当前位置:文档之家› Spring框架的设计理念与设计模式分析

Spring框架的设计理念与设计模式分析

Spring框架的设计理念与设计模式分析
Spring框架的设计理念与设计模式分析

Spring框架的设计理念与设计模式分析摘要:本文试图剖析出Spring框架的作者设计Spring框架的骨骼结构的设计理念,有哪几个核心组件?为什么需要这些组件?它们又是如何结合在一起构成Spring的骨骼架构?Spring的AOP特性又是如何利用这些基础的骨骼架构来工作的?Spring中又使用了哪些设计模式来完成它的这种设计?它的这种设计理念对我们以后的软件设计有何启示?本文将解答这些问题

一、Spring的骨骼架构

Spring总共有十几个组件,但真正核心的组件只有几个,下面是Spring框架的总体架构图

图1 .Spring 框架的总体架构图

从图中可以看出,Spring框架中的核心组件只有三个:Context,Core和Beans,它们构建起了整个Spring的骨骼架构。没有它们就不可能有AOP,Web等上层的特性功能。下面也将主要从这三个组件入手分析Spring

1.Spring的设计理念

前面介绍了Spring的三个核心组件,如果再在它们三个之中选出一个核心的话,那就非Beans组件

莫属了。为何这样说,其实Spring就是面向Bean的编程(BOP,Bean Oriented Programming),

Bean在Spring中才是真正的主角。

Bean在Spring中的作用就像 Object对OOP的意义一样,没有对象的概念就没有面向对象编程,Spring中没有Bean也就没有了Spring存在的意义。就像演出舞台都准备好了但是却没有演员一样。为

什么Bean如此重要,这是由Spring的设计目标决定的。Spring为何如此流行,我们使用Spring的原因

是什么,想想你会发现原来Spring解决了一个非常关键的问题:它可以让你把对象间的依赖关系转而用

配置文件来管理,也就是它的依赖注入机制。而这个注入关系在一个叫IOC的容器中管理,IOC容器存

的就是被Bean包裹的对象。Spring正是通过把对象包装在Bean中来达到对这些对象管理以及额外操作

的目的。

它的这种设计策略完全类似于Java实现OOP的设计理念,当然了Java本身的设计要比Spring复

杂太多太多,但是都是构建一个数据结构,然后根据这个数据结构设计它的生存环境,并让它在这个生存环境中按照一定的规律在不停的运动。在它们的不停运动中设计一系列与环境或者其他个体完成信息交换。回头想想其他框架都是类似的设计理念。

2.核心组件如何协同工作

前面说Bean是Spring中的关键因素,那么Core和Context又有何作用呢?前面把Bean比作一场

演出中的演员,那么Context就是舞台背景,Core就是演出的道具。只有它们在一起才能具备演出一场

好戏的基本条件。当然有最基本的条件还不能使这场戏脱颖而出,还要它表演的界面足够精彩,这些节目就是Spring能提供的特色功能了。

我们知道Bean包装的是Object,而Object必然有数据,如何给这些数据提供生存环境就是Context 要解决的问题,对Context来说它就是要发现每个Bean之间的关系,为它们建立这种关系并维护好这种

关系。所以Context就是一个Bean关系的集合,这个关系集合又叫IOC容器。一旦建立起这个IOC容

器之后,Spring就可以为你工作了。那么Core组件又有何用武之地呢?其实Core就是发现,建立和维

护Bean之间的关系所需要的一系列工具,从这个角度看Core这个组件叫Util能更让你理解。

它们之间的关系如下图所示:

图2. 三个组件关系

3.核心组件详解

这里将详细介绍每个组件内部类的层次关系,以及它们在运行时的时序顺序,我们在使用Spring时应该注意的地方。

3.1Bean组件

前面已经说明了Bean组件对Spring的重要性,下面看看Bean这个组件是怎么设计的。Bean组件在Spring的org.springframework.beans包下。这个包下的所有类主要解决了三件事:Bean的定义,Bean的创建以及对Bean的解析。对Spring的使用者来说唯一需要关心的就是Bean的创建,其他两个由Spring在内部帮你完成了,对你来说是透明的。

Spring Bean的创建是典型的工厂模式,它的顶级接口是BeanFactory,下图是这个工厂的继承层次关系:

图4. Bean工厂的继承关系

BeanFactory有三个子类:ListableBeanFactory,HierarchicalBeanFactory和AutowireCapatableBeanFactory。但是从上图我们可以发现最终的默认实现类是DefaultListableBeanFactory,它实现了所有的接口。那么为何要定义这么多层次的接口呢?查阅这些层次的源码和说明发现,每个接口都有它使用的场合,它主要是为了区分Spring内部操作过程中对象的传递和转化过程中,对对象的数据访问所做的限制。例如ListableBeanFactory接口表示这些Bean是可列表的;而HierarchicalBeanFactory接口表示这些Bean是有继承关系的,也就是说每个Bean都可能有父Bean;AutowireCapatableBeanFactory接口定义Bean的自动装配规则。这四个接口共同定义了Bean 的集合,Bean之间的关系,以及Bean的行为。

Bean的定义主要有BeanDefination描述,下图说明了这些类的层次关系:

图5. Bean定义的类层次关系图

Bean的定义就是完整的描述了在Spring的配置文件中你定义的节点中的所有信息,包括各种子节点。当Spring成功解析你定义的一个节点后,在Spring的内部它就被转化成了BeanDefination对象,以后所有的操作都是对这个对象完成的。

Bean的解析过程非常复杂,功能被分的很细,因为这里需要被扩展的地方很多,必须保证有足够的灵活性,以应对可能的变化。Bean的解析主要是对Spring配置文件的解析。这个解析过程主要是通过下图中的类完成:

图6. Bean的解析类

当然还有具体对tag的解析在这里并未列出

3.2Context组件

Context组件在Spring的org.springframework.context包下,前面已经讲解了Context组件在Spring中的作用,它实际上就是给Spring提供一个运行时的环境,用以保存各个对象的状态。下面看一下这个环境是如何构建的。

ApplicationContext是Context的顶级父类,它除了能标识一个应用环境的基本信息外,它还继承了5个接口,这5个接口主要是扩展了Context的功能。下面是Context类结构图:

图7. Context相关的类结构图

从上图中可以看出ApplicationContext继承了BeanFactory,这也说明了Spring容器中运行的主体对象是Bean,另外,ApplicationContext继承了ResourceLoader接口,这使得ApplicationContext可以访问到任何外部资源,这将在Core中详细说明。

ApplicationContext的子类主要包含两个方面:

1. ConfigurableApplicationContext表示该Context是可修改的,也就是在构建Context中用户可

以动态添加或修改配置信息,它下面又有多个子类,其中最经常使用的是可更新的Context,即AbstractRefreshableApplicationContext类

2. WebApplicationContext 顾名思义,就是为web准备的Context,它可以直接访问到

ServletContext,通常情况下这个接口使用的少

再往下分就是按照构建Context的文件类型,接着就是访问Context的方式。这样一级一级构

成了完整的Context等级层次。总体来说ApplicationContext必须要完成以下几件事:

●标识一个应用环境

●利用BeanFactory创建Bean对象

●保存对象关系表

●能够捕获各种事件

Context作为Spring的IOC容器,基本上整合了Spring的大部分功能,或者说是大部分功能的

基础

3.3Core核心组件

Core组件作为Spring的核心组件,包含了很多的关键类,其中一个重要的组成部分就是定义了资源

的访问方式。这种把所有资源都抽象成一个接口的方式很值得以后在设计中学习。下面就看一下这部分在Spring中的作用。

下面是Resource相关的类结构图:

图8. Resource相关的类结构图

从上图可以看出Resource接口封装了各种可能的资源类型,就是说对使用者来说屏蔽了文件类型的

不同。对资源的提供者来说,如何把资源包装起来交给其他人用这也是一个问题,我们看到Resource接

口继承了InputStreamSource接口,这个接口中有一个getInputStream方法,返回的是InputStream类。这样所有的资源都可以通过InputStream类来获取,所以也屏蔽了资源的提供者。另外还有一个就是加载

资源的问题,也就是资源的加载者要统一,从上图中可以看出这个任务是由ResourceLoader接口来完成,它屏蔽了所有资源加载者的差异,只需要实现这个接口就可以加载所有的资源,它的默认实现是DefaultResourceLoader。

下面看一下Context和Resource是如何建立关系的,首先看一下它们的类关系图:

图9. Context和Resource的类关系图

从上图可以看出,Context是把资源的加载,解析和描述工作委托给了ResourcePatternResolver类来完成,它相当于一个接头人,它把资源的加载,解析和资源的定义整合在一起便于其他组件使用。

Core组件中还有很多类似的方式。

3.4IOC容器如何工作

前面介绍了Core组件,Beans组件和Context组件和他们之间的相互关系,下面从使用者的角度看下他们是如何运行的,以及我们如何让Spring完成各种功能,Spring到底有哪些功能,这些功能是如何得来的?

3.4.1如何创建BeanFactory工厂

正如图2描述的那样,IOC容器实际上就是Context组件结合其他两个组件共同构建了一个Bean的关系网。如何构建这个关系网?构建的入口就在AbstractApplicationContext类的refresh方法中。代码如下:

清单1. AbstractApplicationContext.refresh

public void refresh() throws BeansException, IllegalStateException {

synchronized(startupShutdownMonitor) {

//Prepare this context for refreshing

prepareRefresh();

//tell the subclass to refresh the internal bean factory

ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();

//Prepare the bean factory for use in this context

prepareBeanFactory(beanFactory);

try{

//Allows post-processing of the bean factory in context subclass

postProcessBeanFactory(beanFactory);

//Invoke factory processors registered as beans in the context

invokeBeanFactoryPostProcessors(beanFactory);

//Register bean processors that intercept bean creation

registerBeanPostProcessors(beanFactory);

//Initialize message source for this context

initMessageSource();

//Initialize event multicaster for this context

initApplicationEventMulticaster();

//Initialize other special beans in specific context subclasses

onRefresh();

//Check for listener beans and register them

registerListeners();

//Instantiate all remaining(non-lazy-init) singletons

finishBeanFactoryInitialization(beanFactory);

//Last step: public corresponding event

finishRefresh();

}catch(BeansException ex) {

destroyBeans();

cancelRefresh(ex);

throw ex;

}

}

}

这个方法就是构建整个IOC容器的完整代码,了解里面的每一行代码基本上就了解了Spring的大部分的原理和功能了。这段代码主要包含以下几个步骤:

●构建BeanFactory,以便产生所需的“演员”

●注册可能感兴趣的事件

●创建Bean实例对象

●触发被监听的时间

下面就结合代码分析这几个过程。

第二三句就是在创建和配置BeanFactory,这里refresh也就是刷新配置,前面介绍了Context有可更新的子类,这里正是实现这个功能,当BeanFactory已经存在就更新,如果没有就新建,下面是更新BeanFactory的代码:

protected final void refreshBeanFactory() throws BeansException {

if(hasBeanFactory()) {

destroyBeans();

closeBeanFactory();

}

try {

DefaultListableBeanFactory beanFactory = createBeanFactory();

beanFactory.setSerializationId(getId());

customizeBeanFactory(beanFactory);

loadBeanDefinitions(beanFactory);

synchronized(beanFactoryMonitor) {

this.beanFactory = beanFactory;

}

} catch(IOException ex) {

throw new ApplicationContextException((new StringBuilder("I/O error parsing bean definition source for ")).append(getDisplayName()).toString(), ex);

}

}

这个方法实现了AbstractApplicationContext的抽象方法refreshBeanFactory,这段代码清楚的说明了BeanFactory的创建过程。注意BeanFactory类型的变化,前面介绍了它有很多子类,在什么情况下使用不同的子类这非常关键。BeanFactory的原始对象是DefaultListableBeanFactory。这非常关键,因为它涉及到后面对这个对象的多种操作,下面看一下这个类的继承层次类图:

图10. DefaultListableBeanFactory类继承关系图

从这个可以发现除了BeanFactory相关的类外,还有与Bean的register相关的类。这在refreshBeanFactory方法中有一行loadBeanDefinations(beanFactory)将找到答案,这个方法将开始加载,解析Bean的定义,也就是把用户定义的数据结构转化成IOC中特定的数据结构。

这个过程可以用下面的时序图来解释:

图11. 创建BeanFactory时序图

Bean的解析和登记流程时序图如下:

图12.解析和登记Bean对象时序图

创建好BeanFactory后,接下来添加一些Spring本身需要的工具类,这个操作在AbstractApplicationContext的prepareBeanFactory方法完成。

AbstractApplicationContext中接下来三行代码对Spring的功能扩展起了至关重要的作用。前两行主

要是让你现在可以对已经创建的BeanFactory的配置做修改,后一行就是让你可以对以后再创建Bean的实例对象时添加一些自定义的操作。所以他们都是扩展了Spring的功能,也必须要把这一部分搞清楚。

其中invokeBeanFactoryPostProcessors方法主要是获取实现BeanFactoryPostProcessor接口的子类,并执行它的postProcessBeanFactory方法,这个方法的声明如下:

清单3. BeanFactoryPostProcessor.postProcessBeanFactory

void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException;

他的参数是beanFactory,说明可以对beanFactory做修改,这里注意这个beanFactory是ConfigurableListableBeanFactory类型的,这也印证了前面介绍的不同BeanFactory所使用的场合不同,这里只能是可配置的BeanFactory,防止一些数据被用户随意修改。

registerBeanPostProcessors方法也是可以获取用户定义的实现了BeanPostProcessor接口的子类,并执行把它们注册到BeanFactory对象中的beanPostProcessors变量中。BeanPostProcessor接口中声

明了两个方法:postProcessBeforeInitialization和postProcessAfterInitialization分别用于Bean对象初始化时执行,可以执行用户自定义的操作。

后面的几行代码是初始化监听事件和对系统的其他监听者的注册,监听者必须是ApplicationListener

的子类。

3.4.2如何创建Bean实例并构建Bean的关系网

下面就是Bean的实例化代码,是从finishBeanFactoryInitialization方法开始的。

清单4. AbstractApplicationContext.finishBeanFactoryInitialization

protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory) {

//stop using temporary ClassLoader for type matching

beanFactory.setTempClassLoader(null);

//Allow for caching all bean definition metadata,not expecting futher changes beanFactory.freezeConfiguration();

//Instantiate all remaining(not-lazy-init) singletons

beanFactory.preInstantiateSingletons();

}

从上面代码可以发现Bean的实例化是在BeanFactory中发生的。preInstantiateSingletons方法代码如下:清单5. DefaultListableBeanFactory.preInstantiateSingletons

public void preInstantiateSingletons() throws BeansException {

if (this.logger.isInfoEnabled()) {

https://www.doczj.com/doc/6915352454.html,("Pre-instantiating singletons in " + this);

}

synchronized (this.beanDefinitionMap) {

for (Iterator it = this.beanDefinitionNames.iterator();

it.hasNext();) {

String beanName = (String) it.next();

RootBeanDefinition bd =

getMergedLocalBeanDefinition(beanName);

if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) {

if (isFactoryBean(beanName)) {

FactoryBean factory = (FactoryBean)

getBean(FACTORY_BEAN_PREFIX + beanName);

if (factory instanceof SmartFactoryBean && ((SmartFactoryBean) factory).isEagerInit()) {

getBean(beanName);

}

}

else {

getBean(beanName);

}

}

}

}

}

这里出现了一个非常重要的bean-Factory Bean,可以说Spring有一大半的扩展功能都与这个bean

有关,这是个特殊的bean,它是个工厂Bean,可以产生Bean的Bean,这里产生Bean是指Bean的实例,如果一个类继承FactoryBean用户可以自己定义产生实例对象的方法,只要实现它的getObject方法。然而在Spring内部这个Bean的实例对象是FactoryBean,通过调用这个对象的getObject方法就能获得

用户自定义产生的对象,从而为Spring提供了很好的扩展性。Spring获得FactoryBean本身的对象是在

前面加上&来完成的。

如何创建Bean的实例对象以及如何构建Bean实例对象之间的关联关系是Spring中的关键,下面是这个过程的流程图:

图13.Bean 实例创建流程图

如果是普通的Bean就直接创建它的实例,通过调用getBean方法,下面是创建Bean实例的时序图:

图14.Bean实例创建时序图

还有一个非常重要的部分就是建立Bean对象实例之间的关系,这也是Spring架构的核心竞争力。何时,如何创建它们之间的关系请看下面的时序图:

图15.Bean对象关系建立

3.4.3 IOC容器的扩展点

现在还有一个问题就是如何让这些Bean对象有一定的扩展性,就是可以加入用户的一些操作。那么有哪些扩展点呢?Spring又是如何调用这些扩展点呢?

对Spring的IOC来说,主要有这么几个:BeanFactoryPostProcessor,BeanPostProcessor。它们分别是在构建BeanFactory和构建Bean对象时创建。还有就是InitializingBean和DisposableBean它们分别是在Bean实例创建和销毁时被调用。用户可以实现这些接口中定义的方法,Spring就会在适当的时候调用它们。还有一个是FactoryBean是一个特殊的Bean,可以被用户更多的控制。

这些扩展点通常也是我们使用Spring来完成我们特定任务的地方,如何精通Spring就看你有没有掌握好Spring有哪些扩展点,并且如何使用它们,要知道如何使用它们就要了解Spring内在的机制。可以用下面的比喻来解释:

我们把IOC比作一个箱子,这个箱子里有若干个球的模子,可以用这些模子来造很多种不同的球,还有一个造这些球模的机器,这个机器可以产生球模。BeanFactory就是那个造球模的机器,Bean就是球模,而球模造出来的球就是Bean的实例。那么前面说的几个扩展点又在什么地方呢?BeanFactoryPostProcessor对应到当球模被造出来时,你将有机会对其作出适当的修改,也就是它可以帮你修改球模。而InitializingBean和DisposableBean是在球模造球的开始和结束阶段,你可以完成一些

预备和扫尾工作。BeanPostProcessor就可以让你对球模造出来的球进行适当的修正。最后还有一个FactoryBean,它是一个神奇的球模。这个球模不是预先就定型了,而是由你来确定它们的形状,既然你可以确定这个球模的形状,它造出来的球当然是你想要的球了。

3.4.4 IOC容器如何为我所用

前面介绍了Spring容器的创建过程,那Spring能为我们做什么,Spring的IOC容器又能做什么?我们使用Spring必须要首先创建IOC容器,没有它Spring无法工作,ApplicationContext.xml就是IOC容器的默认配置文件,Spring的所有特性功能都是基于这个IOC容器工作的。

IOC它实际上就是为你构建了一个魔方,Spring为你搭好了骨骼框架,这个魔方到底能变出什么好东西出来,这必须要有你的参与。那我们怎么参与?这就是前面说的有哪些扩展点,我们通过实现那些扩展点来改变Spring的通用行为。至于如何实现扩展点来得到我们想要的个性结果,Spring中有很多例子,其中AOP的实现就是Spring本事实现了其扩展点来达到它想要的特性功能,可以拿来参考。

二、Spring中AOP特性

1.动态代理的实现

要了解Spring的AOP就必须先了解动态代理的原理,因为AOP就是基于动态代理实现的,动态代理还要从JDK本身说起。

在JDK的https://www.doczj.com/doc/6915352454.html,ng.reflect包下有个Proxy类,它正是构建代理类的入口。这个类的结构如下:

图16. Proxy类结构

从上图发现最后四个是公用方法,而最后一个方法newProxyInstance就是创建代理对象的方法,这个方法的源码如下:

public static Object newProxyInstance(ClassLoader loader, Class[] interfaces,

InvocationHandler h) throws IllegalArgumentException{

if (h == null) {

throw new NullPointerException();

}

Class cl = getProxyClass(loader, interfaces);

try {

Constructor cons = cl.getConstructor(constructorParams);

return (Object) cons.newInstance(new Object[] { h });

} catch (NoSuchMethodException e) {

throw new InternalError(e.toString());

} catch (IllegalAccessException e) {

throw new InternalError(e.toString());

} catch (InstantiationException e) {

throw new InternalError(e.toString());

} catch (InvocationTargetException e) {

throw new InternalError(e.toString());

}

}

这个方法要有三个参数:ClassLoader用于加载代理类的Loader类,通常这个Loader和被代理的类是同一个Loader类。Interfaces 是被代理的哪些接口;InvocationHandler就是用于执行除了被代理接口中方法外的用户自定义的操作,它也是用户需要代理的最终目的。用户调用目标方法都被代理到InvocationHandler类中定义的唯一方法invoke中。这在后面再详解。

下面看看Proxy产生代理类的过程,它构造出来的代理类到底是个什么样子呢,马上揭晓:

图17.创建代理对象时序图

从上图中可以发现正在构造代理类的是ProxyGenerator的generateProxyClass方法。ProxyGenerator类是在sun.misc包下,感兴趣的可以去看它的源码。

假如有这样一个接口,如下:

清单7. SimpleProxy类

public interface SimpleProxy {

public void simpleMethod1();

public void simpleMethod2();

}

生成的代理类结构如下:

public class $Proxy2 extends https://www.doczj.com/doc/6915352454.html,ng.reflect.Proxy implements SimpleProxy{ https://www.doczj.com/doc/6915352454.html,ng.reflect.Method m0;

https://www.doczj.com/doc/6915352454.html,ng.reflect.Method m1;

https://www.doczj.com/doc/6915352454.html,ng.reflect.Method m2;

各种系统架构图

各种系统架构图及其简介 1.Spring 架构图 Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的。框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为J2EE 应用程序开发提供集成的框架。Spring 框架的功能可以用在任何 J2EE 服务器中,大多数功能也适用于不受管理的环境。Spring 的核心要点是:支持不绑定到特定J2EE 服务的可重用业务和数据访问对象。这样的对象可以在不同J2EE 环境(Web 或EJB )、独立应用程序、测试环境之间重用。 组成Spring 框架的每个模块(或组件)都可以单独存在,或者与其他一个或多个模块联合实现。每个模块的功能如下: ?核心容器:核心容器提供Spring 框架的基本功能。核心容器的主要组件是BeanFactory ,它是工厂模式的实现。BeanFactory 使用控制反转 (IOC )模式将应用程序的配置和依赖性规范与实际的应用程序代码分开。 ?Spring 上下文:Spring 上下文是一个配置文件,向Spring 框架提供上下文信息。Spring 上下文包括企业服务,例如JNDI 、EJB 、电子邮件、 国际化、校验和调度功能。

?Spring AOP :通过配置管理特性,Spring AOP 模块直接将面向方面的编程功能集成到了Spring 框架中。所以,可以很容易地使Spring 框架管理的任何对象支持AOP 。Spring AOP 模块为基于Spring 的应用程序中的对象提供了事务管理服务。通过使用Spring AOP ,不用依赖EJB 组件,就可以将声明性事务管理集成到应用程序中。 ?Spring DAO :JDBC DAO 抽象层提供了有意义的异常层次结构,可用该结构来管理异常处理和不同数据库供应商抛出的错误消息。异常层次结构简化了错误处理,并且极大地降低了需要编写的异常代码数量(例如打开和关闭连接)。Spring DAO 的面向JDBC 的异常遵从通用的DAO 异常层次结构。 ?Spring ORM :Spring 框架插入了若干个ORM 框架,从而提供了ORM 的对象关系工具,其中包括JDO 、Hibernate 和iBatis SQL Map 。所有这些都遵从Spring 的通用事务和DAO 异常层次结构。 2.ibatis 架构图 ibatis 是一个基于 Java 的持久层框架。 iBATIS 提供的持久层框架包括SQL Maps 和 Data Access Objects ( DAO ),同时还提供一个利用这个框架开发的 JPetStore 实例。 IBATIS :最大的优点是可以有效的控制sql 发送的数目,提高数据层的执行效率!它需要程序员自己去写sql 语句,不象hibernate 那样是完全面向对象的,自动化的,ibatis 是半自动化的,通过表和对象的映射以及手工书写的sql 语句,能够实现比hibernate 等更高的查询效率。

【精品实验报告】软件体系结构设计模式实验报告

【精品实验报告】软件体系结构设计模式实验报告软件体系结构 设计模式实验报告 学生姓名: 所在学院: 学生学号: 学生班级: 指导老师: 完成日期: 一、实验目的 熟练使用PowerDesigner和任意一种面向对象编程语言实现几种常见的设计模式,包括组合模式、外观模式、代理模式、观察者模式和策略模式,理解每一种设计模式的模式动机,掌握模式结构,学习如何使用代码实现这些模式,并学会分析这些模式的使用效果。 二、实验内容 使用PowerDesigner和任意一种面向对象编程语言实现组合模式、外观模式、代理模式、观察者模式和策略模式,包括根据实例绘制模式结构图、编写模式实例实现代码,运行并测试模式实例代码。 (1) 组合模式 使用组合模式设计一个杀毒软件(AntiVirus)的框架,该软件既可以对某个文件夹(Folder)杀毒,也可以对某个指定的文件(File)进行杀毒,文件种类包括文本文件TextFile、图片文件ImageFile、视频文件VideoFile。绘制类图并编程模拟实现。 (2) 组合模式 某教育机构组织结构如下图所示: 北京总部 教务办公室湖南分校行政办公室 教务办公室长沙教学点湘潭教学点行政办公室

教务办公室行政办公室教务办公室行政办公室 在该教育机构的OA系统中可以给各级办公室下发公文,现采用 组合模式设计该机构的组织结构,绘制相应的类图并编程模拟实现,在客户端代码中模拟下发公文。(注:可以定义一个办公室类为抽象叶子构件类,再将教务办公室和行政办公室作为其子类;可以定义一个教学机构类为抽象容器构件类,将总部、分校和教学点作为其子类。) (3) 外观模式 某系统需要提供一个文件加密模块,加密流程包括三个操作,分别是读取源文件、加密、保存加密之后的文件。读取文件和保存文件使用流来实现,这三个操作相对独立,其业务代码封装在三个不同的类中。现在需要提供一个统一的加密外观类,用户可以直接使用该加密外观类完成文件的读取、加密和保存三个操作,而不需要与每一个类进行交互,使用外观模式设计该加密模块,要求编程模拟实现。参考类图如下: reader = new FileReader();EncryptFacadecipher = new CipherMachine();writer = new FileWriter();-reader: FileReader-cipher: CipherMachine-writer: FileWriter +EncryptFacade () +fileEncrypt (String fileNameSrc,: voidString plainStr=reader.read(fileNameSrc); String fileNameDes)String

分层架构与业务逻辑实现方式

分层架构与业务逻辑实现方式

分层架构与业务逻辑实现方式 一、分层架构 在当今软件系统中,常用的软件架构思想就是分层,分层思想是现代软件架构的主要思想。无论是企业级应用系统(如:CRM,ERP,OA,电子商务平台),专用软件(如:OS、SVN、IDE 等),还有协议之类(TCP/IP,OSI等)绝大部分都采用分层架构思想进行设计的。 分层(Layer)不一定就是人们常说的二,三层,多层系统,因为这些说法都是分层架构的一些具体表现形式,分层是一种设计思想,也可以称之为一种软件架构模式(Pattern),这种思想的核心在于:划分系统的职责(Responsibility),如果这个系统的职责你分析清楚了,你的基于设计思路差不多就定下来了。你可以去看看,很多的现在代软件,不是一定是web方面。例如:SVN这样的源代码管理软件、 图一:SVN架构图

.NET Framework也是分层,Eclipse也是,TCP/IP更加是,还有像操作系统(OS)、编译器(Compiler),很多流行框架(Framework)也是分层。其实,MVC不也是分层,也就是把模型(Model)、视图(View)、控制器(Controller)三个不同职责分开。 那我们看看今天的企业级应用系统(很多说是web项目,其他我不认为是这样,因为web只是一种外在表现形式,我们可以用desktop程序,flash等作为表现形式),企业级应用系统很多人一说就是三层架构,其实确实也是这样的。即:表示层,业务层,数据层。当然还有其他的分层,如:表示层,服务层(服务外观层),业务逻辑层,数据映射层,数据层。也有分成:表现层,中间层,数据访问层等等。(注意这些都是逻辑上分层结构一般用Layer,物理上的分层结构,一般讲的是部署结构一般用tier)总体上都可以看成是三层:表现层,业务逻辑层(也可以说是领域层或领域逻辑层),数据层。像Spring,Structs、ORM 等一些框架,他们都是在不同的层上的相关实现技术。 二、业务逻辑几种实现方式 现在我们再看看,企业级系统中最核心是哪一层?肯定是业务层,因为企业级系统主要是与业务打交道(其实几乎所有软件都是实现业务,企业级系统业务逻辑主要偏向于商业逻辑,其他系统,像游戏,自动化控制、支撑系统等把业务看成是算法),而且业务是每个系统都不尽相同的。“业务逻辑是最没有逻辑的东西” [Fowler PoEAA,2003]。而且企业级系统的变化与改变大多都在业务层上。那么,做好企业级系统,首先主要分析好业务系统。你可以看看,现今所有的框架在整体结构(spring,structs,等要求系统按MVC结构来开发),表示层(jquery,extjs等),与数据层(ORM之类)做得最多,有没有业务的框架?(有,但是很少,而且只能是业务比较有规律的地方,像一些财务系统,有些权限系统,当然还有工作流系统)因为业务逻辑每个系统都很可能不一样,没办法通用。那么有什么办法以比较好的方式实现业务逻辑呢。现在终于说到主要问题上来了:也就是业务逻辑(Business Logic)的实现方式,也叫做领域逻辑(Domain Logic)的实现方式。一般来说,有以下几种: 1.事务脚本(Transaction scripts) 2.领域模型(Domain Model)

软件系统的架构设计方案

软件系统的架构设计方 案 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

软件系统的架构设计方案 架构的定义 定义架构的最短形式是:“架构是一种结构”,这是一种正确的理解,但世界还没太平。若做一个比喻,架构就像一个操作系统,不同的角度有不同的理解,不同的关切者有各自的着重点,多视点的不同理解都是架构需要的,也只有通过多视点来考察才能演化出一个有效的架构。 从静态的角度,架构要回答一个系统在技术上如何组织;从变化的角度,架构要回答如何支持系统不断产生的新功能、新变化以及适时的重构;从服务质量的角度,架构要平衡各种和用户体验有关的指标;从运维的角度,架构要回答如何充分利用计算机或网络资源及其扩展策略;从经济的角度,架构要回答如何在可行的基础上降低实现成本等等 软件系统架构(SoftwareArchitecture)是关于软件系统的结构、行为、属性、组成要素及其之间交互关系的高级抽象。任何软件开发项目,都会经历需求获取、系统分析、系统设计、编码研发、系统运维等常规阶段,软件系统架构设计就位于系统分析和系统设计之间。做好软件系统架构,可以为软件系统提供稳定可靠的体系结构支撑平台,还可以支持最大粒度的软件复用,降低开发运维成本。如何做好软件系统的架构设计呢 软件系统架构设计方法步骤 基于体系架构的软件设计模型把软件过程划分为体系架构需求、设计、文档化、复审、实现和演化6个子过程,现逐一简要概述如下。

体系架构需求:即将用户对软件系统功能、性能、界面、设计约束等方面的期望(即“需求”)进行获取、分析、加工,并将每一个需求项目抽象定义为构件(类的集合)。 体系架构设计:即采用迭代的方法首先选择一个合适的软件体系架构风格(如C/S、B/S、N层、管道过滤器风格、C2风格等)作为架构模型,然后将需求阶段标识的构件映射到模型中,分析构件间的相互作用关系,最后形成量身订做的软件体系架构。 体系架构文档化:即生成用户和研发人员能够阅读的体系架构规格说明书和体系架构设计说明书。 体系架构复审:即及早发现体系架构设计中存在的缺陷和错误,及时予以标记和排除。 体系架构实现:即设计人员开发出系统构件,按照体系架构设计规格说明书进行构件的关联、合成、组装和测试。 体系架构演化:如果用户需求发生了变化,则需相应地修改完善优化、调整软件体系结构,以适应新的变化了的软件需求。 以上6个子过程是软件系统架构设计的通用方法步骤。但由于软件需求、现实情况的变化是难以预测的,这6个子过程往往是螺旋式向前推进。 软件系统架构设计常用模式

商业模式设计5大步骤与22条经验

商业模式设计5大步骤与22条经验 1.商业模式定义 我们对商业模式的定义是利益相关者的交易结构。这一定义虽然清晰准确,但却并不容易理解。不论是从地区经济体角度,还是从商业生态、行业的角度来观察企业,它实际上都是由一个一个的利益相关者通过交易来形成的一张网络。 利益相关者之间的交易分为两种,我们把它们称之为业务交易和治理交易。 首先是业务交易。比如,甲将某种产品卖给乙,这个过程就是业务交易。那么相应的,业务交易也有两种,一种是交换,一种是合作。交换相对比较容易理解,那么合作呢合作是指,在交易的过程中,假如我贡献了资本,而你贡献了智力,那么,双方就形成了一个共生体,并按照一定的盈利模式来共同分享产出。合作与交换一样,都属于业务交易。 第二,治理交易。它是指,一个利益主体拥有另外一个利益主体的所有权,或者说拥有它的控制权和剩余收益分配权。 不管是业务交易还是治理交易,都包含两种典型性质,一种是纯粹的市场化交易,即双方的交换或合作都会按照市场价格来进行,它能够反映出所有的交易信息,市场是能够出清的。还有一种是科层性质的交易,即企业内的交易、合作或者交互,也包括通过指挥、命令、监督控制等等互动方式来进行的活动。 每一个利益主体都有一定的资源禀赋,并且能够在这个经济体或者行业当中从事特定的业务活动,即基于价值链环节的活动。这种利益主体既包括独立的企业,也包括企业的内部利益单元,如部门、业务单元或者是员工,他们都是我们所说的利益相关者。 在这样一个基于交易的网络结构当中,你会发现,利益相关者所采取的盈利模式是各不相同的。第一,两个利益主体之间进行收支的来源和方式不同。收支来源即谁给谁钱,收支方式包括,固定性质的租金、剩余性质的价差、分成性质的佣金;拍卖;顾客定价;组合计价等等。 第二,交易方式不同。如线上交易、线下交易就是不同的方式;针对商品所有权的交易和针对商品使用权的交易也是不同的交易方式;是通过卖产品的方式来交易,还是通过提供服务的方式来交易这些都是不同的交易方式。 2.商业模式六要素模型

分层架构模式.NET架构和模式

分层架构模式:.NET架构和模式 疯狂代码 https://www.doczj.com/doc/6915352454.html,/ ?:http:/https://www.doczj.com/doc/6915352454.html,/Programing/Article60049.html 什么是架构 软件Software体系结构通常被称为架构指可以预制和可重构软件Software框架结构架构尚处在发展期对于其定义学术界尚未形成个统意见而区别角度视点也会造成软件Software体系结构区别理解以下是些主流标准观点 ANSI/IEEE 610.12-1990软件Software工程标准词汇对于体系结构定义是:“体系架构是以构件、构件的间关系、构件和环境的间关系为内容某系统基本组织结构以及知道上述内容设计和演化原理(principle)” Mary Shaw和David Garlan认为软件Software体系结构是软件Software设计过程中超越计算中算法设计和数据结构设计个层次体系结构问题包括各个方面组织和全局控制结构通信协议、同步数据存储给设计元素分配特定功能设计元素组织规模和性能在各设计方案的间进行选择Garlan & Shaw模型基本思想是:软件Software体系结构={构件(component),连接件(connector)约束(constrain)}.其中构件可以是组代码如模块;也可以是个独立如数据库服务器连接件可以是过程、管道、远程过程(RPC)等用于表示构件的间相互作用约束般为对象连接时规则或指明构件连接形式和条件例如上层构件可要求下层构件服务反的不行;两对象不得递规地发送消息;代码复制迁移致性约束;什么条件下此种连接无效等 有关架构定义还有很多其他观点比如Bass定义、Booch & Rumbaugh &Jacobson定义、Perry & Wolf模型[7]、Boehm模型等等虽然各种定义关键架构角度区别研究对象也略有侧重但其核心内容都是软件 Software系统结构其中以Garlan & Shaw模型为代表强调了体系结构基本要素是构件、连接件及其约束(或者连接语义)这些定义大部分是从构造角度来甚至软件Software体系结构而IEEE定义不仅强调了系统基本组成同时强调了体系结构环境即和外界交互 什么是模式 模式(Pattern)概念最早由建筑大师Christopher Alexander于 2十世纪 7十年代提出应用于建筑领域 8十年代中期由Ward Cunningham和Kent Beck将其思想引入到软件Software领域Christopher Alexander将模式分为 3个部分:首先是周境(Context也可以称着上下文),指模式在何种状况下发生作用;其 2是动机( of Forces),意指问题或预期目标;其 3是解决方案(Solution),指平衡各动机或解决所阐述问题个构造或配置(Configuration)他提出模式是表示周境、动机、解决方案 3个方面关系个规则每个模式描述了个在某种周境下不断重复发生问题以及该问题解决方案核心所在模式即是个事物(thing)又是个过程(process)不仅描述该事物本身而且提出了通过怎样过程来产生该事物这定义已被软件Software界广为接受 软件Software模式应用对软件Software开发产生了重大作用主要表现在: 软件Software模式是人们在长期设计软件Software、管理组织软件Software开发等实战中大量经验提炼和抽象是复用软件Software设计思路方法、过程管理经验有力工具模式类似于拳击中组合拳它提供了系列软件Software开发中思维套路如通过模式使用有利于在复杂系统中产生简洁、精巧设计

软件架构设计策略

架构设计则为满足架构需求的质量属性寻找适当的战术。对如何实现特定的质量属性感兴趣。质量需求指定了软件的响应,以实现业务目标。我们感兴趣的是设计使用设计模式、架构模式或架构策略创建设计的“战术“。 是什么使一个设计具有了可移植性,一个设计具有了高性能,而另一个设计具备了可集成性?实现这些质量属性依赖于基本的设计策略。我们将对这些称之为“战术”的设计决策进行分析。战术就是影响质量属性响应控制的设计决策。战术集合称为“架构策略”。架构模式以某种方式将战术打包在一起。 系统设计是由决策集合组成。对设计师来说,每个战术都是一个设计选择。例如,其中一个战术引入了冗余,以提高系统的可用性。这是提高可用性的一个选择但是不是唯一选择。 我们将每个系统质量属性的战术组织为层次形式,但是每个层次只是为了说明一些战术,而且任何战术列表都肯定是不完成的。 1.可用性战术 恢复和修复是可用性的重要方面,为了阻止错误发展成故障,至少能够把错误限制在一定的范围内,从而使修复成为可能。维持可用性的所有方法包括某种类型的冗余,用来检测故障的某种类型的健康监视,以及当检测到故障时某种类型的恢复。有些情况下,监视或恢复是自动进行的,有时需要手动。 我们事项考虑错误检测,然后分析错误恢复,最后讨论错误预防。 1>错误检测 用于识别错误的3个战术是命令/响应、心跳和异常

⑴命令/响应。一个组件发出一个命令,并希望在预定义的时间内收到一个 来自审查组件的响应。可以把该战术用在共同负责某项任务的一组组件内。客户机也可以使用这种战术,以确保服务器对象和到服务器的通信路径在期望的性能边界内操作。可以用一种层级形式组织“命令/响应”错误探测器,其中最底层的探测器对与其共享一个处理器的软件进程发出命令,较高层的错误探测器对较低层的探测器发出命令。与所有进程发出命令的远程错误探测器相比,这种战术所使用的通信带宽更少。 ⑵心跳。一个组件定期发出一个心跳消息,另一个组件接收听该信息。如 果心跳失败,则假定最初的组件失败,并通知错误纠正组件。心跳还可以传递数据。例如,自动柜员机定期向服务器发送一次交易日志。该消息不仅起到心跳的作用,而且传送了要处理的数据。 ⑶异常。识别错误的一个方法就是遇到了异常。 命令/响应和心跳战术在不同的进程中操作,异常战术在一个进程中操作。 异常处理程序通常将错误在语义上转换为可以被处理的形式。 2>错误恢复 错误恢复由准备恢复和修复系统两部分组成。 ⑴表决。运行在冗余处理器上的每个进程都具有相同的输入,它们计算发 送给表决者的一个简单的输出值。如果表决者检测到单处理器的异常行为,那么就中止这一行为。表决算法可以是“多数规则”或“首选组件“或其他算法。该方法用于纠正算法的错误操作或者处理器的故障,通常用在控制系统。每个冗余组件的软件可以由不同的小组开发,并且在不同平台上执行。稍微好一点情况是在不同平台上开发一个软件组件,但是这

系统架构分层设计

系统架构分层设计 本文讨论关于项目系统架构的拆分模型,阐述每个层次(layer)的作用,以及面向SOA编程提供服务的方式。

服务端架构解决之道 大家看到这张图,用了一个形象的比喻来体现传统的服务端软件。最下层是操作系统,通常是Linux,最上层是我们的业务功能和服务。在服务端架构,很习惯用增加一个架构层次的方式来解决问题。例如缓存层、数据访问层。在架构上按照自己的意愿去搭建不同层次的衔接环节,使架构具有足够的灵活性和扩展性。即时堆成这样,它依旧是非常合理的。 MVC Framkwrok

# Model与Controller通信 Model与Controller之间是用实线表示,这表明Model并不能随意的访问Controller,但是有时Controller是需要接收Model层的消息的。在MVC模式中,要实现Model层到Controller层的通信,使用了一种类似广播的方式。Model中数据变化时,Model会发出一条广播,然后对这个Model感兴趣的Controller就会收到广播并告诉对应View改变现实方式。

MVC中的Controller,即控制器,控制着整个程序的逻辑和Model如何显示到View层。Controller把Model和View连接起来,让我们可以在View上看到Controller想要Model层现实的样子。 # View与Controller通信 在程序过程中,View层其实是需要与Controller通信的,当然View层不可能直接调用Controller的某个方法来处理用户点击事件,因为View不知道该使用Controller中的哪个方法。因此,使用了一种叫做Target的方式来处理这个问题,Controller会事先告诉View,如果触发了某个事件,View就会把这个动作转给Target。然后Controller运行完该方法,处理好这个时间以后就会告诉Veiw。

八种架构设计模式及其优缺点

八种架构设计模式及其优缺点概述(上) 1. 什么是架构 我想这个问题,十个人回答得有十一个答案,因为另外的那一个是大家妥协的结果。哈哈,我理解,架构就是骨架,如下图所示: 人类的身体的支撑是主要由骨架来承担的,然后是其上的肌肉、神经、皮肤。架构对于软件的重要性不亚于骨架对人类身体的重要性。 2. 什么是设计模式

这个问题我问过的面试者不下于数十次,回答五花八门,在我看来,模式就是经验,设计模式就是设计经验,有了这些经验,我们就能在特定情况下使用特定的设计、组合设计,这样可以大大节省我们的设计时间,提高工作效率。 作为一个工作10年以上的老码农,经历的系统架构设计也算不少,接下来,我会把工作中用到的一些架构方面的设计模式分享给大家,望大家少走弯路。总体而言,共有八种,分别是: 1.单库单应用模式:最简单的,可能大家都见过 2.内容分发模式:目前用的比较多 3.查询分离模式:对于大并发的查询、业务 4.微服务模式:适用于复杂的业务模式的拆解 5.多级缓存模式:可以把缓存玩的很好 6.分库分表模式:解决单机数据库瓶颈 7.弹性伸缩模式:解决波峰波谷业务流量不均匀的方法之一 8.多机房模式:解决高可用、高性能的一种方法 3. 单库单应用模式这是最简单的一种设计模式,我们的大部分本科毕业设计、一些小的应用,基本上都是这种模式,这种模式的一般设计见下图:

如上图所示,这种模式一般只有一个数据库,一个业务应用层,一个后台管理系统,所有的业务都是用过业务层完成的,所有的数据也都是存储在一个数据库中的,好一点会有数据库的同步。虽然简单,但是也并不是一无是处。

优点:结构简单、开发速度快、实现简单,可用于产品的第一版等有原型验证需求、用户少的设计。 缺点:性能差、基本没有高可用、扩展性差,不适用于大规模部署、应用等生产环境。 4. 内容分发模式基本上所有的大型的网站都有或多或少的采用这一种设计模式,常见的应用场景是使用CDN技术把网页、图片、CSS、JS等这些静态资源分发到离用户最近的服务器。这种模式的一般设计见下图:

MVC模式与三层架构整合

MVC模式与三层架构结合 经过老师与同学们的长期讨论,我们决定在项目的开发过程中应用MVC模式与三层架构结合的方式来实现我们架构的设计。这样种有两个好处:首先是可以实现多个视图,为我们开发不同的视图提供了很大的便利,使得我们在完成Web设计后没有必要在去设计Wap,减少了部分工作量;其次是运用三层架构,使结构层次清晰,各层之间能够并行设计;最后是采用这样的设计方式可以增加我们代码的重用性,减少耦合。 一、MVC模式和三层架构 MVC 模式包括三个部分, 即模型( Model) 、视图( View) 和控制( Controller) , 分别对应于内部数据、数据表示和输入/ 输出控制部分。MVC 模式的一般结构如图1 所示。 图1.MVC模式各部分的关系和功能 MVC 设计模式从早期的客户/ 服务器应用发展而来, 因此, 它采用的是两层架构设计。但由于三层架构是对两层架构的延伸, 所以还是可以将MVC 应用于三层架构的Web 应用中。MVC 与三层架构相互结合补充, 已经成为Web 应用开发的重要模式。MVC 模式与三层架构设计之间的关系如图2所示。 图2.MVC模式与三层架构之间的关系 二、架构设计 这里的架构设计与上次的三层架构概要设计大体类似,唯一不同的在于表示层。在这里我们将表示层分为了视图与控制器。其中视图完成页面的显示功能,而控制器主要完成视图与表示层逻辑的分离,拦截用户请求,组合模型与视图并返回相应视图给用户。 模块划分及交互设计 根据前面的讨论以及上次的架构概要设计文档,可在宏观上将整个系统分为以下几个模块: 实体类模块——一组实体类的集合,负责整个系统中数据的封装及传递。 数据访问层接口族——一组接口的集合,表示数据访问层的接口。

软件体系结构的风格和设计模式等

1.软件体系结构的性质、研究意义和目标是什么? 性质:计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性。强调整体与部分,部分与部分的关系;研究系统构成的方法学;提倡多角度研究系统。 为什么研究软件体系结构? 软件系统要满足一定的需求(功能和质量)。随着软件系统的日益复杂,公众对软件的要求已不局限于功能上的满足,而是更加注重质量。 软件的质量受到软件体系结构的限制,或者说体系结构的选择受到要达到的质量特征的影响。 软件体系结构是软件系统的高层结构,高度抽象,超越算法和数据结构,试图在软件需求与软件设计之间架起一座桥梁,解决结构和需求向实现平坦过渡。 现在软件产生的问题: ◎软件成本日益增长 ◎开发进度难以控制 在软件开发过程中,用户需求变化等各种意想不到的情况层出不穷,令软件开发过程很难保证按预定的计划实现,给项目计划和论证工作带来了很大的困难。 ◎软件质量差 缺乏工程化思想的指导,程序员以自己的想法去代替用户对软件的需求,软件设计带有随意性,很多功能只是程序员的“一厢情愿”而已。 ◎软件维护困难 特别是在软件使用过程中,原来的开发人员可能因各种原因已经离开原来的开发组织,使得软件几乎不可维护 2. 软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。 体系结构风格反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。 管道-过滤器风格:缺乏交互性,常用于通信领域和编译器 事件驱动风格:易于完成并发多任务,具有良好的交互性,但对计算机系统的控制能力弱,很难共享数据。 分层风格:系统分成许多层,每层为上层服务,同时获取下层的服务。典型应用是网络协议。仓库风格:数据单元被共享。常用于专家系统,如自然语言理解和模式识别。 3.3 客户/服务器风格 C/S体系结构定义了工作站如何与服务器相连,以实现数据和应用分布到多个处理机上。 C/S体系结构有三个主要组成部分:数据库服务器、客户应用程序和网络。 服务器 (1)数据库安全性的要求; (2)数据库访问并发性的控制;

三层架构和其优点

三层架构及其优点 (2009-04-01 22:54:37) 标签: 三层架构是: 一:界面层 界面层提供给用户一个视觉上的界面,通过界面层,用户输入数据、获取数据。界面层同时也提供一定的安全性,确保用户不用看到不必要的机密信息。 二:逻辑层 逻辑层是界面层和数据层的桥梁,它响应界面层的用户请求,执行任务并从数据层抓取数据,并将必要的数据传送给界面层。 三:数据层 数据层定义、维护数据的完整性、安全性,它响应逻辑层的请求,访问数据。这一层通常由大型的数据库服务器实现,如Oracle 、Sybase、MS SQl Server等。 ------ 从开发角度和应用角度来看,三层架构比双层或单层结构都有更大的优势。三层结构适合群体开发,每人可以有不同的分工,协同工作使效率倍增。开发双层或单层应用时,每个开发人员都应对系统有较深的理解,能力要求很高,开发三层应用时,则可以结合多方面的人才,只需少数人对系统全面了解,从一定程度工降低了开发的难度。 三层架构属于瘦客户的模式,用户端只需一个较小的硬盘、较小的内存、较慢的CPU就可以获得不错的性能。相比之下,单层或胖客户对面器的要求太高。 三层架构的另一个优点在于可以更好的支持分布式计算环境。逻辑层的应用程序可以有多个机器上运行,充分利用网络的计算功能。分布式计算的潜力巨大,远比升级CPU有效。 三层架构的最大优点是它的安全性。用户端只能通过逻辑层来访问数据层,减少了入口点,把很多危

险的系统功能都屏蔽了。 另外三层架构还可以支持如下功能:Remote Access(远程访问资料),例如可透过Internet存取远程数据库;High Performance(提升运算效率)解决集中式运算(Centralize)及主从式架构(Client-Server)中,数据库主机的运算负担,降低数据库主机的Connection Load,并可藉由增加App Server处理众多的数据处理要求,这一点跟前面讲到的分布式计算提高运算能力是一个道理;Client端发出Request(工作要求)后,便可离线,交由App Server和DataBase Server共同把工作完成,减少Client端的等待时间;这个功能我觉得应用场合不是很多,自己感受也不是很深刻,从理论上是成立的。 --fadeless摘自网络。 三层架构 三层系统的分层式结构 三层架构(3-tier application) 通常意义上的三层架构就是将整个业务应用划分为:表现层(UI)、业务逻辑层(BLL)、数据访问层(DAL)。区分层次的目的即为了“高内聚,低耦合”的思想。 目录 展开 概念简介 1、表现层(UI):通俗讲就是展现给用户的界面,即用户在使用一个系统的时候他的所见所得。 2、业务逻辑层(BLL):针对具体问题的操作,也可以说是对数据层的操作,对

软件架构设计模式

软件架构设计模式

软件架构设计模式 随着面向对象技术的发展和广泛应用,设计模式不再是一个新兴的名词,它已逐步成为系统架构人员、设计人员、分析人员以及程序开发人员所需掌握的基本技能之一。设计模式已广泛应用于面向对象的设计和开发,成为面向对象领域的一个重要组成部分。设计模式通常可分为三类:创建型模式、结构型模式和行为型模式。 1.创建型模式概述 创建型模式(Creational Pattern)对类的实例化过程及对象的创建过程进行了抽象,能够使软件模块做到与对象的创建和组织无关。创建型模式隐藏了对象的创建细节,通过隐藏对象如何被创建和组合在一起达到使整个系统独立的目的。在掌握创建型模式时,需要回答以下三个问题:创建什么(What)、由谁创建(Who)和何时创建(When)。创建型模式主要包括简单工厂模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式、单例模式。以下介绍其中使用频率较高的几种模式,包括简单工厂模式、工厂方法模式、抽象工厂模式、单例模式。 1.1 简单工厂模式 简单工厂模式(Simple Fatory Pattern),又称静态工厂方法模式(Static Factoty Method Pattern),属于类创建型模式。在简单工厂模式中,定义一个类,可以根据参数的不同返回不同的类的实例,这些类具有公共的父类和一些公共的方法。简单工厂模式不属于GoF设计模式,它是最简单的工厂模式。简单工厂模式专门定义一个类来负责创建其他类的实例,这个类称为工厂类,被创建的实例通常都具有共同的父类。 在简单工厂模式中,工厂类包含必要的判断逻辑,决定在什么时候创建哪一个产品类实例,客户端可以免除直接创建产品对象的责任,而仅仅“消费”产品,简单工厂模式通过这种方式实现了对责任的划分。但是由于工厂类集中了所有产品创建逻辑,一旦不能正常工作,整个系统都要受到影响;同时系统扩展较为困难,一

软件系统的架构设计方案

软件系统的架构设计方案 架构的定义 定义架构的最短形式是:“架构是一种结构”,这是一种正确的理解,但世界还没太平。若做一个比喻,架构就像一个操作系统,不同的角度有不同的理解,不同的关切者有各自的着重点,多视点的不同理解都是架构需要的,也只有通过多视点来考察才能演化出一个有效的架构。 从静态的角度,架构要回答一个系统在技术上如何组织;从变化的角度,架构要回答如何支持系统不断产生的新功能、新变化以及适时的重构;从服务质量的角度,架构要平衡各种和用户体验有关的指标;从运维的角度,架构要回答如何充分利用计算机或网络资源及其扩展策略;从经济的角度,架构要回答如何在可行的基础上降低实现成本等等 软件系统架构(Software Architecture)是关于软件系统的结构、行为、属性、组成要素及其之间交互关系的高级抽象。任何软件开发项目,都会经历需求获取、系统分析、系统设计、编码研发、系统运维等常规阶段,软件系统架构设计就位于系统分析和系统设计之间。做好软件系统架构,可以为软件系统提供稳定可靠的体系结构支撑平台,还可以支持最大粒度的软件复用,降低开发运维成本。如何做好软件系统的架构设计呢? 软件系统架构设计方法步骤 基于体系架构的软件设计模型把软件过程划分为体系架构需求、设计、文档化、复审、实现和演化6个子过程,现逐一简要概述如下。 体系架构需求:即将用户对软件系统功能、性能、界面、设计约束等方面的期望(即“需求”)进行获取、分析、加工,并将每一个需求项目抽象定义为构件(类的集合)。

体系架构设计:即采用迭代的方法首先选择一个合适的软件体系架构风格(如C/S、B/S、N层、管道过滤器风格、C2风格等)作为架构模型,然后将需求阶段标识的构件映射到模型中,分析构件间的相互作用关系,最后形成量身订做的软件体系架构。 体系架构文档化:即生成用户和研发人员能够阅读的体系架构规格说明书和体系架构设计说明书。 体系架构复审:即及早发现体系架构设计中存在的缺陷和错误,及时予以标记和排除。 体系架构实现:即设计人员开发出系统构件,按照体系架构设计规格说明书进行构件的关联、合成、组装和测试。 体系架构演化:如果用户需求发生了变化,则需相应地修改完善优化、调整软件体系结构,以适应新的变化了的软件需求。 以上6个子过程是软件系统架构设计的通用方法步骤。但由于软件需求、现实情况的变化是难以预测的,这6个子过程往往是螺旋式向前推进。 软件系统架构设计常用模式 目前软件领域广泛使用的软件系统架构模式,主要有层次化架构设计、企业集成架构设计、嵌入式架构设计和面向服务的架构设计模式。 层次化架构设计模式:分层设计是一种最为常见的架构设计方案,能有效地使系统结构清晰、设计简化。MVC模式是当今最为流行的多层设计模式。该模式把一个应用的输入、处理、输出流程进行分离并抽象为控制器(Controller)、模型(Model)、视图(View)三个模块,实现了业务逻辑层、数据库访问层和用户界面层

各技术框架架构图

1.Spring 架构图 Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的。框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为J2EE 应用程序开发提供集成的框架。Spring 框架的功能可以用在任何J2EE 服务器中,大多数功能也适用于不受管理的环境。Spring 的核心要点是:支持不绑定到特定J2EE 服务的可重用业务和数据访问对象。这样的对象可以在不同J2EE 环境(Web或EJB )、独立应用程序、测试环境之间重用。 组成Spring 框架的每个模块(或组件)都可以单独存在,或者与其他一个或多个模块联合实现。每个模块的功能如下: ?核心容器:核心容器提供Spring 框架的基本功能。核心容器的主要组件是BeanFactory ,它是工厂模式的实现。BeanFactory 使用控制反转(IOC )模式将应用程序的配置和依赖性规范与实际的应用程序代码分开。 ?Spring 上下文:Spring 上下文是一个配置文件,向Spring 框架提供上下文信息。 Spring 上下文包括企业服务,例如JNDI 、EJB 、电子邮件、国际化、校验和调度功能。 ?Spring AOP :通过配置管理特性,Spring AOP 模块直接将面向方面的编程功能集成到了Spring 框架中。所以,可以很容易地使Spring 框架管理的任何对象支 持AOP 。Spring AOP 模块为基于Spring 的应用程序中的对象提供了事务管理服 务。通过使用Spring AOP ,不用依赖EJB 组件,就可以将声明性事务管理集成到应用程序中。 ?Spring DAO :JDBC DAO 抽象层提供了有意义的异常层次结构,可用该结构来管理异常处理和不同数据库供应商抛出的错误消息。异常层次结构简化了错误处理, 并且极大地降低了需要编写的异常代码数量(例如打开和关闭连接)。Spring DAO 的面向JDBC 的异常遵从通用的DAO 异常层次结构。 ?Spring ORM :Spring 框架插入了若干个ORM 框架,从而提供了ORM 的对象关系工具,其中包括JDO 、Hibernate 和iBatis SQL Map 。所有这些都遵从Spring 的通用事务和DAO 异常层次结构。 2.ibatis 架构图 ibatis 是一个基于Java的持久层框架。 iBATIS 提供的持久层框架包括 SQL Maps 和Data Access Objects ( DAO ),同时还提供一个利用这个框架开发的 JPetStore 实例。

三层架构图

一.三层架构图 二.系统各层次职责 1.UI(User Interface)层的职责是数据的展现和采集,数据采集的结果通常以Entity object提交给BL层处理。Service Interface侧层用于将业务 服务(如WebServices)。 2.BL(Business Logic)层的职责是按预定的业务逻辑处理UI层提交的请求。 (1)Business Function 子层负责基本业务功能的实现。 (2)Business Flow 子层负责将Business Function子层提供的多个基本业务功能组织成一个完整的业务流。(Transaction只能在Business Flow 3.ResourceAccess层的职责是提供全面的资源访问功能支持,并向上层屏蔽资源的来源。 (1)BEM(Business Entity Manager)子层采用DataAccess子层和ServiceAccess子层来提供业务需要的基础数据/资源访问能力。 (2)DataAccess子层负责从数据库中存取资源,并向BEM子层屏蔽所有的SQL语句以及数据库类型差异。 DB Adapter子层负责屏蔽数据库类型的差异。 ORM子层负责提供对象-关系映射的功能。 Relation子层提供ORM无法完成的基于关系(Relation)的数据访问功能。 (3)ServiceAccess子层用于以SOA的方式从外部系统获取资源。 注:Service Entrance用于简化对Service的访问,它相当于Service的代理,客户直接使用Service Entrance就可以访问系统发布的服务。Servi

软件体系结构与设计模式期末复习

体系结构期末复习 一、选择题 (一) 1. 设计模式的基本原理是( C ) A. 面向实现编程 B. 面向对象编程 C. 面向接口编程 D. 面向组合编程 2. 设计模式的两大主题是( D ) A. 系统的维护与开发 B. 对象组合与类的继承 C. 系统架构与系统开发 D. 系统复用与系统扩展 3. 依据设计模式思想,程序开发中应优先使用的是( A)关系实现复用。 A. 组合聚合 B. 继承 C. 创建 D. . 以上都不对 4. 关于继承表述错误的是( D ) A. 继承是一种通过扩展一个已有对象的实现,从而获得新功能 的复用方法。 B. 泛化类(超类)可以显式地捕获那些公共的属性和方法。特

殊类(子类)则通过附加属性和方法来进行实现的扩展。 C. 破坏了封装性,因为这会将父类的实现细节暴露给子类。 D. 继承本质上是“白盒复用”,对父类的修改,不会影响到子 类。 5. 常用的设计模式可分为( A ) A. 创建型、结构型和行为型 B. 对象型、结构型和行为型 C. 过程型、创建型和结构型 D. 抽象型、接口型和实现型 6. “不要和陌生人说话”是对( D )设计原则的通俗表述。 A. 接口隔离 B. 里氏代换 C. 依赖倒转 D. .迪米特法则 7. 在适配器模式中,对象适配器模式是对( A)设计原则的典型应用 A. 合成聚合 B. 里氏代换 C. 依赖倒转 D. .迪米特法则 8. 将一个类的接口转换成客户希望的另一个接口,这句话是对(C)设计模式的描述

A. 策略模式 B. 桥接模式 C. 适配器模式 D. 单例模式 9. 以下设计模式中属于结构模式的是( D ) A. 观察者模式 B. 单例模式 C. 策略模式 D. 外观模式 10. 以下不属于对象行为型模式是( D ) A. 命令模式 B. 策略模式 C. 访问者模式 D. 桥接模式 11. 下面的类图表示的是哪个设计模式( D ) A. 抽象工厂模式 B. 观察者模式 C. 策略模式 D. 桥接模式 12. Open-Close开闭原则的含义是一个软件实体( A )

三层架构(我的理解及详细分析)

三层架构(我的理解及详细分析) 三层架构已经学了一段时间,一直想做一个比较完整、比 较完美的总结。但是左思右想,不知道如何下笔。都说万事开头难嘛,今天整理了一下凌乱的思路,哎,还是没整理好,想到哪就说到哪吧。 初学者很不理解: 1,什么是三层?2,为什么使用三层?3,三层与以往使用的两层相比有什么不同?它的优势在哪 里? 4,如何学好三层?如何应用三层? 这篇博客里我会给大家一一解释一下,略懂皮毛忘大家见谅!!!米老师一直强调:让学习和生活结合,把学习和生活联系,这样的学习才叫会学习,会生活。 对于三层我左思右想,如何与实际相联系。好嘛,昨晚突然有了“灵感”还。记得大话设计模式里第23 章大鸟和小菜吃羊肉串的故事——由在小摊吃到饭店吃引来的一个命令模式 当然今天不是研究命令模式)。服务员、厨师、采购员 这不就是个典型的三层架构吗??? O )啊!哈哈(这个后面再做解释)

先了解: 1,什么是三层? Ul(表现层):主要是指与用户交互的界面。用于接收用户输入 的数据和显示处理后用户需要的数据。 BLL:(业务逻辑层):Ul 层和DAL 层之间的桥梁。实现业务逻辑。业务逻辑具体包含:验证、计算、业务规则等等。 DAL:(数据访问层):与数据库打交道。主要实现对数据的增、 删、改、查。将存储在数据库中的数据提交给业务层,同时将业务层处理的数据保存到数据库。(当然这些操作都是基于Ul 层的。用户的需求反映给界面(Ul ),Ul 反映给BLL, BLL 反映给DAL ,DAL 进行数据的操作,操作后再一一返回,直到将用户所需数据反馈给用户)每一层都各负其责,那么该如何将三层联系起来呢?

相关主题
文本预览
相关文档 最新文档