当前位置:文档之家› 高考数学一轮复习 函数的最值与导数教案

高考数学一轮复习 函数的最值与导数教案

高考数学一轮复习 函数的最值与导数教案
高考数学一轮复习 函数的最值与导数教案

山东省泰安市肥城市第三中学高考数学一轮复习 函数的最值与导

数教案

学习内容w

学习指导即时感悟 【学习目标】

1.理解函数的最大值和最小值的概念;

2.掌握用导数求函数的最值的方法和步骤。

【学习重点】利用导数求函数的最大值和最小值的方法。

【学习难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系。

学习方向

【回顾引入】

回顾:求极值的步骤:

创设情景:极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小. 【自主﹒合作﹒探究】

问题1:观察在闭区间[]b a ,上的函数)(x f 的图象,你能找出它的极大(小)值吗?最大值,最小值呢?(见教材P30面图1.3-14与1.3-15)

在图1中,在闭区间[]b a ,上的最大值是 f(b),最小值是 f(a) ;

在图2中,在闭区间[]b a ,上的极大值是 f(x 1) f(x 3) f(x 5) ,极小值是 f(x 2)

f(x 4) 最大值是 f(x 3) 最小值是 f(x 4) .

思考2:⑴ 极值与最值有何关系?

⑵ 最大值与最小值可能在何处取得?

极值点或端点处

⑶ 怎样求最大值与最小值?

回顾知识

引入新知

得到知识

图1 图2

①求出极值②极值与端点函数值作比较

新知:一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 由上面函数)(x f 的图象可以看出,只要把连续函数所有的 与定义区间端点的函数值进行比较,就可以得出函数的最值了. 例1.试试:

上图的极大值点为 x 2,x 4,x 6 ,极小值点为x 1,x 3,x 5;

最大值为 f(a) ,最小值为 f(x 5)

例2.求函数

3

1()443

f x x x =-+在[0,3]上的最大值与最小值. ∵f(x)=443

13

+-x x ,∴4)(2-='x x f .

∵[]3,0∈x ,∴由0)(='x f 得x=2,

又由0)(>'x f 得x>2,由0)(<'x f 得0

4- 又f(0)=4,f(3)=1,所以f(x)的最大值为4,最小值为3

4-。

例3. 已知函数

32()39f x x x x a =-+++,

总结求最值步骤

分析题目 总结方法

(1)求()

f x的单调区间;

(2)若()

f x在区间[2,2]

-上的最大值为20,求它在该区间上的最小值.

(1)增区间为(-1,3),减区间为(-∞,-1)(3,+∞)

(2)最小值为-7

【当堂达标】

1.P31页练习

2.函数y = f(x)在区间[a,b]上的最大值是M,最小值是m,若M = m,则f′(x)

( A )

A.等于0

B.大于0

C.小于0

D.以上都有可能

3.若函数3

=--在区间[0,3]上的最大值、最小值分别为M、N,则M N

f x x x a

()3

-

自我达标的值为( D )

A.2 B.4 C.18 D.20

【反思﹒提升】

【拓展﹒延伸】

A组

1.下列说法正确的是( D )

A. 函数的极大值就是函数的最大

B. 函数的极小值就是函数的最小值

C. 函数的最值一定是极值

D. 在闭区间上的连续函数一定存在最值 B 组

2.函数32()3(1)f x x x x =-< ( C ) A .有最大值但无最小值 B .有最大值也有最小值 C .无最大值也无最小值 D .无最大值但有最小值 C 组

3.已知函数b ax ax x f +-=236)(。若f (x )在[-1,2]上的最大值为3,最小值为29,求:a 、b 的值 解:a=2,b=3,或a=-2,b=-29

课下检验

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

k52006年高考第一轮复习数学:14.1 导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

全国百所名校高考数学一轮复习试卷:函数与导数(详解答案)

全国百所名校高考数学一轮复习试卷 专题四:函数与导数 满分150分,考试用时120分钟。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数( )sin f x x = 的导数为( ) A .( )'sin cos f x x x = B .( )'sin cos f x x x = C .( )' cos f x x = D .( )' cos f x x = 2.已知函数f (x )的图象如图所示,下列数值的排序正确的是( ) A .(2)(3)(3)(2)f f f f <'<-' B .(3)(3)(2)(2)f f f f <-'<' C .(3)(2)(3)(2)f f f f <'<-' D .(3)(2)(2)(3)f f f f ''-<< 3.设函数()f x 可导,则()() 11lim 3x f f x x ?→-+??等于( ) A .()1f -' B .()31f ' C .()113f - ' D .()1 13 f ' 4.函数3()31f x x x =-+,[3,0]x ∈-的最大值.最小值分别是( ) A .3,-17 B .1,-1 C .1,-17 D .9,-19 5.函数()21 x x f x x =+ +的图象大致为( ) A . B .

C . D . 6.函数()f x 是定义在区间(0,)+∞上的可导函数,其导函数为()f x ',且满足 2()()0f x f x x '+ <,则不等式(2020)(2020)5(5)52020 x f x f x ++<+的解集为( ) A .{} 20202015x x -<<- B .{} 2015x x <- C .{}20200x x -<< D .{} 2015x x >- 7.若函数()()ln 01f x x x =<≤与函数()2 g x x a =+有两条公切线,则实数a 的取值范围是( ) A .1,2??-+∞ ??? B .13ln ,24? ?-- ??? C .3ln 4 ??-- ?? ? D .13ln ,24??-- ?? ? 8.设函数()1x x e f x e =-,下列说法中正确的是( ) A .()f x 的单调递增区间为(,0)(0,)-∞+∞ B .()f x 图象的对称中心为10,2??- ??? C .()f x 图象的对称中心为1,02?? - ??? D .()f x 的值域为(1,0)- 9.若对任意()0,x ∈+∞,不等式22ln ln 0x e a a a x --≥恒成立,则实数a 的最大值为( ) A B .e C .2e D .2e 10.已知函数()21(1)2 x x f x x e ae ax =--+只有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,0]∪[ 1 2 ,+∞) B .(﹣∞,0]∪[ 1 3 ,+∞)

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时 一、考点梳理: 1.导数、导数的计算 (1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′. (3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几 何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. ! (4).基本初等函数的导数公式 (5).导数的运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)??? ?f x g x ′ =__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值 (1)导数和函数单调性的关系: (1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0?f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,?f (x )在(a ,b )上为____函数. [ (2)函数的极值与导数 (1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________. (3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________; (2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. ` 二、基础自测: 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( ). A .4 B .4x C .4+2Δx D .4+2Δx 2 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) ; f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________ f (x )=e x > f ′(x )=________ f (x )=lo g a x f ′(x )=________ f (x )=ln x f ′(x )=________

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

高考数学第一轮复习导数概念和几何意义

第1讲 变化率与导数、导数的运算 【2014年高考会这样考】 1.利用导数的几何意义求曲线在某点处的切线方程. 2.考查导数的有关计算,尤其是简单的函数求导. 【复习指导】 本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. 基础梳理 1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1 . 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数 (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx = li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx 为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0; 若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ;

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

《导数在研究函数中的应用-函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

届高三数学第一轮复习导数

导 数 第3章 导数及其运用 §3.1导数概念及其几何意义 重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义. 经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数. 当堂练习: 1、在函数的平均变化率的定义中,自变量的的增量x ?满足( ) 2 3 ) 4 5A C 6A .7A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在 8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.设函数f(x)在x0处可导,则0 lim →h h h x f h x ) ()(00--+等于 A .f ′(x0) B .0 C .2f ′(x0) D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于

A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0 lim →?x x x b x f x a x f ??--?+) ()(=_____. 14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的 瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t=2,Δt=0.01时,求t s ??. 法则3 2()()v x v x ???? 经典例题:求曲线y=2 1x x +在原点处切线的倾斜角. 当堂练习: 1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6 B.4a3+10a2x -6x5 C.10a2x -6x5 D.以上都不对 2.函数y=3x (x2+2)的导数是( ) A.3x2+6 B.6x2 C.9x2+6 D.6x2+6

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

函数的最值与导数 精品教案

§1.3.3 函数的最大值与最小值 【课标要求】 1.借助函数图像,直观地理解函数的最大值和最小值概念. 2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数 )(x f 必有最大值和最小值的充分条件. 3.掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤. 【重点难点】利用导数求函数的最大值和最小值;函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【课前预习】 1.极大值,极小值的概念: 连续可导函数在某点处从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),这时称在该点处函数取得 .(极大值) 连续可导函数在某点处从左侧到右侧由“下降”变为“上升”(函数由单调递减变为单调递增),这时称在该点处函数取得 .(极小值) 总结:连续可导函数()y f x =在0x x =处取得极大(小)值的必要条件是0x x =左右两侧的单调性的不同. 2.求函数极值的步骤: (1)求函数()y f x =定义域; (2)求函数()y f x =的导函数()'y f x =; (3)求出()'0f x =的根; (4)列表判断.(检验()'f x 在方程()'0f x =两侧的根的符号,若根的左侧附近为正,右侧附近为负,则函数()y f x =在这个根处取得极大值;若根的左侧

附近为负,右侧附近为正,则函数()y f x =在这个根处取得极小值.) (5)写出结论. 3. 请画出32()35f x x x =-+,[2,3]x ∈-的草图. 总结:我们知道,极值反映的是连续可导函数在某一点附近的局部性质,而不是函数在整个定义域内的性质。但是,在解决实际问题时我们更关心的是 是函数在某个区间上的最大值、最小值. 【新授内容】 情景: 问题1:由函数32()35f x x x =-+图像可得,()f x 在[2,3]-上的最大值为 ;最小值为 .(最大值为5,最小值为15-) 问题2:观察下面的函数图像,说出函数在[],a d 上的最值. 函数()y f x =在[],a b 上的最值可能是区间端点处的函数值,也可能是函数在这个

高中数学函数与导数练习题

1、讨论函数在内的单调性 2、作出函数22||3y x x =--的图像,指出单调区间和单调性 3、求函数[]()251x f x x = -在区间,的最大值和最小值 4 、使函数y = 的最小值是 2的实数a 共有_______个。 5、已知函数()f x 的定义域为R ,且对m 、n R ∈,恒有()()()1f m n f m f n +=+-,且1()02f -=,当12 x >-时,()0f x > (1)求证:()f x 是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证. 6、已知()f x 是定义在[1,1]-上的增函数,且(1)(23)f x f x -<-,求x 的取值范围。 四、强化训练 1、已知()f x 是定义在R 上的增函数,对x R ∈有()0f x >,且(5)1f =,设1()()()F x f x f x =+,讨论()F x 的单调性,并证明你的结论。 2、设函数2 ()22f x x x =-+(其中[,1]x t t ∈+,t R ∈)的最小值为()g t ,求()g t 的表达式 3、定义域在(0,)+∞上的函数()f x 满足:(1)(2)1f =;(2)()()()f xy f x f y =+; (3)当x y >时,有()()f x f y >,若()(3)2f x f x +-≤,求x 的取值范围。 4、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈, 都满足()()()f ab af b bf a =+ (1)求(0)f ,(1)f 的值;(2)判断()f x 的奇偶性,并加以证明 223f(x)x ax =-+(2,2)-

相关主题
文本预览
相关文档 最新文档