当前位置:文档之家› 真值表(数码管)

真值表(数码管)

真值表(数码管)

真值表(数码管)

数码管引脚图

七段数码管引脚图 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了,有问题请到电子论坛去交流. 数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。

这类数码管可以分为共阳极与共阴极两种,共阳极就是把所有LED的阳极连接到共同接点com,而每个LED的阴极分别为a、b、c、d、e、f、g及dp(小数点);共阴极则是把所有LED的阴极连接到共同接点com,而每个LED的阳极分别为a、b、c、d、e、f、g及dp(小数点),如下图所示。图中的8个LED分别与上面那个图中的A~DP各段相对应,通过控制各个LED的亮灭来显示数字。 那么,实际的数码管的引脚是怎样排列的呢?对于单个数码管来说,从它的正面看进去,左下角那个脚为1脚,以逆时针方向依次为1~10脚,左上角那个脚便是10脚了,上面两个图中的数字分别与这10个管脚一一对应。注意,3脚和8脚是连通的,这两个都是公共脚。 还有一种比较常用的是四位数码管,内部的4个数码管共用 a~dp这8根数据线,为人们的使用提供了方便,因为里面有4个数码管,所以它有4个公共端,加上a~dp,共有12个引脚,下面便是一个共阴的四位数码管

6位7段LED数码管显示

目录 1. 设计目的与要求..................................................... - 1 - 1.1 设计目的...................................................... - 1 - 1.2 设计环境...................................................... - 1 - 1.3 设计要求...................................................... - 1 - 2. 设计的方案与基本原理............................................... - 2 - 2.1 6 位 8 段数码管工作原理....................................... - 2 - 2.2 实验箱上 SPCE061A控制 6 位 8 段数码管的显示................... - 3 - 2.3 动态显示原理.................................................. - 4 - 2.4 unSP IDE2.0.0 简介............................................ - 6 - 2.5 系统硬件连接.................................................. - 7 - 3. 程序设计........................................................... - 8 - 3.1主程序......................................................... - 8 - 3.2 中断服务程序.................................................. - 9 - 4.调试............................................................... - 12 - 4.1 实验步骤..................................................... - 12 - 4.2 调试结果..................................................... - 12 - 5.总结............................................................... - 14 - 6.参考资料........................................................... - 15 - 附录设计程序汇总.................................................... - 16 -

用七段数码管显示简单字符

用七段数码管显示简单字符——译码器及其应 用 一、实验目的 1、了解显示译码器的结构和理解其工作原理。 2、学习7段数码显示译码器设计。 3、学习用基逻辑门、3-8译码器、4-1选择器控制显示器的显示。 二、实验内容 1、了解逻辑门、3-8译码器、4-1选择器的工作原理,设计基本电路,实现以下功能: C2C1C0是译码器的3个输入,用C2C1C0的不同取值来选择在七段数码管上输出不同字符。七段数码管是共阳极的。 图1 七段译码器 C2C1C0的不同取值对应显示的字母如下: 图2 字符编码

三、实验仪器及设备: 一、PC 机 二、 Quartus Ⅱ 9.0 三、 DE2-70 四、显示器 四、实验步骤 1、列出真值表,计算要实现以上功能时数码管的0-7段对应的逻辑函数式。 真值表如下: 函数表达式如下: “0”=' 02C C + “1”=“2”=0'1'012C C C C C ++ “3”=(2C +1C +'0C )(2C +0C +'1C )(2C +' 1C +'0C ) “4”=“5”=2C “6”=2C +1C +02C C 2、新建一个 quartusII 工程,用以在DE2_70平台上实现所要求的电路。 建立一个BDF 文件,基于SSI ,实现七段译码器电路,用SW3_SW1作为输入C2C1C0, DE2_70平台上的的数码管分别为HEX0~HEX7,输出接HEX1。 参照de2_70_pin_assignments.csv 中的引脚分配表配置引脚。 新建仿真文件,给出输入信号,观察输出信号是否符合要求。 编译工程,完成后下载到FPGA 中。 拨动波段开关并观察七段数码管HEX0的显示,以验证设计的功能是否正确。 基于3-8译码器和4-1选择器重复上述2.、中的步骤完成设计。

七段数码管引脚图

由于很多多都需要这个数码管引脚图,于是今天专门用qq截了图,请大家记好引角的顺序 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

图 三、测试:同测试普通半导体二极管一样。注意!万用表应放在R×10K档,因为R×1K档测不出数码管的正反向电阻值。对于共阴极的数码管,红表笔接数码管的“-”,黑表笔分别接其他各脚。测共阳极的数码管时,黑表笔接数码管的vDD,红表笔接其他各脚。另一种测试法,用两节一号电池串联,对于共阴极的数码管,电池的负极接数码管的“-”,电池的正极分别接其他各脚。对于共阳极的数码管,电池的正极接数码管的VDD,电池的负极分别接其他各脚,看各段是否点亮。对于不明型号不知管脚排列的数码管,用第一种方法找到共用点,用第二种方法测试出各笔段a-g、Dp、H等。 uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字 {P0=bit_secl; P2=0x03;

delay_ms(1500); } return; } void display4(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x04; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display5(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x05; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display6(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x06; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display7(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x07;

七段数码管显示

七段数码管显示设计报告 目录 一、设计任务 二、题目分析与整体构思 三、硬件电路设计 四、程序设计 五、心得体会

一.设计任务 数码的显示方式一般有三种:第一种是字型重叠式;第二种是分段式;第三种是点阵式。目前以分段式应用最为普遍,主要器件是七段发光二极管(LED)显示器。它可分为两种,一是共阳极显示器(发光二极管的阳极都接在一个公共点上),另一是共阴极显示器(发光二极管的阳极都接在一个公共点上,使用时公共点接地)。 数码管动态扫描显示,是将所用数码管的相同段(a~g 和p)并联在一起,通过选位通 信号分时控制各个数码管的公共端,循环依次点亮各个数码管。当切换速度足够快时,由于人眼的“视觉暂留”现象,视觉效果将是数码管同时显示。 根据七段数码管的显示原理,设计一个带复位的七段数码管循环扫描程序,本程序需要着重实现两部分: 1. 显示数据的设置:程序设定4 位数码管从左至右分别显示1、2、3、4; 2. 动态扫描:实现动态扫描时序。 利用EXCD-1 开发板实现七段数码管的显示设计,使用EXCD-1 开发板的数码管为四位共阴极数码管,每一位的共阴极7 段数码管由7 个发光LED 组成,7 个发光LED 的阴极连接在一起,阳极分别连接至FPGA相应引脚。四位数码管与FPGA 之间通过8 位拨码开关(JP1)进行连接。 二.题目分析与整体构思 使用EXCD-1 开发板的数码管为四位共阴极数码管,每一位的共阴极7 段数码管由7 个发光LED 组成,呈“”字状,7 个发光LED 的阴极连接在一起,阳极分别连接至FPGA 相应引脚。SEG_SEL1、SEG_SEL2、SEG_SEL3 和SEG_SEL4 为四位7 段数码管的位选择端。当其值为“1”时,相应的7 段数码管被选通。当输入到7 段数码管SEG_A~ SEG_G 和SEG_DP 管脚的数据为高电平时,该管脚对应的段变亮,当输入到7 段数码管 SEG_A~SEG_G 和SEG_DP 管脚的数据为低电平时,该管脚对应的段变灭。该四位数码管与FPGA 之间通过8 位拨码开关(JP1)进行连接,当DIP 开关全部拨到上方时(板上标示为:7SEGLED),FPGA 的相应IO 引脚和四位7 段数码管连接,7 段数码管可以正常工作;当DIP 开关全部拨到下方时(板上标示为:EXPORT5),FPGA 的相应IO引脚与7 段数码管断开,相应的FPGA 引脚用于外部IO 扩展。 注意:无论拨码开关断开与否,FPGA 的相应IO 引脚都是与外部扩展接口连接的,所 以当正常使用数码管时,不允许在该外部扩展接口上安装任何功能模块板。 数码管选通控制信号分别对应4 个数码管的公共端,当某一位选通控制信号为高电平时,其对应的数码管被点亮,因此通过控制选通信号就可以控制数码管循环依次点亮。一个数码管稳定显示要求的切换频率要大于50Hz,那么4 个数码管则需要50×4=200Hz 以上的切换频率才能看到不闪烁并且持续稳定显示的字符。 三.硬件电路设计 设计结构图如下:

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

实验四八位七段数码管动态显示电路的设计

八位七段数码管动态显示电路的设计 一、实验目的 1、了解数码管的工作原理。 2、学习七段数码管显示译码器的设计。 3、学习VHDL的CASE语句及多层次设计方法。 二、实验原理 七段数码管是电子开发过程中常用的输出显示设备。在实验系统中使用的是两个四位一体、共阴极型七段数码管。其单个静态数码管如下图4-4-1所示。 图4-1 静态七段数码管 由于七段数码管公共端连接到GND(共阴极型),当数码管的中的那一个段被输入高电平,则相应的这一段被点亮。反之则不亮。共阳极性的数码管与之相么。四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。 三、实验内容 本实验要求完成的任务是在时钟信号的作用下,通过输入的键值在数码管上显示相应的键值。在实验中时,数字时钟选择1024HZ作为扫描时钟,用四个拨动开关做为输入,当四个拨动开关置为一个二进制数时,在数码管上显示其十六进制的值。 四、实验步骤 1、打开QUARTUSII软件,新建一个工程。 2、建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框。 3、按照实验原理和自己的想法,在VHDL编辑窗口编写VHDL程序,用户可参照光 盘中提供的示例程序。 4、编写完VHDL程序后,保存起来。方法同实验一。

5、对自己编写的VHDL程序进行编译并仿真,对程序的错误进行修改。 6、编译仿真无误后,根据用户自己的要求进行管脚分配。分配完成后,再进行全编译 一次,以使管脚分配生效。 7、根据实验内容用实验导线将上面管脚分配的FPGA管脚与对应的模块连接起来。 如果是调用的本书提供的VHDL代码,则实验连线如下: CLK:FPGA时钟信号,接数字时钟CLOCK3,并将这组时钟设为1024HZ。 KEY[3..0]:数码管显示输入信号,分别接拨动开关的S4,S3,S2,S1。 LEDAG[6..0]:数码管显示信号,接数码管的G、F、E、D、C、B、A。 SEL[2..0]:数码管的位选信号,接数码管的SEL2、SEL1、SEL0。 8、用下载电缆通过JTAG口将对应的sof文件加载到FPGA中。观察实验结果是否与 自己的编程思想一致。 五、实验现象与结果 以设计的参考示例为例,当设计文件加载到目标器件后,将数字信号源模块的时钟选择为1464HZ,拨动四位拨动开关,使其为一个数值,则八个数码管均显示拨动开关所表示的十六进制的值。

74LS系列芯片资料

74、74HC、74LS系列芯片资料 74、74HC、74LS系列芯片资料 系列电平典型传输延迟ns 最大驱动电流(-Ioh/Lol)mA AHC CMOS 8.5 -8/8 AHCT COMS/TTL 8.5 -8/8 HC COMS 25 -8/8 HCT COMS/TTL 25 -8/8 ACT COMS/TTL 10 -24/24 F TTL 6.5 -15/64 ALS TTL 10 -15/64 LS TTL 18 -15/24 注:同型号的74系列、74HC系列、74LS系列芯片,逻辑功能上是一样的。 74LSxx的使用说明如果找不到的话,可参阅74xx或74HCxx的使用说明。 有些资料里包含了几种芯片,如74HC161资料里包含了74HC160、74HC161、74HC162、74HC163四种芯片的资料。找不到某种芯片的资料时, 可试着查看一下临近型号的芯片资料。 7400 QUAD 2-INPUT NAND GATES与非门 7401 QUAD 2-INPUT NAND GATES OC与非门 7402 QUAD 2-INPUT NOR GATES或非门 7403 QUAD 2-INPUT NAND GATES与非门 7404 HEX INVERTING GATES反向器 7406 HEX INVERTING GATES HV高输出反向器 7408 QUAD 2-INPUT AND GATE与门 7409 QUAD 2-INPUT AND GATES OC与门 7410 TRIPLE 3-INPUT NAND GATES与非门 7411 TRIPLE 3-INPUT AND GATES与门 74121 ONE-SHOT WITH CLEAR单稳态 74132 SCHMITT TRIGGER NAND GATES 触发器与非门 7414 SCHMITT TRIGGER INVERTERS触发器反向器 74153 4-LINE TO 1 LINE SELECTOR四选一 74155 2-LINE TO 4-LINE DECODER译码器 74180 PARITY GENERATOR/CHECKER奇偶发生检验 74191 4-BIT BINARY COUNTER UP/DOWN计数器 7420 DUAL 4-INPUT NAND GATES双四输入与非门 7426 QUAD 2-INPUT NAND GATES与非门 7427 TRIPLE 3-INPUT NOR GATES三输入或非门 7430 8-INPUT NAND GATES八输入端与非门 7432 QUAD 2-INPUT OR GATES二输入或门 7438 2-INPUT NAND GATE BUFFER与非门缓冲器 7445 BCD-DECIMAL DECODER/DRIVER BCD译码驱动器

7段数码管显示电路

4.4 显示模块 4.4.1 7段数码管的结构与工作原理 7段数码管一般由8个发光二极管组成,其中由7个细长的发光二极管组成 数字显示,另外一个圆形的发光二极管显示小数点。 当发光二极管导通时,相应的一个点或一个笔画发光。控制相应的二极管导通,就能显示出各种字符,尽管显示的字符形状有些失真,能显示的数符数量也有限,但其控制简单,使有也方便。发光二极管的阳极连在一起的称为共阳极数码管,阴极连在一起的称为共阴极数码管,如图4.9所示。 4.4.2 7段数码管驱动方法 发光二极管(LED 是一种由磷化镓(GaP )等半导体材料制成的,能直接将电能转变成光能的发光显示器件。当其内部有一一电流通过时,它就会发光。 7段数码管每段的驱动电流和其他单个LED 发光二极管一样,一般为5~10mA ;正向电压随发光材料不同表现为1.8~2.5V 不等。 7段数码管的显示方法可分为静态显示与动态显示,下面分别介绍。 (1) 静太显示 所谓静态显示,就是当显示某一字符时,相应段的发光二极管恒定地寻能可截止。这种显示方法为每一们都需要有一个8位输出口控制。对于51单片机,可以在并行口上扩展多片锁存74LS573作为静态显示器接口。 静态显示器的优点是显示稳定,在发光二极管导通电注一定的情况下显示器的亮度高,控制系统在运行过程中,仅仅在需要更新显示内容时,CPU 才执行一次显示更新子程序,这样大大节省了CPU 的时间,提高了CPU 的工作效率;缺点是位数较多时,所需I/O 口太多,硬件开销太大,因此常采用另外一种显示方式——动态显示。

(2)动态显示 所谓动态显示就是一位一位地轮流点亮各位显示器(扫描),对于显示器的每一位而言,每隔一段时间点亮一次。虽然在同一时刻只有一位显示器在工作(点亮),但利用人眼的视觉暂留效应和发光二极管熄 灭时的余辉效应,看到的却是多个字符“同时”显示。显示器亮度既与点亮时的导通电流有关,也与点亮时间和间隔时间的比例有关。调整电流和时间参烽,可实现亮度较高较稳定的显示。若显示器的位数不大于8位,则控制显示器公共极电位只需一个8位I/O 口(称为扫描口或字位口),控制各位LED 显示器所显示的字形也需要一个8位口(称为数据口或字形口)。 动态显示器的优点是节省硬件资源,成本较低,但在控制系统运行过程中,要保证显示器正常显示,CPU 必须每隔一段时间执行一次显示子程序,这占用了CPU 的大量时间,降低了CPU 工作效率,同时显示亮度较静态显示器低。 综合以上考虑,由于温度显示为精确到小数点后两位,故只需4个数码管,又考虑到CPU 工作效率与电源效率,本毕业设计采用静态显示。为共阳极显示。 4.4.3 硬件编码 动74LS47是一款BCD 码转揣为7段输出的集成电路芯片,利用它可以直接驱动共阳 极的7段数码管。它的引脚分部和真值表分别下图。

数码管引脚图(常用)

由于很多多都需要这个数码管引脚图,下边介绍几种常用的二极管数码管引脚 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

图 三、测试:同测试普通半导体二极管一样。注意!万用表应放在R×10K档,因为R×1K档测不出数码管的正反向电阻值。对于共阴极的数码管,红表笔接数码管的“-”,黑表笔分别接其他各脚。测共阳极的数码管时,黑表笔接数码管的vDD,红表笔接其他各脚。另一种测试法,用两节一号电池串联,对于共阴极的数码管,电池的负极接数码管的“-”,电池的正极分别接其他各脚。对于共阳极的数码管,电池的正极接数码管的VDD,电池的负极分别接其他各脚,看各段是否点亮。对于不明型号不知管脚排列的数码管,用第一种方法找到共用点,用第二种方法测试出各笔段a-g、Dp、H等。 数码管引脚图,一般都是一样的。

数字对应数码管显示控制转换字节 (共阴编码) 显示--HGFE,DCBA--编码 0 --0011,1111--0x3F; 1 --0000,0110--0x06; 2 --0101,1011--0x5B; 3 --0100,1111--0x4F; 4 --0110,0110--0x66; 5 --0110,1101--0x6D; 6 --0111,1101--0x7D; 7 --0000,0111--0x07; 8 --0111,1111--0x7F; 9 --0110,1111--0x6F; 共阳为编码取反即可, 接线为高低端口对应接法。 备注:第一脚的识别很简单,看管脚的底部,有一个方块型的就是第一脚。或者正面(就是显示那面)超你,左下角第一个为第一脚。

常用 系列芯片手册

常用74系列芯片手册 7400TTL2输入端四与非门 7401TTL集电极开路2输入端四与非门 7402TTL2输入端四或非门 7403TTL集电极开路2输入端四与非门 7404TTL六反相器 7405TTL集电极开路六反相器 7406TTL集电极开路六反相高压驱动器 7407TTL集电极开路六正相高压驱动器 7408TTL2输入端四与门 7409TTL集电极开路2输入端四与门 7410TTL3输入端3与非门 74107TTL带清除主从双J-K触发器 74109TTL带预置清除正触发双J-K触发器 7411TTL3输入端3与门 74112TTL带预置清除负触发双J-K触发器 7412TTL开路输出3输入端三与非门 74121TTL单稳态多谐振荡器 74122TTL可再触发单稳态多谐振荡器 74123TTL双可再触发单稳态多谐振荡器 74125TTL三态输出高有效四总线缓冲门 74126TTL三态输出低有效四总线缓冲门 7413TTL4输入端双与非施密特触发器 74132TTL2输入端四与非施密特触发器 74133TTL13输入端与非门 74136TTL四异或门 74138TTL3-8线译码器/复工器 74139TTL双2-4线译码器/复工器 7414TTL六反相施密特触发器

74145TTL BCD—十进制译码/驱动器 7415TTL开路输出3输入端三与门 74150TTL16选1数据选择/多路开关 74151TTL8选1数据选择器 74153TTL双4选1数据选择器 74154TTL4线—16线译码器 74155TTL图腾柱输出译码器/分配器 74156TTL开路输出译码器/分配器 74157TTL同相输出四2选1数据选择器74158TTL反相输出四2选1数据选择器7416TTL开路输出六反相缓冲/驱动器74160TTL可预置BCD异步清除计数器74161TTL可予制四位二进制异步清除计数器74162TTL可预置BCD同步清除计数器74163TTL可予制四位二进制同步清除计数器74164TTL八位串行入/并行输出移位寄存器74165TTL八位并行入/串行输出移位寄存器74166TTL八位并入/串出移位寄存器 74169TTL二进制四位加/减同步计数器7417TTL开路输出六同相缓冲/驱动器74170TTL开路输出4×4寄存器堆 74173TTL三态输出四位D型寄存器 74174TTL带公共时钟和复位六D触发器74175TTL带公共时钟和复位四D触发器74180TTL9位奇数/偶数发生器/校验器74181TTL算术逻辑单元/函数发生器 74185TTL二进制—BCD代码转换器 74190TTL BCD同步加/减计数器 74191TTL二进制同步可逆计数器 74192TTL可预置BCD双时钟可逆计数器

最全四位七段数码管引脚图、公共脚

最全四位七段数码管引脚图、公共脚 数码管在现在的自动控制中的显示应用极为广泛,由于使用时间的问题会导致缺画的现象发生,为了便于大家更好找到合适的数码管进行更换,特给大家详细介绍 《七段数码管实物图》

数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。

一种四位双排引脚共阴(阳)脚位图

常见的四位双排引脚共阴(阳)脚位图 单排四位双排引脚共阴(阳)脚位图 国内外生产LED数码管的公司很多,命名方法也各不相同。下面主要介绍国产LED数码管和立得公司的LED数码管的命名方法,因为市面上这两中型号的数码管销售的最多。 国产LED数码管型号命名方法为: 示例:BS12.7R-1表示字高为12.7mm,红色,共阳极数码管。字串3 立得公司的LED数码管的命名方法为: 其中,A:极性;B:字高;C:发光颜色;D:位数;E:高效率,红;F:其它。字串2 极性:字串1 LA:共阳(单);LC:共阴(单);LD:共阳(双);LE:共阴(双);LN:共阳(加大);LM:共阴(加大)。

发光颜色: 1:红色(红底);2:绿色;3:黄色;4:橙色;5:红色;6:红色(高效率)。 位数: 1:(单位);2:(双位);3:(三位) 上图是字高为0.8英寸的四位共阳极双排12脚数码管,四个公共脚为,6、8、9、12 上图是字高为0.52英寸的四位共阳极双排12脚数码管,四个公共脚为2、3、6、10数码管测试方法与数字显示译码表

常见存储器芯片资料(简版)

2716 2716指的是Intel2716芯片,Intel2716是一种可编程可擦写存储器芯片封装:双列直插式封装,24个引脚 基本结构:带有浮动栅的MOS管 封装:直插24脚, 引脚功能: Al0~A0:地址信号 O7~O0:双向数据信号输入输出引脚; CE:片选 OE:数据输出允许; Vcc:+5v电源, VPP:+25v电源; GND:地 2716读时序:

2732 相较于2716: Intel2716存储器芯片的存储阵列由4K×8个带有浮动栅的MOS管构成,共可保存4K×8位二进制信息 封装:直插24脚 引脚功能: A0~A11地址 E片选 G/VPP输出允许/+25v电源 DQ0~7数据双向 VSS地 VCC+5v电源 2732读时序

2764、27128、27256、27512等与之类似27020 存储空间:256kx8 读写时间:55/70ns 封装:直插/贴片32脚 引脚功能:

A0~A17地址线 I/O0~7数据输入输出 CE片选 OE输出允许 PGM编程选通 VCC+5v电源 VPP+25v电源 GND地 27020读时序: 27040与之类似 RAM--6116 6116是2K*8位静态随机存储器芯片,采用CMOS工艺制造,单一+5V供电,额定功耗160mW,典型存取时间90/120ns, 封装:24线双列直插式封装.

引脚功能: A0-A10为地址线; CE是片选线; OE是读允许线; WE是写允许线. 操作方式: RAM—6264 6264是8K*8位静态随机存储器芯片,采用CMOS工艺制 造,单一+5V供电,最大功耗450mW,典型存取时间70/100/120ns, 封装:直插式28脚 引脚功能: A0~A12:地址线 WE写允许 OE读允许 CS片选

7段数码管控制引脚

《EDA技术综合设计》 课程设计报告 报告题目:计数器7段数码管控制接口技术作者所在系部: 作者所在专业: 作者所在班级: 作者姓名: 作者学号: 指导教师姓名: 完成时间:

内容摘要 掌握VHDL语言基本知识,并熟练运用VHDL语言来编写程序,来下载实践到硬件上,培养使用设计综合电路的能力,养成提供文档资料的习惯和规范编程的思想。利用VHDL语言设计一个七段数码管控制引脚,在时钟信号的控制下,使6位数码管动态刷新显示十进制计数器及其进位,十二进制计数器,四位二进制可逆计数器,六十进制计数器的计数结果,这期间需要seltime分频器来动态的给各个计数器分配数码管,并显示数字的变化。 关键词:VHDL语言编程七段数码管控制引脚芯片

目录 一概述 (1) 二方案设计与论证 (1) 三单元电路设计与参数计算 (1) 3.1数码管译码器 (1) 3.2 十进制计数器 (2) 3.3六十进制计数器 (3) 3.4四位二进制可逆计数器 (5) 3.5时间数据扫描分时选择模块 (6) 3.6顶层文件 (8) 四总的原理图 (9) 五器件编程与下载 (9) 六性能测试与分析(要围绕设计要求中的各项指标进行) (10) 七实验设备 (10) 八心得体会 (10) 九参考文献 (10)

课程设计任务书课题 名称7段数码管控制引脚 完成 时间 2011. 12.12 指导 教师胡辉职称副教授 学生 姓名 庄仲班级B09212 总体设计要求和技术要点 通过本课程的学习使学生掌握可编程器件、EDA开发系统软件、硬件描述语言和电子线路设计与技能训练等各方面知识;提高工程实践能力;学会应用EDA技术解决一些简单的电子设计问题。 具体要求: 1.设计一个共阴7段数码管控制接口,在硬件时钟电路的基础上,采用分频器,输出一个1S的时钟信号,同时显示2、3、4所要求的计数器。 2.设计一个带使能输入、进位输出及同步清0的增1十进制计数器。 3.设计一个带使能输入及同步清0的六十进制同步加法计数器; 4.设计一个四位二进制可逆计数器; 工作内容及时间进度安排 第16周: 周一、周二:设计项目的输入、编译、仿真 周三:器件编程下载与硬件验证 周四:成果验收与总结 周五:撰写课程设计总结报告 课程设计成果 把编写好的程序下载到试验箱,使数码管能够按照编写的程序显示出正确的结果,实验成功。

七段数码管显示实验

单片机实验报告

实验九七段数码管显示实验 一、实验目的 1.学习七段数码管的工作原理; 2.学习数码管与8051单片机的接口方法; 3.掌握动态扫描显示技术。 二、实验原理 如图4.9-1所示,LED数码管由7个发光二极管组成,此外,还有一个圆点型发光二极管(在图中以dp表示),用于显示小数点。通过七段发光二极管亮 共阴极接法共阳极接法 图4.9-1 暗的不同组合,可以显示多种数字、字母以及其它符号。LED数码管中的发光二极管共有两种连接方法: 1)共阴极接法:把发光二极管的阴极连在一起构成公共阴极。使用时公共阴极接地,这样阳极端输入高电平的段发光二极管就导通点亮,而输入低电平的则不点亮。实验中使用的LED显示器为共阴极接法 2)共阳极接法:把发光二极管的阳极连在一起构成公共阳极。使用时公共阳极接+5V。这样阴极端输入低电平的段发光二极管就导通点亮,而输入高电平的则不点亮。 为了显示数字或符号,要为LED显示器提供代码,因为这些代码是为显示字形的,因此称之为字形代码。七段发光二极管,再加上一个小数点位,共计八段。因此提供给LED显示器的字形代码正好一个字节。若a、b、c、d、e、f、g、dp 8个显示段依次对应一个字节的低位到高位,即D0、D1、D2、D3、D4、D5、D6、D7,则用共阴极LED数码管显示十六进制数时所需的字形代码如表4.9-1所示。

表4.9-1 共阴极LED 数码管字形代码 字型 共阴极字形代码 字型 共阴极字形代码 字型 共阴极字形 代码 0 3FH 6 7DH C 39H 1 06H 7 07H d 5EH 2 5BH 8 7FH E 79H 3 4FH 9 6FH F 71H 4 66H A 77H 灭 00H 5 6DH b 7CH *实际上试验中使用的是共阳极数码管,这里就不一一列出。 2、动态显示 按图4.9-2(b )连接线路,通过交替选中LED1和LED0循环显示两位十进制数。七段数码管段码连接不变,位码驱动输入端S1、S0接8255A C 口的PC1、PC0,通过C 口的这两位交替输出1和0,以便交替选中LED1和LED0,从而实现两位十进制数的交替显示。请编程实现在两个LED 数码管上循环显示00 99,程序流程图如图4.9-3(b)所示。 (a) 静态显示程序流程图 (b) 动态显示程序流程图 图4.9-3 十位数的段码至A 口 个位数的段码至A 口 开始 开始 返回DOS 返回DOS 延时并修改要显示的数字

七段数码管循环显示

(封面) 天津理工大学中环信息学院 电子技术课程设计 设计题目:七段数码管循环显示控制电路设计 姓名:诸钦峰学号:11160014 系别:电子信息工程系专业班级:物联网1班 开始日期: 2013年6月24日完成日期2013 年07月01日 指导教师:彭利标成绩评定等级

天津理工大学中环信息学院 课程设计任务书 系别:电子信息工程系班级:物联网1班姓名:诸钦峰学号:11160014 本表附在课程设计说明书的目录之后。

天津理工大学中环信息学院 课程设计成绩评定表 系别:电子信息工程系班级:物联网1班姓名:诸钦峰学号:11160014 本表附在课程设计任务书之后。

目录 一、设计意义 (4) 二、主要任务 (5) 2.设计方案比较 (5) 三、电路组成框图 (8) 1.数列循环电路的设计 (8) 2.序列显示电路的设计 (8) 2.1十进制自然数序列的显示电路 (8) 2.2奇数序列显示电路 (9) 2.3偶数序列显示电路 (9) 2.4音乐序列显示电路 (10) 3.脉冲产生电路的设计 (11) 4.二分频电路的设计 (11) 四、电路原理图 (12) 五、各电路的仿真测试 (14) 1.脉冲产生电路的仿真 (15) 2.二频分电路的仿真 (16) 六、元件清单 (16) 七、总结 (16)

一、设计意义 这次的课程设计主要是用计数器来实现的,这个七段数码管循环显示控制电路设计的实质就是要产生一系列有规律的数列, 然后通过一个七段数码管显示出来。这里使用的只要就是计数器, 计数器在时序电路中应用的很广泛,它不仅可以用于对脉冲进行计数,还可用于分频,定时,产生节拍脉冲以及其他时序信号。运用计数器的不同的功能和不同的接发就可以实现不同的序列输出了。 而这次的内容还包括分电路图的整合,使这个七段数码管能够按照要求那个依次输出自然序列,奇数序列,偶数序列还有音乐序列。为了实现这个循环输出的功能,在设计的时候还用到了一个以为寄存器,可以利用它的输出端来控制四个计数器的工作情况, 可以让四个计数器依次工作,就可以达到要求的依次循环输出数列。 最后还有一个部分就是脉冲的产生基于多谐振荡器可以产生方波,就可以利用它来产生脉冲信号了。而这个多谐振荡器采用的是 555 定时器来完成的。这个设计基本上就是由以上三个部分连接在一起组成的。 1、基本方案框图 计数器输出信号,将信号给译码器和脉冲信号再由脉冲信号和译码器分别编成自然序列,奇数序列,偶数序列和音乐序列,最后由数码管显示出来。 图1 七段数码管显示的基本方框图

7段数码管1

实验三 7段数码管显示 一实验要求 设计一个共阴7段数码管控制接口,要求:在时钟信号的控制下,使8位数码管动态刷新显示各自学号。 二实验原理 三实验内容 在实验仪器中,8位7段数码显示的驱动电路已经做好,并且其位选信号(SEL[7..0])为一3-8译码器的输出,所以我们在设计7段数码管控制接口时,其位选信号输出必须经8-3编码。 显示控制器的引脚图如图3-1: 图3-1 图中CP为时钟输入端,SEGOUT[7..0]为段驱动输出;SELOUT[2..0]为位选信号输出;NUMOUT[3..0]为当前显示的数据输出。 图3-2 7段显示控制器仿真波形图 从图3-2可以看出,8位数码管是轮流点亮的,我们以NUMOUT=1这段波形为参考:当SELOUT为000时,点亮第一位显示器,显示的数字为1,同时,NUMOUT输出的数据也为“0001”。同理,当SELOUT为001时,点亮第二位显示器,显示数字为1,直到6位显示器全都显示完毕,等待进入下一个数字的显示。 同时,还有一个问题不可忽视,位扫描信号的频率至少需要多少以上,才能使显示器不闪烁?简单的说,只要扫描频率超过眼睛的视觉暂留频率24H Z以上就可以达到点亮单个显示,却能享有6个同时显示的视觉效果,而且显示也不闪烁。当我们输入频率为5MH Z时,我

们通过加法计数器来产生一个约300H Z的信号,并且由它来产生位选信号,请参考下面程序段: PROCESS (CP) -- 计数器计数 Begin IF CP'Event AND CP='1' then Q <= Q+1; END IF; END PROCESS; NUM <= Q(24 DOWNTO 21); --about 1 Hz S <= Q(15 DOWNTO 13); --about 300 Hz --扫描信号 SEL <= "000" WHEN S=0 ELSE "001" WHEN S=1 ELSE "010" WHEN S=2 ELSE "011" WHEN S=3 ELSE "100" WHEN S=4 ELSE "101" WHEN S=5 ELSE "111111"; 由计数器Q引出到S信号,若时钟信号为5MH Z时,Q13得到的信号频率约300HZ,再将 它分给扫描信号,最后每个显示器扫描信号频率为:300/6=50H Z>24H Z,所以不会有闪烁情形产生。 四实验连线 CP对应IO3 SEGOUT、SELOUT分别对应数据总线的低8位与高8位 NUMOUT对应IO9-IO12 功能选择位M[3..0]状态均为0010,左端8个数码管,低8位为7位段总加小数点选取位,高8位为8个数码管com端选取,即如果要选取数码管0,则发送总线值为:1111 1110 1111 1111,如要选取数码管1,则发送总线值为:1111 1101 1111 1111,此时所选数码管7段和DP位将全部亮。 实验接线:用导线连接IO3与ADJ_CLK,调整拨码开关SW17-SW20,使输出频率为5MHz;用导线将IO9-IO12连到L1-L4。 五实验代码 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY wm3 is PORT( CP : IN STD_LOGIC; -- CLOCK SEGOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- SEG7 Display O/P SELOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- Select SEG7 O/P NUMOUT : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); -- Number Display

相关主题
文本预览
相关文档 最新文档