当前位置:文档之家› 拉格朗日插值法C语言的实现(实验报告)

拉格朗日插值法C语言的实现(实验报告)

拉格朗日插值法C语言的实现(实验报告)
拉格朗日插值法C语言的实现(实验报告)

算法2实验

一 .拉格朗日插值法C 语言的实现

1.实验目的:

进一步熟悉拉格朗日插值法。

掌握编程语言字符处理程序的设计和调试技术。

2.实验要求:

已知:某些点的坐标以及点数。

输入:条件点数以及这些点的坐标 。

输出:根据给定的点求出其对应的拉格朗日插值多项式的值 。

3.程序流程:

(1)输入已知点的个数;

(2)分别输入已知点的X 坐标; (3)分别输入已知点的Y 坐标;

(4)通过调用函数lagrange 函数,来求某点所对应的函数值。

拉格朗日插值多项式如下:

L ()()0,1,n

n j k k j j

k x y l x y j n ==

==∑

……

其中00()()0,1,,()k k x x l x k n x x -==-k-1k+1n k k-1k k+1k n ……(x-x )(x-x ) …(x-x )…………(x -x )(x -x ) …(x -x )

程序流程图:

程序如下:

#include

#include

#include

float lagrange(float *x,float *y,float xx,int n) /*拉格朗日插值算法*/ {

int i,j;

float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项式*/ a=(float *)malloc(n*sizeof(float));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

int main()

{

int i;

int n;

float x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20)."); getch();return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20)."); getch(); return 1; }

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%f",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);scanf("%f",&y[i]);

}

printf("\n");

printf("Input xx:");

scanf("%f",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%f,y=%f\n",xx,yy);

getch();

}

举例如下:

已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。运行结果如下:

算法三#include

#include

#define M 20;

int n=0;

int p=1;

int num=0;

double *x;

double *y;

double Calculate(double tt) ;

void Insert(int m);

void Print( );

void NewTon(int m)

{

double tt;

Insert(m);

Print( );

printf("是否继续进行插值、计算还是结束?继续插值请输入1,结束请输入0,求值计算请输入2;p=");

scanf("%d",&p);

printf("\n");

while(p!=0)

{

if(p==1)

{

printf("请输入再次插值点个数num=");

scanf("%d",&num);

NewTon(num);

}

else if(p==2)

{

printf("请输入x=");

scanf("%lf",&tt);

tt=Calculate(tt);

printf("Q(x)=%lf",tt);

printf("\n");

printf("是否继续进行插值、计算还是结束?继续插值请输入1,结束请输入0,求值计算请输入2;p=");

scanf("%d",&p);

printf("\n");

}

else break;

}

}

void Print( )

{

int k,j;

printf("插值多项式为:Q(x)=%lf",y[0]);

for(j=1;j

{

if(y[j]>=0) printf("+");

printf("%lf",y[j]);

for(k=0;k

}

printf("\n");

}

void Insert(int m)

{

int j,k,t,N;N=n;

n+=m;

double *x1;

double *y1;

x1=(double*)malloc(n*sizeof(double));

y1=(double*)malloc(n*sizeof(double));

for(j=0;j

{

x1[j]=x[j];

y1[j]=y[j];

}

for(j=0;j

{

printf("请输入第%d个插值点x[%d]=",j+1,N+j);

scanf("%lf",&x1[N+j]);

printf("请输入第%d个插值点y[%d]=",j+1,N+j);

scanf("%lf",&y1[N+j]);

}

x=x1;

y=y1;

printf("\n");

if(N>1)

for(j=0;j

{

double ss=1;

for(k=0;k

ss*=x[N+j]-x[k];

for(k=0;k

{

double rr=y[k];

for(t=0;t

rr*=x[N+j]-x[t];

y[N+j]-=rr;

}

y[N+j]/=ss;

}

else

for(j=1;j

{

double ss=1;

for(k=0;k

ss*=x[N+j]-x[k];

for(k=0;k

{

double rr=y[k];

for(t=0;t

rr*=x[N+j]-x[t];

y[N+j]-=rr;

}

y[N+j]/=ss;

}

}

double Calculate(double tt)

{

int i,j;

double yy=0;

double xx;for(i=0;i

{

xx=y[i];

for(j=0;j

{

xx=xx*(tt-x[j]);

}

yy+=xx;

}

return yy;

}

void main()

{

printf("请输入插值点个数num=");

scanf("%d",&num);

NewTon(num);

printf("结束");

}

插值与拟合实验报告

学生实验报告

了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多项式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程; 通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验仪器、设备或软件:电脑,MATLAB软件 三、实验内容 1.编写插值方法的函数M文件; 2.用MATLAB中的函数作函数的拟合图形; 3.针对实际问题,试建立数学模型,并求解。 四、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件; 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 五、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)。 1.天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表: 由此推断何时金星与地球的距离(米)的对数值为9.93518? 解:输入命令

days=[18 20 22 24 26 28 30]; distancelogs=[9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499]; t1=interp1(distancelogs,days,9.93518) %线性插值 t2=interp1(distancelogs,days,9.93518,'nearest') %最近邻点插值 t3=interp1(distancelogs,days,9.93518,'spline') %三次样条插值 t4=interp1(distancelogs,days,9.93518,'cubic') %三次插值 计算结果: t1 = 24.9949 t2 = 24 t3 = 25.0000 t4 =

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

拉格朗日多项式插值(C语言)

#include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉¤-格?朗¤¨o日¨?插?值|ì算?法¤?§*/ { int i,j; float *a,yy=0.0; /*a作á??为a临¢¨′时o?à变à?量¢?,ê?记?录?拉¤-格?朗¤¨o日¨?插?值|ì多¨¤项?式o?*/ a=(float *)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:"); scanf("%d",&n); if(n>=20) { printf("Error!The value of n must in (0,20)."); getch();return 1; } if(n<=0) { printf("Error! The value of n must in (0,20)."); getch(); return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); }

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

实验一拉格朗日插值法

实验一 拉格朗日插值法 基本信息 实验课程:计算方法 设课形式:非独立 课程学分:3 实验项目:拉格朗日插值法 项目类型:基础 项目学时:2 目的和要求 该实验在计算机上实现拉格朗日插值法并进行验证。要求对拉格朗日插值法的流程进行分析,设计算法,并使用一种编程语言实现,最后通过具体例子进行验证,得到正确结果。 实验条件 装有编程语言的计算机一台、项目相关材料。 实验内容和原理或涉及的知识点 公式: 基点x i 的n 次插值基函数( i=0,1,…,n): n i x x x x x x x x x x x x x x x x x x x x x x x x x l j i j n i j j n i i i i i i i n i i i ,,1,0) ())(())(() ())(())(()(011101110 =--∏ =----------= ≠=+-+- n 次拉格朗日插值多项式: ∑∏ =≠=--=+++=n i n i j j j i j i n n n x x x x y x l y x l y x l y x P 0 01100)()()()(

流程图: 输入及x y x i i i n ,,,,,=012 P i ??00 ,L ?1 L L x x x x j i j j n j i ?--=≠()() ,,,() 01 P P y L i ?+i i ?+1 开始T F 输出P 结束 i n = 验证例子 已知如下的函数表,试编写程序,用拉格朗日插值多项式求0.5,0.7,0.85三点处的函数值。 x 0.40.550.80.91y 0.410750.578150.88811 1.02652 1.1752 实验结果: 插值点的个数 m=3

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

实验1拉格朗日插值与牛顿插值

数学与计算机学院上机实践报告 课程名称:计算方法A年级:上机实践成绩: 指导教师:姓名: 上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期: 上机实践编号:1上机实践时间: 一、目的 1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解; 2.能对上述两种插值法提出正确的算法描述编程实现。 二、内容与设计思想 自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。(从课件或教材习题中选题) 已知y=f( 三、使用环境 操作系统:windows XP 软件环境:Microsoft Visual C++6.0 四、核心代码及调试过程 (一) 拉格朗日插值法: lude double product(double *p,double newx,int k,int n); main() { /*divisor,dividend double x[10]={0.10,0.15,0.25,0.40,0.50,0.57,0.70,0.85,0.93,1.00}; double newx[3]={0.45,0.6,0.80},divisor,dividend,quotient,result; double y[10]={0.904837,0.860708,0.778801,0.670320,0.606531,0.565525,0.496585,0.427415,0.394554; int i,th; for(th=0;th<3;th++) { result=0; for(i=0;i<10;i++)

{ dividend=product(x,newx[th],i,9); divisor=product(x,x[i],i,9); quotient=dividend/divisor; result+=quotient*y[i]; } printf("%lf处的近似值为%lf\n",newx[th],result); } } double product(double *p,double newx,int k,int n) { int cycle_times; double result=1; for(cycle_times=0;cycle_times<=n;cycle_times++) if(cycle_times!=k) result=result*(newx-p[cycle_times]); return result; } (二)牛顿插值法: #include #define total_points 10 void fill_in_the_blank(double *p,int x,int y); double newton(double (*p)[total_points+1],double newx); main() { double table[total_points][total_points+1], newx; int x,y; printf("Please notice (x,y) is from (x1,y1) to (x%d,y%d)!\n",total_points,total_points); for(x=0;xy) fill_in_the_blank(table,x,y); } printf("input a number you want to calculate:"); scanf("%lf",&newx); printf(" the result is:%lf\n",newton(table,newx)); } void fill_in_the_blank(double (*p)[total_points+1],int x,int y) { double diff_up,diff_down; diff_up=*(*(p+x)+y-1)-*(*(p+x-1)+y-1); diff_down=*(*(p+x))-*(*(p+x-y+1)); *(*(p+x)+y)=diff_up/diff_down; }

不等距节点下的牛顿插值公式以及拉格朗日插值公式实验课报告

数值分析实验报告三 插值法(2学时) 一实验目的 1.掌握不等距节点下的牛顿插值公式以及拉格朗日插值公式。二实验内容 1.已知函数表: 用牛顿插值公式求) (y的近似值。 102 2. 已知函数表: 用拉格朗日插值公式计算01 x以及所对应的近似值。 =y .5 4.1= 三实验步骤(算法)与结果 1.不等距节点下的牛顿插值公式 Ⅰ.按差商表计算n阶差商

12111[,,,][,,,] [,,,]i i i n i i i n i i i n i n i f x x x f x x x f x x x x x +++++-+++-= - 其中 Ⅱ.按以下公式,带入x 值 00010120101101()() ()[,] ()()[,,]()()()[,,] n n f x f x x x f x x x x x x x f x x x x x x x x x f x x -=+-+--++--- Ⅲ.得出结果()f x 程序代码: #include"stdio.h" #include"math.h" int main() { int a,i,j; printf("输入x 系数的个数:"); scanf("%d",&a); float d,e=0,c; float x[a]; float y[a-1][a]; printf("输入x 的系数:"); for(i=0;i

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

拉格朗日插值、克劳德迭代法

拉格朗日插值 #include"stdio.h" #include"math.h" int main() { int a,i,j; printf("输入x系数(y的系数)的个数:"); scanf("%d",&a); float e,k=1,p=0; float x[a]; float y[a]; printf("输入x的系数(y的系数):"); for(i=0;i

克劳德迭代法 #include"stdio.h" #include"math.h" int main() { float a[3][4]={{2,3,4,6}, {3,5,2,5}, {4,3,30,32}}; float u[3][4]; float l[3][4]; u[0][0]=u[1][1]=u[2][2]=1; l[0][0]=a[0][0]/u[0][0]; u[0][1]=a[0][1]/l[0][0]; u[0][2]=a[0][2]/l[0][0]; u[0][3]=a[0][3]/l[0][0]; l[1][0]=a[1][0]/u[0][0]; l[1][1]=a[1][1]-l[1][0]*u[0][1]; u[1][2]=(a[1][2]-l[1][0]*u[0][2])/l[1][1]; u[1][3]=(a[1][3]-l[1][0]*u[0][3])/l[1][1]; l[2][0]=a[2][0]/u[0][0]; l[2][1]=a[2][1]-l[2][0]*u[0][1] l[2][2]=a[2][2]-l[2][0]*

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

数值分析实验一——拉格朗日插值算法报告

拉格朗日插值算法的实现 实验报告 姓名:** 年级:****专业:计算机科学与技术科目:数值分析题目:拉格朗日插值算法的实现 实验时间: 2014年5月27日实验成绩: 实验教师: 一、实验名称:拉格朗日插值算法的实现 二、实验目的: a. 验证拉格朗日插值算法对于不同函数的插值 b. 验证随着插值结点的增多插值曲线的变化情况。 三、实验内容: 拉格朗日插值基函数的一般形式: 也即是: 所以可以得出拉格朗日插值公式的一般形式: 其中, n=1时,称为线性插值,P1(x) = y0*l0(x) + y1*l1(x) n=2时,称为二次插值或抛物插值,精度相对高些,P2(x) = y0*l0(x) + y1*l1(x) + y2*l2(x) 四、程序关键语句描写 double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

for(int j=0;j #include using namespace std; int main() { double Lagrange(int n,double X[],double Y[],double x); //插值函数double x;//要求插值的x的值 double result;//插值的结果 char a='n'; double X[20],Y[20]; do { cout<<"请输入插值次数n的值:"<>n; cout<<"请输入插值点对应的值及函数值(xi,yi):"<>X[k]>>Y[k]; } cout<<"请输入要求值x的值:"<>x; result=Lagrange(n,X,Y,x); cout<<"由拉格朗日插值法得出结果:"<>a; }while(a=='yes'); return 0; }

相关主题
文本预览
相关文档 最新文档