当前位置:文档之家› 附录A 常用函数的拉普拉斯变换表和Z变换表

附录A 常用函数的拉普拉斯变换表和Z变换表

附录A  常用函数的拉普拉斯变换表和Z变换表

附录A 常用函数的拉普拉斯变换表和Z变换表

以下为常用时间函数的z变换和拉氏变换对照表,供读者备查之用。

附表1 常用时间函数的z变换和拉氏变换

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 32 8 .95781 2028.6?? =N 5 3)164.1(? 是很复杂的,而引用对数后,可先把上式变换为 164 .1lg 53 )20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义12.1 设函数()f t 当0t ≥时有定义,若广义积分 ()pt f t e dt +∞ -? 在P 的某一区域内 收敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= 0)()( (12.1) 称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为() f t 的拉氏变换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数) ,记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例12.1 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00[]()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =- =-+? ?? 2020 ][0p a e p a dt e p a pt pt =-=+ =∞ +-∞+-? ) 0(>p

常用拉普拉斯变换总结

常用拉普拉斯变换总结 1、指数函数 000)(≥

??∞-∞-∞ ----==000d d ][t s e s e t t te t L st st st 2 01d 1s t e s st ==?∞- 6、正弦函数 00sin 0)(≥

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

信号系统Z变换习题讲解

信号系统Z 变换习题讲解 7-1 分别绘出下列各序列的图形。 (1)[](1/2)[]n x n u n = (2)[]2[]n x n u n = (3)[](1/2)[]n x n u n =- (4)[](2)[]n x n u n =- 解: 7-2 分别绘出下列各序列的图形。 (1)[][]x n nu n =-- (2)[]2[]n x n u n -= (3)[](1/2)[]n x n u n -=- (4)[](1/2)[]n x n u n =-- 解: 01 23 4 n (1) 01234 n (2) (3) 01234 n [n ] -1 -4 n (2) (1) (4)

7-3 分别绘出下列各序列的图形。 (1) []sin 5n x n π??= ??? (2)[]cos 105n x n ππ?? =- ??? 解: 7-5 序列x [n ]如图题7-5所示,把x [n ]表示为δ[n ]的加权与延迟之线性组合。 图 题7-5 解: []2[3][]3[1]2[3]x n n n n n δδδδ=-+-+-+- 7-7 求下列序列的z 变换X (z ),并注明收敛域,绘出X (z )的零极点图。 (1)(1/2)n u [n ] +δ [n ] (4)(1/2)n {u [n ] - u [n -8]} (5)δ [n ] -1 5δ [n -2] 解:1 1 1 (1)()[()[][]]()[]2212121112 2 2 n n n n n n n X z u n n z z n z z z z z z δδ∞ ∞ ∞ ---=-∞ ==-∞ = += + -=+= > - - ∑∑∑ (2)

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++= =----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== 0)(=s A 有重根

设0)(=s A 有r 重根1s ,F(s)可写为 ()) s s ()s s ()s s () s (B s F n 1 r r 1 ---= +Λ = n n i i 1 r 1 r 1 1 1 r 1 1 r r 1 r s s c s s c s s c )s s (c )s s (c )s s (c -+ +-++-+-++-+-++--ΛΛΛ 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )s (F )s s (lim c r 1 s s r 1 -=→ )]s (F )s s ([ds d lim c r 1 s s 1 r 1 -=→- M )s (F )s s (ds d lim !j 1c r 1 ) j () j (s s j r 1 -=→- )s (F )s s (ds d lim )!1r (1c r 1 ) 1r () 1r (s s 1 1 --=--→ 原函数)(t f 为 [])()(1s F L t f -= ?? ? ???-+ +-++-+-++-+-=++---n n i i 1 r 1 r 1 1 1 r 1 1 r r 1 r 1 s s c s s c s s c )s s (c ) s s (c )s s (c L ΛΛΛ t s n 1 r i i t s 1 2 2 r 1 r 1 r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+?? ? ???+++-+-=Λ (F-6)

典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录 1.Matlab介绍.............. 错误!未定义书签。 2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5) 2.1.拉普拉斯变换曲面图的绘制 (5) 2.2.拉普拉斯变化编程设计及实现 (7) 2.3.拉普拉斯逆变化编程设计及实现 (8) 3.总结 (14) 4.参考文献 (15)

1.Matlab介绍 MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。 经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面: 1)数学计算; 2)新算法研究开发; 3)建模、仿真及样机开发; 4)数据分析、探索及可视化; 5)科技与工程的图形功能; 6)友好图形界面的应用程序开发。 1.1Matlab入门 Matlab7.0介绍 Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。 在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。 MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MATLAB具有友好的用户

求以下序列的z变换

习题五 Z 变换 1. 求以下序列的z 变换,并画出零极点图和收敛域。 n n n n n n n z a z a -==∑∑+=0 1) )(1 ()1() 1)(1(1111212a z a z a z a az az a z a az az ---= ---= -+-=-) (21)() 2(n u n x n ?? ? ??=) 1(21)() 3(--?? ?-=n u n x n )1(,1 )() 4(≥=n n x )5() 6()1||()() 1(<=a a n x n

∞ ====<<<

0 2 1 ==z z 零点为:极点为: 解: (4) ∑ -?∞ ==11)(n n z n z X ∞--? ?1 1)(n z dX 11n ∞ -- 解:因此,收敛域为 :1>z ∞ ==-====-z z z z e z e z j j ,0,1,1 , 00零点为:(极点为二阶)极点为:ωω 解:(6) )1(,1 )()4(≥= n n n x 1 0),()cos()()6(0<<+=r n u n Ar n x n φω

1 ,cos 21)cos(cos cos 21sin sin cos 21cos 1cos )( )()sin(sin )()cos(cos ) (]sin )sin(cos )[(cos( ) ()cos()( 2 01 012 010 12 010100000>+---= +-?-+--?=∴??-??=?-?=?+=---------z z z z z z z z z z z Y n u n n u n n u n n n u n n y ωωφφωωφωωφωφωφφωφωφω设 [则而的收敛域为则 )()( 1 )( X n y Ar n x z z Y n ∴?=>2 . 解 : 对X(Z)的分子和分母进行因式分解得 ) 4 3 1)(211)(211(2111111 ----+-+- =Z jZ jZ Z ) 4 3 1)(211)(411()21 1)(211()(11211-----++++- = Z Z Z Z Z Z X

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0) ()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1)(0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 1. 表A-1 拉氏变换的基本性质 1 L [ af ( t )] aF ( s ) 齐次性 线性定理L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s ) 叠加性 L [ df ( t ) ]sF ( s ) f ( 0 ) L [ d dt 2 f ( t ) dt 2 ] s 2 F ( s ) sf ( 0 ) f (0 ) L d n f ( t ) n dt n s n F ( s ) s n k f ( k 1 ) ( 0 ) k 1 f ( k 1 ) ( t ) d k 1 f dt ( t ) k 1 2 微分定理一般形式 初始条件为0 时L [ d n f ( t ) dt n ] s n F ( s ) L[ f (t )dt ] F ( s) s [ f (t )dt ]t 0 s [ 2 L[ f ( t)( dt ) ] 2 F ( s) s 2 f (t) d t ]t 0 s [ 2 f (t )(dt ) ]t 0 s 共n个共n个 L[ f (t)(dt )n ] F ( s) s n n k 1 s 1 n k 1 [ f (t)(dt ) n ] t 0 一般形式 共n个 3 积分定理 初始条件为0 时L[ f ( t)( dt) n ] F ( s) s n Ts 4 延迟定理(或称t 域平移定理) L[ f (t T)1(t T )] e F ( s) 精品资料

精品资料 5 衰减定理(或称 s 域平移定理) L[ f (t )e at ] F ( s a) 6 终值定理 lim f ( t ) lim t s sF ( s) lim f (t ) lim sF(s) 7 初值定理 t 0 s 8 卷积定理 t L[ f 1( t ) f 2 ( ) d ] t L[ f 1( t ) f 2 ( t ) d ] F 1 (s) F 2 ( s ) 2. 表 A-2 常用函数的拉氏变换和 z 变换表 序号 拉氏变换 F(s) 时间函数 f(t) Z 变 换 F(z) 1 1 δ(t) 1 1 2 1 e Ts T ( t) (t nT ) z n 0 z 1 1 1(t ) z s z 1 1 4 s 2 t Tz ( z 1)2 1 t 5 s 3 2 T 2 z(z 1) 2( z 1) 1 t n 6 n 1 lim ( 1) z n ( aT ) s n! a 0 n! a z e 1 7 s a e at z z e 1 at Tze 8 ( s a) 2 te a at ( z e (1 e aT ) 2 aT ) z 9 s(s a) 1 e (z 1)( z 2 3 n ) 3 n aT aT e aT

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换 表 Newly compiled on November 23, 2020

拉普拉斯变换及其反变换表 2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 n 1n n n 0 11m 1m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >) 式中系数n 1n 10a ,a ,...,a ,a -,m 1m 10b ,b ,b ,b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n 1 i i i n n i i 2211s s c s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: 或 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 =n n i i 1r 1r 111 r 11r r 1r s s c s s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: 原函数)(t f 为 t s n 1r i i t s 122r 1r 1r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+??????+++-+-= (F-6)

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = - =][ '- -=-=----=-∑1 1) 1() 1(1 22 2)()() 0()() (0)0()(])([) 0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

很好的拉普拉斯变换讲解

拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用.本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用.拉氏变换的基本概念 在代数中,直接计算 是很复杂的,而引用对数后,可先把上式变换为 , 然后通过查常用对数表和反对数表,就可算得原来要求的数. 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法.7.1.1 拉氏变换的基本概念 定义设函数当时有定义,若广义积分在的某一区域内收敛,则此积分就确定了一个参量为的函数,记作,即 (7-1)称(7-1)式为函数的拉氏变换式,用记号表示.函数称为的拉氏变换(Laplace) (或称为的象函数).函数称为的拉氏逆变换(或称为象原函数),记作 ,即. 关于拉氏变换的定义,在这里做两点说明: (1) 在定义中,只要求在时有定义.为了研究拉氏变换性质的方便,以后总假定在时,.(2)在较为深入的讨论中,拉氏变换式中的参数是在复数范围内取值.为了方便起见,本章我们把作为实数来讨论,这并不影响对拉氏变换性质的研究和应用. (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的. 例7-1 求一次函数(为常数)的拉氏变换. 解 . 7.1.2 单位脉冲函数及其拉氏变换 在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为)进入一单位电量的脉冲,现要确定电路上的电流,以表示上述电路中的电量,则

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换公式

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(l i m s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

Laplace拉氏变换公式表

拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 2.表A-2 常用函数的拉氏变换和z变换表 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将 )(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

常用函数的拉氏变换

附录A 拉普拉斯变换及反变换

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +

求下列序列的双边z变换.

习题六 一、求下列序列的双边z 变换,并注明收敛域。 (1),,0)21()(k k f ?????= 00≥?k k (2)?? ?????? ??,31,2)(k k k f 00≥?k k 二、求下列序列的z 变换,并注明收敛域。 (1))(])31()21[()(k k f k k ε-+= (2))()2cosh()(k k k f ε- 三、根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)2212)(--+=z z z F ?∞?z 0 (2)a z az z F ?-=-,11)(1 四、利用z 变换性质求下列序列的z 变换。 (1))()2 sin(k k k επ (2))(1 k k a k ε+ 五、求下列象函数的逆z 变换。 (1)5.0,5.011)(1?-=-z z z F (2)21,2113)(?++= z z z z F (3)a z a z az z F ?--=,1)( (4)2,2 3)(22 ?++=z z z z z F 六、利用卷积定理求下述序列f(k)与h(k)的卷积)()()(k h k f k y *=。 (1))2()(),()(-==k k h k a k f k δε

(2))1()(),()(-==k k h k a k f k εε (3))()(),()(k b k h k a k f k k εε== 七、描述某LTI 离散系统的差分方程为 )(2)1(7)(1.0)1(7.0)2(k f k f k y k y k y -+=-+-+ 已知,38)2(,4)1(),()4.0()(-=--=-=y y k k f k ε求该系统的零输入响应)(k y x 、零状态响应)(k y f 及全响应)(k y 。 八、已知某一阶LTI 系统,当初始状态1)1(=-y ,输入时)()(1k k f ε=,其全响应);(2)(1k k y ε=当初始状态1)1(-=-y ,输入时)(2 1)(2k k k f ε=,其全响应输入())(1)(2k k k f ε-=。求输入)()2 1()(3k k f k ε=时的零状态响应。

常用的拉氏变换表

1 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s) 时间函数e(t) Z 变换E(z) 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0)()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 21s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 1 1+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 )(a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ---- - 11 22ω ω +s t ωsin 1 cos 2sin 2+-T z z T z ωω 12 2 2ω+s s t ωcos 1 cos 2)cos (2+--T z z T z z ωω 13 22)(ω ω++a s t e at ωsin - aT aT aT e T ze z T ze 22cos 2sin ---+-ωω 14 2 2)(ω+++a s a s t e at ωcos - aT aT aT e T ze z T ze z 222cos 2cos ---+--ωω 15 a T s ln )/1(1- T t a / a z z -

相关主题
文本预览
相关文档 最新文档