搬高位水箱的连接方法,罐及泵系统缺少必要的安全措施。③罐及附属设备的性能检验手段及检测方法不完善,罐体气密性差,一次性充气的罐体根本保证不了一个采暖期静压线不降低。 4、补水泵变频调速定压综合上述几种定压方式的不合理处,采用补水泵变频调速定压,其基本原理是根据供热系统的压力变化,改变电源频率,平滑无级地调整补水泵转速,并与在旁通管上增设电磁阀,进而及时调节补水量,实现系统恒压点压力的恒定。该定压方式的关键设备是变频器,其工作原理是把 50HZ 的交流电转为直流电,再经过变频器把直流电变换为另一种频率的交流电。由于电流频率的改变,从而达到补水泵调速的目的。频率与转速的关系为 n=60f(1-Sn)/P 式中 n 一异步电动机即水泵转速; f 一电源频率,Hz;
Sn 一电机额定转数,即电机定子旋转磁场转速之差,一般为 5%左右; P 一电机的极对数。由上式可看出, P、一定时,当 Sn 电机即水泵转速与输入电流的频率成正比。频率愈高,转速愈快,频率愈低,转速愈慢。由水泵特性可知,水泵流量与频率也成正比,调节频率即调节转速,则可直接调节补水泵。一般变频器的频率,调节范围为 0.5~400Hz 之间,因此转速的变化为 14~11 200r/min 之间。本图给出了补水泵变频调速变压的调节框图,在旁通管增加电磁阀。此时压力给定,由压力传感测出循环泵旁通管上的被调压力值,将其压力信号反馈与给定压力比较,若不等由调节器计算出变频器的输入电流,变频根据输入电源,自动将频率调至其相应值。变频器将频率输出信号传给补水泵进而改变补水泵转速。调节补水量使恒压点压力维持在给定值,当系统压力值低于下限时,补水泵启动进行补水,当压力值超过上限值,电磁阀自动启动泄至补水箱。 5、结束语补水泵变频调速定压的节能效果是明显的,与补水泵连续运行定压相比较,节省补水泵系统上调节阀的节流损耗。对于间歇运行的补水泵定压,因补水泵启动频繁,不但影响补水泵寿命,而且多耗费了电能。水泵在启动时,由于电机的定子、转子的转差大,通常电机的启动电流约为额定电流的 6~7 倍,进而其启动功率约比额定功率大 30%左右。由于变频器可以使补水泵在额定电流下启动,且启动频率不频繁,因此变频调速定压比起间歇运行定压来,省电效果也是明显的。与气体定压罐比较,特别是供热规模较大,定压罐容积较大时,补水泵变频调速定压方式即使在经济上也是占优势的。

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

8各种供暖方式优缺点比较

各种供暖方式优缺点比较 集中供暖 类型:集中供热是热力集团把市政热力通过管线输送到住户家中,是最清洁最有保证的一种供热方式。 优点:价格便宜,适合于有老人、孩子、需要持续安全供热的家庭。 缺点:住户不能根据自己的需要调整热量,住与不住,用多少都得统一交钱。 地板辐射采暖 类型:可以由分户式燃气采暖炉、市政热力管网、小区锅炉房等各种不同方式提供热源。 优点:温度均匀,比大部分采暖方式节能百分之二十,便于装修与摆放家具。 缺点:不便于二次装修,要选择耐压耐温耐腐蚀、热稳定性能好的环保管材,对层高有影响,时间长了,家具会变形。 分户中央空调 类型:有"风冷式"和"水冷式"两种。

优点:档次高、外形好、舒适度高。带新风系统的"风冷式"更为舒适。中央空调系统买房时多由开发商免费赠送。 缺点:成本高,每套机组价值约数万元,每平方米铺装成本高达500元左右,运行费用高(大多走电费),多用于饭店及高档公寓,不适合大多数普通家庭使用。 燃气采暖炉 类型:以天然气、液化石油气、煤气、电为能源。 优点:可自行设定采暖时间,分户计量。家中无人时只需保留4度左右的低温运行(防冻作用),比传统暖气先进节能安全,可安装在墙体上、房间角落里。 缺点:存在安全、污(电采暖除外)等隐患,市区高层住宅应控制大面积使用,郊外低密度住宅使用比较适合。 空调采暖 类型:空调也是一些家庭冬季供热的选择。密闭性较好的小居室,最好选择空调。 优点:空调则能很快使小居室变热,可达到冷暖自如的境界。

缺点:一般选择空调供暖的家庭,需要给家中安装2—3台空调才能满足供暖需求。按每天运行10小时计算,3台空调同时开启耗电近40千瓦时,一个冬天下来取暖费用超过2300元。 各种供暖方式费用明细 设备费用 独立式燃气(或电)采暖炉:1000元/个 暖气片:90元-800元/片 电暖气:300元-400元/台 空调:1200元-7000元/台 地板采暖:2000元/平方米 中央空调:500元/平方米,机组价值约数万元 使用费用 燃煤锅炉供暖:19元/平米/采暖季 市热力集团供暖:24元/平米/采暖季 燃油(柴油)、燃气(天然气、煤气)、电锅炉供暖:30元/平米/采暖季

供热系统优化节能技术措施的研究

供热系统优化节能技术措施的研究 发表时间:2018-12-03T16:22:16.853Z 来源:《防护工程》2018年第24期作者:王伟[导读] 随着社会经济的发展,我国对能源的消耗越来越大,使得节能减排的环保理念不断深入,使供热系统的管理工作越来越严格 王伟 天津市热电有限公司天津市 300161 摘要:随着社会经济的发展,我国对能源的消耗越来越大,使得节能减排的环保理念不断深入,使供热系统的管理工作越来越严格。供热系统也开始积极倡导节能减排,并且加大管理措施,已经得到了社会各界人士的普遍重视和关注。本文主要针对供热系统的节能措施分析元阐述展开深入的探究,并提出几点针对性的建议、对策,以供相关人士的借鉴,旨在进一步推动供热系统走上可持续发展之路。 关键词:供热系统;节能措施;分析;阐述引言目前,城市集中供热已经成为一种大的趋势,城市集中供热不只包括供应热气,还要包括供应生活用水等等,甚至以后都会发展出供冷功能,这也是将来公共设施所发展的一个趋势。如今的城市集中供暖主要是靠供热管网实现的,相比于区域锅炉供热,它具有能耗小、绿色无污染的特点,为了开拓城市自动化供热减排技术目前所使用的这种技术主要有四种:供热管网的分层管控技术、气候补偿技术、用户热计量、水力平衡技术,今天我们对这些技术进行简单的介绍。 1供热系统能源浪费原因对于供热系统能源浪费的原因分析,主要是因为选型不合理导致电能浪费。一些设计人员针对供热系统能源应用设计,墨守成规的设计方式,加上按照平时工作经验对其进行设计,对于具体的能源消耗等调查与分析不到位,导致资源浪费现象非常严重。其次是技改措施不合理导致资源浪费,一些企业技术人员,其供热系统在运行期间存在供热问题,对于问题研究分析不到位,并没有准确寻找出出现问题的原因,单凭经验进行问题处理,导致问题处理不及时、不到位,造成能源浪费。加上在管理措施上制定与执行不到位,造成水循环阻力增加,导致供热系统能源浪费。 2供热系统的节能技术研究 2.1用户方面的研究 (1)在用户端使用双通阀的系统。双通阀在用户室内进行安装时,常常都是在室内管网中安装相应的双通阀对用户室内供热系统进行控制。在这个过程中,要做到每一室内散热器都要配备一个性能优良的温度控制阀,进而可以实现系统自身控制并检测室内的散热情况,从而依次控制用户室内的水平系统和温度系统,而在用户室内安装温度控制阀,就能实现室内供热体系的平衡,另一方面能够最大程度实现供热系统对于变流量的要求。(2)在用户端使用三通阀的系统。用户室内也可以使用三通阀,利用三通阀可以实现室内供热系统的调节,进而使室内的供热系统达到平衡,一般三通阀主要用来控制垂直系统的散热体系,有效的使用三通阀也能够最大程度的满足供热系统对于变流量的要求。 2.2气候补偿技术 我们采用的是天然气的热水锅炉。利用气候补偿的技术就是自动化技术的一种,在面对不同的天气时候,人们所需要的工作量是不同的。比如天气晴朗,气候温暖的时候,虽然一样是寒冷的冬天,但是在室内的供热量可以收稍稍减少,但是在天气寒冷的情况下,虽然温度较高,仍然要加大供热量。气候补偿器就是这种自动调控技术的一种,将气候补偿器安放在天然气热水锅炉中,根据气候补偿器所获得的气候情况行输入到管理系统中,管理系统对各个采热管道的数据进行合理的分析,可以通过管理系统调控热水的供应量和烧煤量以及供热程度等等,最后确定整体的工作量,这样就可以达到自动调节,不会起到过多浪费,比如说,天气炎热的时候,供热量卷和平常一样用户觉得室内温度过高,同时也造成了能源的浪费,得不偿失。 2.3水泵变频技术 热计量系统中,用户可以根据室外温度和自身的需求,不断调节散热器。水泵是供热系统中比较重要的部分之一,以往传统的水泵主要采用节流调节的方式,导致大量的功率流失和浪费。但是水泵变频调节技术的应用,就可以大大发挥水泵的节能优势,同时也可以提升管道网设备和水泵的使用年限。 2.4水力平衡技术 静态水力失调主要是由于施工和设计方面出现的问题所导致的,也就是供热管自身的限制性因素。进而使管道阻力出现较为严重的差异,进而引发水力失调。动力水利失调主要是指在供热管道网的运行过程中,热用户随意调节阀门,进而使管道阻力出现变化。用户之间的流量会被重新分配,致使实际流量与设计流量出现偏差,引发水力失调。 2.5分层管控技术概述 这个技术主要是对供热管道的管理采用三级管理体系,我们将对每层管理进行详细的介绍如下:一级管理站是总体的调控中心,通过调控中心管理者可以实时采集和监控下属各个监控分站的各项数据,并及时进行彼此间异常数据与控制命令的传输。二级管理站就是调控中心和各个三级管理站的传递中心,主要对不同的区域的供热需求进行采集。主要有具备四种功能,第一种是通讯功能,第二种是数据采集功能,第三种是管理功能,第四种是数据转发功能。首先数据采集不需要我们过多的赘述。统计的整个控制区域的供热数据以及管道的正常运转信息,一旦出现于正常数据不同的时候,将信息传递到调控中心既可。收集从三级管理站得到的信息,汇总好后,转给调控中心即可。数据转发功能是指中介站作为三级管理站和一级管理站的数据转发中心所具有特色的功能,向上一级管理中心转达三极管理中心的供热的具体情况,同时给三级管理站传达一级管理站的具体命令在数据采集的基础上延伸出的管理功能。通过日常的供热管道数据采集,可以得到整个供热管道正常工作时的各项数据指标范围,在确定数据指标范围之后,就可以对供热管道进行监控了,一旦发现数据异常的情况,就可以通过管理系统进行管理。管理之后延伸出的是通讯功能,在管理中心除了把数据转发,除了发送管道信息之外,也可以和一级管理中心通过系统进行沟通,对管道的问题进行调控。确定是否减少供热,还是增加供热,请工作人员对供热管道进行维修等等。三级管理即中继站的热量管理。中继站中的下位机在接收到由监控分站转发的操作指令后可在确保安全运行的前提下自行达成各种热量调控工作。

热水供暖循环系统实验

热水供暖循环系统实验 一、实验目的 1.了解常见的采暖系统形式,掌握系统中各部件的作用及其连接方式 2.认识和了解热水在系统中及散热器内的流动情况和规律 3.通过量调节实验,分析其热力工况 4.通过质调节实验,分析其热力工况 二、实验设备 三、实验内容及步骤 1、量调节 打开“电磁阀1”、“电磁阀2”;将“电动调节阀1”、“电动调节阀2”都置于“开大”状态时,测试“球阀2”的开度分别为大、中、小时的累计水量、瞬时流量、散热器供回水温度、温差(均为热量表的读数)及室温,将测量数据填入表1。由于系统小,累计热量(散热器散热量)无法读出,各表中的散热量均用下式计算得出。又由于系统流量大,而热负荷相对较小,则供回水温差小。 计算公式: Q=G×C×(t g —t h ) (W)(13-1) 式中:Q―散热器的散热量(W) G―流经散热器的热媒流量(K g ) C―热媒的比热(W/K g ·℃)(水的比热为4.186 W/K g ·℃) t g ―散热器的供水温度(℃) t h ―散热器的回水温度(℃) 表1:量调节数据记录表1

注:室温tn可视为散热器表面温度 2、电动调节阀调节 2.1 打开“电磁阀1”、“电磁阀2”; “电动调节阀2”、“球阀2”都置于“开大”状态时,、测试“电动调节阀1”的开度分别为大、中、小时的累计水量、瞬时流量、散热器供回水温度、温差(均为热量表的读数)及室温,将测量数据填入表2。 2.2 打开“电磁阀1”、“电磁阀2”; “电动调节阀1”、“球阀2”都置于“开大”状态时,、测试“电动调节阀2”的开度分别为大、中、小时的累计水量、瞬时流量、散热器供回水温度、温差(均为热量表的读数)及室温,将测量数据填入表3。 表2:量调节数据记录表12 注:室温tn可视为散热器1表面温度 表3:量调节数据记录表2 注:室温tn可视为散热器2表面温度 3、质调节 打开“电磁阀1”、“电磁阀2”;“电动调节阀1”、“电动调节阀2”、“球阀

供热系统节能技术措施样本

供热系统节能技术办法 【摘要】从当前国家建筑节能形势出发,简朴阐述了北方供暖地区既有居住建筑节能改造必要性。分析比较了近年来国内外既有居住建筑改造实例,探讨了国内北方既有居住建筑节能改造若干技术问题。分析了节能改造各环节技术路线基本规定,简介了节能改造评估与诊断办法,详细分析了节能改造技术方案。 【核心词】供暖地区节能改造技术路线技术方案 1. 安装热工仪表,掌握系统实际运营状况 供热系统安装所需热工仪表是掌握系统运营工况、精确理解和分析系统存在问题、采用对的办法与办法以达到节能挖潜目重要手段。当前热工仪表安装不全、不准状况比较普遍,因而,必要要按照规定补齐所有热工仪表,并保证仪表完好和精确。 2. 加强锅炉房运营管理,是投资少、效果明显节能办法 1.司炉人员及水解决人员必要经国家劳动部门或技术监督部门培训并考试合格; 2.建立对的、完善、切实可行运营操作规程; 3.锅炉房水解决(涉及软化水或脱盐、除氧)设备解决后水质,必要达到而易见国家规程规定水质原则,禁止锅炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3. 采用分层燃烧技术,改进锅炉燃烧状况 当前都市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显效果。 鞍山锅炉厂生产一台10.5MW热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量减少至10%如下,并且锅炉燃烧系统设备故障大大减少,提高了锅炉运营可靠性和安全性。 对于粉末含量高燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过度层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形

采暖方式及优缺点

采暖方式及优缺点 目前较常见的家庭采暖方式分为集体供暖、壁挂炉采暖、空调、电采暖4种 家庭取暖之壁挂炉采暖 壁挂炉采暖,在欧洲地区风行了几十年,近几年在国内市场上也开始备受关注。壁挂炉集气、水、电于一身,既可供暖又可以提供生活热水,体积小、重量轻、安装灵活方便。壁挂炉热效率较高,升温快,温度也较均衡。此外,壁挂炉可外接室内温控器,实现分室调控温度。据了解,使用室内温度控制器可以节能20-28%的燃气费用。不过如果要选择壁挂炉采暖,前期需要安装壁挂炉,这也就衍生出一笔不小的费用。瑞华特了解到,目前市面上常见的壁挂炉分进口和国产两种,纯进口的价格基本在9000元以上,在中国生产的进口品牌售价为8000元左右,国产品牌价格基本为4、5000元。此外,瑞华特了解到,壁挂炉分为18千瓦和24千瓦两种,105平方米以下的家庭采用18千瓦就足够。据导购员介绍,目前市面上壁挂炉的使用寿命基本在15年左右。关于壁挂炉的运行费用,瑞华特采访了几位使用壁挂炉多年的消费者,发现壁挂炉采暖相对集体采暖要实惠一些。消费者赵先生,88㎡的房子,平均每天烧暖气3小时,一个采暖季下来消耗的天然气为340m?3;,折合人民币697元,平均采暖费约8元/平米;消费者王女士,105㎡的房子,每天烧暖气10小时,一个采暖季消耗天然气1100m?3;,折合人民币2255元,平均采暖费为22元/平方米。此外,瑞华特还采访了威能、阿里斯顿等壁挂炉企业。据了解,大部分使用壁挂炉的消费者,一个采暖季运行的费用大约为20元-25元/平方米。以此核算,胡女士如果选择壁挂炉采暖,一个采暖季投入的运行费用大约为1400

元-1740元 家庭采暖之电地暖 电采暖,顾名思义就是用电来实现采暖需求。目前市面上热销的电采暖产品由小太阳辐射炉、油汀类电暖器等等,价位在100-500元不等。据某家电内的导购员称,快热的产品比较费电、慢热的产品相对省电一些。电采暖能快速升温,可调控温度;体积小可移动,使用方便。但电采暖受热面积小,往往导致屋内温度不均衡,且耗电量也高、安全性能较差。此外,电采暖辐射大,还容易导致室内空气干燥等等。瑞华特采访了一位使用电采暖取暖的消费者吕先生。据吕先生介绍,一台1.5匹的电采暖,每小时耗电量约为1.5度,以每天运行10小时计算,一个采暖季的电费大约为880元。如果胡女士家采暖电采暖取暖的话,两个卧室、一个客厅至少需要3台电采暖,一个采暖季的费用大约为2640元,平均38元/平方米。 地暖三种形式的优劣 地暖现在主要有三种形式,一般分为传统的水暖、电地暖和碳晶地暖,三种家庭采暖方式各有优劣,主要根据个人的使用习惯和家庭情况来选择,总之选择适合的采暖方式最为重要。下面来看看这三种采暖方式都有哪些优缺点。 家庭取暖之电地暖 因为操作简单方便,所以在市面上也受很多消费者青睐。其原理以电力为能源,利用合金电阻丝进行通电发热,并在40~65℃的温度间运行,来达到采暖或者保温的效果。通常有单导和双导之分,称为发热电缆。每种线的功率范围为每米10W~20W,这种采暖方式最符合株洲地暖实际情况。 优点:免维护,不需清洗。50年使用期内只需更换温控器,

集中供热系统节能技术措施的研究及应用_0

集中供热系统节能技术措施的研究及应用 随着我国社会经济的发展,人民生活水平不断提高,新时代绿色发展观的不断深入,我国集中供热行业对供热系统提出了更高的节能要求,应当严格按照能源行业发展的实际情况进行科学的分析和研究,在遵守国家节能政策的基础上不断降低供能的能源消耗,能源供应商在供热系统运营的过程中应当在降低运营成本的基础上提高资源的利用效率,只有将多个节能技术综合起来才能够有效的实现供热系统的节能目的。 标签:集中供热;节能技术;措施 在目前环保低碳的大环境下,重视能源的节约是非常有必要的。日常的集中供热系统建设中,要将节能的理念贯穿其中,发现现行供热系统中存在的问题,积极利用节能技术和措施提高能源的使用效率。最大限度地减少供热系统使用中的能源消耗,达到绿色生活的目的,提高用户和企业的使用效益,进而实现经济的循环可持续发展。 1、集中供热节能的主体思路 做好集中供热系统的节能工作,需要不断提高基础设施建设、管理等工作的水平。在基础设施建设方面,需要大力推广新设备,对补水泵、鼓引风等设备进行改造,引进先进的设备,采用先进的工艺和技术,使设备能够针对供热负荷实时调整工作状态,以达到节能降耗的目的。管理方面,不仅要重视基础计量,合理安排计量人员和器具,定期校验计量仪表,健全计量管理办法,还要加强动态管理,在供热前制定合理的能耗指标和相应的奖惩办法,在生产过程中依据指标和数据进行管理,做好月考核、奖优罚劣等工作,消除浪费现象和不合理损耗。另外,还需要科学调配热源,有效整合管网,使热负荷需求更加均衡,保证热能合理分配。为做好基础设施建设、管理等工作,必須加强内部职工的培训,实现技术和行为节能。企业内部的各个环节和岗位都可能存在一定程度的不合理现象,例如水质处理环节存在质量问题将导致锅炉结垢,进而降低供热效率,使能耗提高。如果没有针对气温等因素的变化而及时调节供热量,可能导致供热浪费或是降低供热质量等问题。因此,必须加强职工培训,让职工不仅具备高水平的专业技能,更具备强烈的责任心,只有增强职工的工作责任心、提升职工专业能力,才能确保集中供热系统节能技术措施的有效落实。除此之外,还需要重视对热用户的宣传教育工作,提高热用户的节能意识,改变不合理的用热行为,以科学的保温措施减少耗热量。 2、集中供热系统节能技术措施的应用 2.1 烟气热回收装置的节能应用 热源节能进行改造比较重要的一项措施是烟气回收,锅炉在正常运行中,会不断排出燃料燃烧后的烟气,燃气的热量远远高于外部温度,所以这种烟气排放

热水采暖系统实验(学生)

热水采暖系统实验 实验说明书 土木工程系暖通实验室 编制人:王春慧

一、概述 热水采暖系统是由热水锅炉、供热管道、散热设备三个基本部分组成。其工作过程为:先用锅炉将水加热,然后用水泵加压,热水通过加热管道供给在室内均匀安装的散热器,在通过散热器对室内空气进行加温。整个系统为循环系统,冷却后的水重新回到锅炉进行加热,进入下一次循环。 二、实验目的 1、了解常见的采暖系统形式,掌握系统中各部件的作用及其连接方式,巩固课堂学习的知识。 2、认识和了解热水在系统中及散热器内的流动情况和规律。 3、认识和了解空气在系统中存在的情况,认识排除空气的重要性及其排气措施。 三、实验原理 重力自然循环热水供暖系统工作原理如图1所示,系统循环作用压力为: ()g h gh P P P ρρ-=-=?21 机械循环热水采暖系统的作用压头为水泵的压头和自然作用压头的共同作用,如图2所示。 图1 重力自然循环热水供暖系统工作原理 图2 机械循环热水供暖系统工作原理 四、实验装置 B C 2 43 35ⅠⅡ ⅢⅣ Ⅴ 图3 热水采暖系统观测实验装置示意图 1—水箱;2—循环水泵;3—集气罐;4—散热器;5—膨胀水箱 Ⅰ—水平式顺流式系统;Ⅱ—水平式跨越式系统;Ⅲ—垂直式单管跨越式系统; Ⅳ—垂直式单管顺流式系统;Ⅴ—双管系统

五、实验内容和步骤 1、实验前准备工作: 1)、掌握热水采暖系统的分类方法: A、按系统循环动力分 B、按供回水方式不同分 C、按系统管道敷设方式分 D、按热媒水温度分 2)、机械循环热水供暖系统的主要型式及其特点: A、按供、回水干管布置位置不同分:a、上供下回式b、下供下回式c、中供式d、下供上回式(倒流式)e、混合式 B、按供回水方式不同分为:双管和单管系统。 C、按管道敷设方式不同分为:垂直式和水平式。 D、按供回水通过各立管的循环环路的总长度是否相等分为:同程式和异程式。 2、系统的充水与排气 系统工作前,先将水充满给水箱1,然后打开阀门B和C,同时启动水泵2,向系统充水。充水时,不断的开闭集气罐放气阀,让系统中的空气从集气罐3和膨胀水箱5中排出。待充水到一定程度,当集气罐溢管有水流出时,关闭集气罐溢流阀门,水位继续上升,当自来水从膨胀水箱溢流管流出时,停止充水。若水位下降,就再次充水,直到水位在溢流管处为止。 当水位有所下降时,应分析其原因: A、系统内可能仍有空气存在; B、系统、设备、管道及阀门是否有漏水现象。 演示中,应观察: A、在充水过程中,对于下供上回式系统是怎样排气的? B、如不排除系统中存在的空气,对系统的正常运行有何影响? 3、机械循环演示 系统充满水后,启动锅炉,加热系统中的水,打开阀门B,C,热水在水泵的作用下,沿供水干道进入散热器。并通过散热器将热量散放到采暖房间。温度降低了的水从散热器流出,沿回水干道进入水泵加压,流回锅炉再加热。 演示中,应注意观察: A、带跨越管的单管立管中,热水流量的分配情况如何? 4、停止演示运行 A、先拉开电加热器的电闸。 B、再拉开水泵的电闸。 C、打开泄水阀门,使水从系统中排掉。 六、实验报告的编写 实验报告的内容包括实验目的、实验原理、实验步骤并回答下列思考题: 1、膨胀水箱的底为什么比排气设备的底要高? 2、膨胀水箱有几根连接管,各起什么作用?每根连接管上是否可以安装阀门? 3、本演示实验系统中,室内热水采暖系统有几种连接方式,画出各种连接方式的原理图并简述其特点。

供热系统节能技术措施

供热系统节能技术措施 【摘要】从当前国家建筑节能形势出发,简单阐述了北方供暖地区既有居住建筑节能改造的必要性。分析比较了近年来国内外既有居住建筑改造实例,探讨了我国北方既有居住建筑节能改造的若干技术问题。分析了节能改造各环节技术路线的基本要求,介绍了节能改造的评估与诊断方法,具体分析了节能改造的技术方案。 【关键词】供暖地区节能改造技术路线技术方案 1. 安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2. 加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程; 3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3. 采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 鞍山锅炉厂生产的一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。 对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。中原油田锅炉燃用鹤壁煤,粉末含量高,Φ<3mm的煤粒约占60~70%,采用此技术后,炉渣含碳量降低到15%以下,锅炉效率提高了8%,烟尘排放达到环保标准,年节煤8~10%。没有空气予热器的锅炉,因为向炉排上送的是冷风,容易造成大块煤不易烧透,使炉渣含碳量反而略有增加,不宜采用。

相关主题
文本预览
相关文档 最新文档