当前位置:文档之家› 磷酸铁锂产业化调研报告

磷酸铁锂产业化调研报告

磷酸铁锂产业化调研报告
磷酸铁锂产业化调研报告

磷酸铁锂产业化调研报告

摘要

随着能源匮乏和环境污染问题的日益严重,锂离子电池受到极大的关注。LiFePO4由于价格低廉、稳定性好、无毒、循环性能好和安全性能好等优点,被公认为新一代锂离子电池正极材料的选择。磷酸铁锂正极材料在锂离子电池上的应用,可以有效打破锂离子电池的安全性差、保护措施复杂、难以大型化以及成本过高等因素对电动汽车产业链的制约。目前,磷酸铁锂还没有大范围得到应用,主要由于技术方面的倍率性能较差、产品一致性不够好、低温性能不理想等问题,国外专利的限制以及生产成本过高等影响。磷酸铁锂材料的产业化基本上处于起步阶段,磷酸铁锂作为动力电池的正极材料的研究以及产业化过程还需要继续深入。

本项目采用非球磨混料和高温固相法相结合的生产方法,以锂盐和磷酸铁为主要原料,加入复合碳源,合成磷酸铁锂正极材料。采用本技术制备的磷酸铁锂正极材料,0.2C放电比容量达到150.0mAh/g,1C达到141.2 mAh/g,振实密度为1.38~1.55 g/cm3,通过与国内部分厂家生产的磷酸铁锂材料产品性能进行对比,本项目组所制备的磷酸铁锂材料达到了国内同类产品的先进水平。本项目新工艺的主要特点就是采用独特的混料方式,无需球磨混料;采用复合碳源进行碳包覆,颗粒尺寸可控。

本调研报告主要是结合对磷酸铁锂正极材料产业的调研和分析,在小试和中试定出一套可行的产业化方案,主要是通过对原材料、生产设备和生产工艺等的控制,将实验室的的非球磨磷酸铁锂新工艺制备方法应用到实际的生产中,并确保所得产品的批次稳定性,最终实现实验科研成果向产业化的成功过渡。项目拟建生产车间(含仓储)1000m2,设计一条年产200吨磷酸铁锂正极材料的生产线,通过项目相关配套工程的设置、项目的实施进度的安排,得到项目产业化实施所需的各种数据,为磷酸铁锂正极材料的产业化生产提供设计依据。最后,对项目进行投资估算和财务分析,从理论上验证了本项目的可行性。

本项目产业化调查报告主要包括如下几点:

(1)本项目的产品生产方案,产品技术指标的形成、项目的技术来源、与国内同类水平的比较以及项目的生产规模的确立等。

(2)本项目产业化的生产技术方案,主要包括原材料,生产设备和生产工艺以及产业化工程中主要控制问题。原材料的技术方案包括采购原材料、辅助材料等物料的供应方案,建设项目辅助生产条件的确定,以及原材料、燃料、动力消耗指标的计算;生产设备的选择原则,本项目所需主要生产设备及检测设备的确定;本项目非球磨新工艺的技术特点及生产工艺流程以及产业化生产的关键技术和关键工艺过程的控制。

(3)本项目产业化实施相关的配套设施,包括总平面布置、辅助公用工程及设施、环境保护、劳动安全与工业卫生以及企业组织机构和劳动定员。

(4)本项目产业化实施进度安排。包括土建施工和设备安装,以及产业化实施项目进度表。

(5)最后对项目进行投资估算和财务分析。对项目总投资和流动现金进行估算,对本项目进行财务评价,进行盈亏平衡和敏感性分析,论证该项目的经济合理性,为项目决策和审批提供可靠依据。通过分析可以得出,项目总投资1704.05万元,其中固定资产投资960.68万元,流动资金652.65万元。项目达产后可实现年销售收入3000万元,年净利润592.99

万元,年平均上缴税金406.91万元(年销售税金及附加15.5万元;增值税193.74万元;年所得税197.67万元),项目投资利润率31.96%,项目税后内部收益率为31%,项目所得税后静态收回期4.77年(折现率10%,包含建设期)。

目录

第一章引言........................................................................................... 错误!未定义书签。

§1.1 选题背景................................................................................ 错误!未定义书签。

§1.2 研究目的和意义.................................................................... 错误!未定义书签。

§1.3 国内外产业化现状................................................................ 错误!未定义书签。

1.3.1 国内外产业化发展现状分析....................................... 错误!未定义书签。

1.3.2 磷酸铁锂产业化的主要技术路线............................... 错误!未定义书签。

§1.4 本调研报告主要的研究内容和研究依据............................ 错误!未定义书签。

1.4.1 主要研究内容............................................................... 错误!未定义书签。

1.4.2 本项目产业化研究的主要依据................................... 错误!未定义书签。

第二章非球磨磷酸铁锂新工艺制备方法产业化产品生产方案....... 错误!未定义书签。

§2.1产品方案................................................................................. 错误!未定义书签。

2.1.1 产品技术指标............................................................... 错误!未定义书签。

2.1.2 产品的主要用途........................................................... 错误!未定义书签。

§2.2 项目技术来源........................................................................ 错误!未定义书签。

§2.3产品技术性能水平与国内外同类产品的比较..................... 错误!未定义书签。

§2.4 项目的建设规模.................................................................... 错误!未定义书签。

第三章非球磨磷酸铁锂新工艺制备方法产业化生产技术方案....... 错误!未定义书签。

§3.1原材料..................................................................................... 错误!未定义书签。

3.1.1 原材料及主要辅助材料供应....................................... 错误!未定义书签。

3.1.2 建设项目辅助生产条件............................................... 错误!未定义书签。

3.1.3 主要原材料、燃料、动力消耗指标........................... 错误!未定义书签。

§3.2生产设备................................................................................. 错误!未定义书签。

3.2.1 生产设备选择的原则................................................... 错误!未定义书签。

3.2.2 主要的生产和检测设备............................................... 错误!未定义书签。

§3.3 生产工艺流程...................................................................... 错误!未定义书签。

3.3.1 生产工艺流程特点....................................................... 错误!未定义书签。

3.3.2 工艺流程....................................................................... 错误!未定义书签。

§3.4 产业化过程主要控制问题.................................................. 错误!未定义书签。

第四章非球磨磷酸铁锂新工艺制备方法产业化配套设施方案....... 错误!未定义书签。

§4.1 总平面布置............................................................................ 错误!未定义书签。

4.1.1总平面布置应遵循的原则............................................ 错误!未定义书签。

4.1.2 生产车间的设计........................................................... 错误!未定义书签。

4.1.3 办公及生活用房........................................................... 错误!未定义书签。

4.1.4 道路及运输................................................................... 错误!未定义书签。

4.1.5 绿化............................................................................... 错误!未定义书签。

§4.2 辅助公用工程及设施............................................................ 错误!未定义书签。

4.2.1 供电工程....................................................................... 错误!未定义书签。

4.2.2给排水工程.................................................................... 错误!未定义书签。

4.2.3 供热工程....................................................................... 错误!未定义书签。

4.2.4 采暖通风与空调........................................................... 错误!未定义书签。

4.2.5 产品技术与化验分析室............................................... 错误!未定义书签。

§4.3环境保护................................................................................. 错误!未定义书签。

4.3.1环境保护的设计依据.................................................... 错误!未定义书签。

4.3.2 项目主要污染源、污染物及防治措施....................... 错误!未定义书签。

§4.4 劳动安全与工业卫生............................................................ 错误!未定义书签。

4.4.1 防火防爆....................................................................... 错误!未定义书签。

4.4.2防机械运转、防高温高压措施.................................... 错误!未定义书签。

4.4.3 防摔伤........................................................................... 错误!未定义书签。

4.4.4 工业卫生与通风........................................................... 错误!未定义书签。

§4.5 劳动定员................................................................................ 错误!未定义书签。

4.5.1 劳动定员....................................................................... 错误!未定义书签。

4.5.2 人员培训....................................................................... 错误!未定义书签。第五章非球磨磷酸铁锂新工艺制备方法产业化项目实施进度..... 错误!未定义书签。

§5.1非球磨磷酸铁锂新工艺制备方法产业化实施进度安排..... 错误!未定义书签。

5.1.1土建施工........................................................................ 错误!未定义书签。

5.1.2 设备安装....................................................................... 错误!未定义书签。

§5.2锂离子电池正极材料磷酸铁锂产业化项目实施进度表..... 错误!未定义书签。第六章非球磨磷酸铁锂新工艺制备方法产业化项目投资估算与财务分析错误!未定义

书签。

§6.1 估算依据................................................................................ 错误!未定义书签。

§6.2 投资估算[].............................................................................. 错误!未定义书签。

6.2.1 建设投资估算............................................................... 错误!未定义书签。

6.2.2 流动资金估算............................................................... 错误!未定义书签。

§6.3 财务评价.............................................................................. 错误!未定义书签。

6.3.l 评价依据........................................................................ 错误!未定义书签。

6.3.2 营业收入及税金测算................................................... 错误!未定义书签。

6.3.3 成本费用测算............................................................... 错误!未定义书签。

6.3.4 利润测算....................................................................... 错误!未定义书签。

6.3.5 财务分析....................................................................... 错误!未定义书签。

6.3.6 项目盈亏平衡及敏感性分析....................................... 错误!未定义书签。第七章非球磨磷酸铁锂新工艺制备方法产业化方案研究结论与建议. 错误!未定义书

签。

§7.1 结论........................................................................................ 错误!未定义书签。

§7.2 建议........................................................................................ 错误!未定义书签。致谢 .................................................................................................... 错误!未定义书签。参考文献 ................................................................................................ 错误!未定义书签。

图表目录

表 1 磷酸铁锂企业技术预期指标..................................................... 错误!未定义书签。表 2 LiFePO4/C样品部分物性的典型值范围 .................................. 错误!未定义书签。

表3 本项目组LiFePO4/C样品的性能............................................... 错误!未定义书签。

表4 部分厂家磷酸铁锂材料的主要性能(按0.2C体积比容量降序排列)错误!未定义书签。表5 部分厂家磷酸铁锂材料的主要性能(按1C体积比容量降序排列)错误!未定义书签。表6 北大先行磷酸铁锂材料的比容量................................................ 错误!未定义书签。

表7 原材料及主要辅助材料供应....................................................... 错误!未定义书签。

表8 建设项目辅助生产条件............................................................. 错误!未定义书签。

表9 原材料成本明细表(按1吨磷酸铁锂计)............................. 错误!未定义书签。

表10 外购氮气和水电用量估算......................................................... 错误!未定义书签。

表11 年产200吨磷酸铁锂生产线所需主要生产设备 ................... 错误!未定义书签。

表12 年产200吨磷酸铁锂生产线所需主要检测及相关设备 ....... 错误!未定义书签。

表13 岗位定员................................................................................... 错误!未定义书签。

表14项目建设投资估算表.................................................................. 错误!未定义书签。

表15 流动资金估算表......................................................................... 错误!未定义书签。

表16 项目投资分析表....................................................................... 错误!未定义书签。

表17 项目固定资产损益表................................................................. 错误!未定义书签。

表18 项目资产摊销表......................................................................... 错误!未定义书签。

表19 营业收入、营业税金及附加和增值税务表........................... 错误!未定义书签。

表20 外购原材料费用估算表............................................................. 错误!未定义书签。

表21 外购燃料和动力费用估算......................................................... 错误!未定义书签。

表22 人工工资及福利......................................................................... 错误!未定义书签。

表23 项目主要原材料,燃料及设备费用......................................... 错误!未定义书签。

表24 项目总经营成本估算表............................................................. 错误!未定义书签。

表25 项目投产后利润估算表............................................................. 错误!未定义书签。

表26 项目投资现金流量表................................................................. 错误!未定义书签。

表 27 项目不确定性因素评价(所得税后)..................................... 错误!未定义书签。

图 1 磷酸铁锂正极材料组装的半电池进行充放电性能测试结果 ... 错误!未定义书签。

图 2 磷酸铁锂生产工艺流程图........................................................... 错误!未定义书签。

图 3 实施计划甘特图(两年半)....................................................... 错误!未定义书签。

六氟磷酸锂风险分析

六氟磷酸锂风险分析 1 主要风险因素 本项目建设采用国际先进、国内首例的工艺技术,项目的建设和生产存在较低的技术风险,而在市场和原料供应方面的风险也相对较低。本项目建成投产后,可能面临的风险因素主要有: ⑴ 市场风险 从目前我国六氟磷酸锂市场供需平衡及未来项目建设情况分析,预计未来我国六氟磷酸锂市场将总体上呈现供不应求的局面。但由于本产品近期已成大热门,吸引的投资者甚众,因此可能存在较多潜在的竞争者,另外,市场需求量、产品价格等可能会受到行业景气周期的影响而呈现周期性波动,所以,本项目还是存在一定的市场风险。 ⑵ 技术风险 由于六氟磷酸锂具有突出的氧化稳定性和较高的离子电导率, 是目前锂离子电池电解液的首选电解质, 对电解液使用六氟磷酸锂的基本要求是纯度高(电池级)、游离酸与水分低。但由于产品本身极易吸潮分解, 因此生产难度大, 对原料及设备要求苛刻, 属典型的高科技、高危生产环境、高难生产的“三高” 技术产品。本项目所采用的工艺技术虽然有领先优势,但实际生产中的装置、工艺技术管理及包装储存等环节都可能对产品的性能产生影响,因此,本项目也存在一定的技术风险。 ⑶ 原材料价格波动风险本项目装置以五氯化磷,氟化锂为主要原材料。其中氟化锂的价格,主要是由上游资源碳酸锂的价格所决定的。中国的锂资源储量仅次于智利、 阿根廷。其中,西藏矿业拥有的扎布耶盐湖是世界第三大锂资源盐湖,也是世界上唯一的富锂低镁的优质碳酸盐型盐湖。2007年全球碳酸锂产能过剩达万吨,2008 年情况进一步恶化。而国际上的三大碳酸锂生产厂商仍有扩产计划,其中,SMQ 计划将产能扩充到4万吨,Chemetall计划扩产到3万吨,FMCT产到万吨,如 果全部达产,总产能将超过9 万吨。目前,碳酸锂的市场需求并不大,主要集中在药物、玻璃和电池,2008 年,国内电池用碳酸锂需求才3000 多吨。从目前碳酸锂的下游分布来看,电池行业的需求大致占25%左右,集中在生产正极

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

磷酸铁锂正极材料项目

磷酸铁锂正极材料项目 简述 磷酸铁锂是近年来发展较快的锂电池正极材料,其分子式LiMPO4,Lithium Iron Phosphate ,简称LFP正极材料,其结构为橄榄石型结构,有高稳定性,和目前锂材料最大的不同是不含钴等贵重元素,没有毒性,原料价格低且磷、锂、铁存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。用作电池的磷酸铁锂材料一般颜色为灰白色,经过包裹碳后成为黑色粉末。 磷酸铁锂具有以下几个重要的优点: (1)高性价比,目前,一般国内磷酸铁锂的价格为每吨25万元,国外产品的价格约在30万元以上。我们产品的性能基本上同国内外的主流产品,材料成本和消耗成本(电源,燃料和人工费用)约在8-10万左右,利润率较好。 (2)磷酸铁锂的单位容量约为钴酸锂的75%,成本只相当于钴酸锂的三分之一左右,而且没有爆炸等危险,无毒性,电池循环寿命约是锂电池的4-5倍,高于锂电池8-10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重

量,约较锂电池减少30-50%,其在动力电池市场上有更广阔的前景。 建设主要内容: 计划建设年产6000吨磷酸铁锂材料生产基地,项目占地100亩,总建筑面积9000平方米。建设研发中心、原料库、成品库、加工车间及办公区域。项目分两期建设,其中一期总投资1亿元,形成年产2000吨磷酸铁锂材料产能。二期总投资4亿元,达到年产6000吨产能水平。购置设备有实验合成用气氛反应炉及控制设备台、高温纤维加热炉、高能量密度介质搅拌磨、无污染型介质搅拌磨、真空干燥箱、混合机、X射线沉降粒度仪、电超声法纳米粒度仪、比表面吸附仪等,设备总价2500万元。 总投资 5亿元,其中企业自筹3.5亿元,国内银行贷款1.5亿元 经济效益分析 按年生产6000吨磷酸铁锂材料计算,销售收入6000*25万元,利润总额6亿元,实现利税4亿元。

氟化工行业现状及发展趋势分析

报告编号:1623282

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.doczj.com/doc/6415556392.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1623282←咨询时,请说明此编号。 优惠价:¥7920 元可开具增值税专用发票 网上阅读:YeXianZhuangYuFaZhanQianJing.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 氟化工业已成为我国化工产业发展最为迅速、最具技术前景与发展优势的子行业之一,在国外更是被誉为“黄金产业”。随着技术的进步,氟化工产品的应用范围正向更广更深更高端的领域拓展。2011年由于全产业链价格大幅上涨,全行业产值增长到302亿元,同比增幅为41.1%,2012年增幅高达76.5%。随着经济的持续高速发展,我国氟化物的需求年增长率将维持在30%左右,特别是汽车、电子信息、建筑与石油化工行业的迅猛发展更为氟化工行业提供了广阔的市场空间。 氟化工产业不以石油天然气为主要原料,与石油价格的关联度不大,全球能源的日益紧张,却为氟硅材料的发展提供了巨大空间。氟产品是高性能化工新材料,生产技术复杂,整体价格较以石油天然气为原料的材料高。随着石油产品价格上涨,两者之间的价格差距正在逐渐缩小,这为氟材料拓展应用市场提供了广阔的空间。全球含氟聚合物总产能约22万吨/年,中国产能约为4万吨/年,占世界总产能的18%,已成为世界第二大氟聚合物生产国。随着经济实力的增强和人民生活水平的提高,中国对氟产品的需求增长率将远高于全球平均水平。2010~2020年这10年间,全球对氟聚合物的需求仍将保持相同的增长幅度,氟产品的全球平均需求增长率将在3%以上。预计“十一五”期间,中国氟聚合物产能可保持15%的年增速,2010年产能将达到7万吨/年,总产量接近5万吨/年。 据中国产业调研网发布的2016年版中国氟化工市场现状调研与发展趋势趋势分析报告显示,从各类氟产品的前景来看,氟氯烷进入衰退期,其替代品将因此而出现广阔的市场;氟树脂进入成熟期,主要产品聚四氟乙烯竞争加剧;氟橡胶进入增长期,随着我国汽车产业的发展,氟橡胶将出现明显的增长;氟涂料则将随着建筑、化工产业的增长而增长;而含氟精细化学品的发展空间最为广阔。国内CFC替代品及CFC产品的毛

六氟磷酸锂—溶解在寂寞的最深处

六氟磷酸锂—溶解在寂寞的最深处 (本文版权归好磷网所有,仅作交流共享之用,转载请注明出处)这几天东北那边雾霾极其严重,PM2.5等污染物已然严重爆表,对人们的出行以及生产生活带来了极为不利的影响。围阻雾霾必需要从根源上解决能源问题才行,这更加坚定了国家发展新能源的决心。当然,我国也一直在行动,对于新能源的重视与投入十分巨大。那作为新能源的核心部件电池,其重要性也不言而喻,对于二次电池的研究,我国也是不遑多让,特别是在锂电领域,我国本土企业的产能已经排到世界第四的位置(比亚迪)。而作为锂离子电池的四大组成要素(正极材料、负极材料、电解液、隔膜)之一的电解液,自然成为科研人员的研究重点。今天我们就介绍一下组成锂电池电解液的宠儿—六氟磷酸锂。 我本无机物奈何存有机 六氟磷酸锂,白色结晶或粉末,相对密度1.50,性烈而厌水,含水量百万分之一(质量分数)即会反应,生成毒性物质氟化氢。加之其热稳定性差,60℃就会分解,所以,通常情况下它只能存放在无水的环境中,低温隔绝空气。当然,保存在有机溶剂中也是不错的选择。而它本身也易溶于碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、乙二醇二甲醚(DME)、四氢吠喃(THF)等有机溶剂,所以为了保证自己的稳定性与可用性,必然是长存于暗无天日的绝世空间内,这是何等的寂寞与萧索啊! 那么它如何在锂电池里面发挥作用呢?它主要还是依托电解液,电解液相当于是在电池正、负极之间起传导作用的离子导体,承担着正负极之间传输电荷的作用,它对于电池的比容量、工作温度范围、循环效率及安全性能等至关重要。此外,电解液和电极材料之间还存在匹配性问题,即同一电极材料在不同的电解液体系中循环性能是不同的,故选择合适的电解液对电池的性能来说极为重要。传统的水溶剂体系的理论分解电压较低,满足不了锂离子电池的高电压要求,所以必须寻找其它非水电解液体系。因此,以锂盐为溶质溶于有机溶剂中制成的有机电解液便应运而生。含有六氟磷酸锂的有机电解液具有良好的导电性和电化学

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

中国新能源汽车产业链市场调研分析报告

中国新能源汽车产业链市场调研分析报告

目录 第一节行业趋势:政策驱动力度不减,500万辆只是下限 (7) 一、客车:爆发过后迈入平稳期 (7) 1、“十城千辆”带动新能源客车市场初步启动 (7) 2、过度补贴叠加抢装催生2014-15年爆发式增长 (8) 3、补贴力度渐趋合理,刚性替换需求确保平稳增长 (10) 二、物流车:政策需求共振,将迎放量元年 (18) 1、补贴后电动物流车成本优势凸显 (18) 2、路权优先政策切中城市物流痛点,充电桩加速建设打消续航顾虑 (23) 3、新兴消费引爆城市物流,推升用车需求 (24) 4、短期抢装确保翻倍增长,政策需求双轮驱动打开长期空间 (27) 三、乘用车:短期看牌照,长期看消费习惯养成 (28) 1、2015年渗透率低于1%,潜在空间巨大 (28) 2、短期:免费牌照驱动行业高成长 (29) 3、长期:平民化Model3超预期表明消费习惯正加速形成,确保长期成长潜力 (32) 四、低速电动车:规范发展消除隐忧,锂电替代需补贴 (41) 1、政策暖风频吹,规范发展打开长期空间 (41) 2、成本高度敏感,锂电替代单车补贴金额需达0.6万元左右 (44) 五、2020年剑指160万辆,或将进一步超预期 (45) 第二节电芯:目录减缓供给增速,三元四季度或涨价 (47) 一、三元优势渐显,长期趋势确立 (47) 2、三元材料电压等级更高 (48) 3、铁锂接近理论克容量,三元材料潜在空间更大。 (49) 4、现有技术下欲实现2020年300Wh/kg目标,唯有三元 (50) 二、三元5年10倍成长空间,铁锂年均20%增速超预期 (52) 三、目录准入供给增速,高端三元年内或将涨价 (56) 第三节材料:量价齐升,关注三元材料与电解液盈利弹性 (58) 一、正极材料:底部反转,首选三元 (58)

磷酸铁锂正极材料稳定性探讨

磷酸铁锂正极材料稳定性探讨 张世杰副总工程师 中国电子科技集团公司第十八研究所 目录 引言 磷酸铁锂正极材料产业现状分析 目前磷酸铁锂正极材料批产存在的主要质量问题 产生质量问题的主要原因分析 如何提高磷酸铁锂批次稳定性 讨论 1、引言 采用磷酸铁锂正极材料制备的锂离子电池与其他正极材料制备的锂离子电池比较具有三个突出的特点:一是电池安全性好,电池在过充电、过放电、短路、针刺等试验条件下安全;二是电池充放电循环寿命长且容量保持率高,能够循环2000次且容量仍能保持90%;三是电池倍率放电能力强,可以几十倍率放电。因此,磷酸铁锂正极材料被公认为是动力锂离子电池理想正极材料,也成为世人关注的“热点”。

锂离子电池制造商在使用国产磷酸铁锂正极材料试验和生产电池过程发现:国产磷酸铁锂正极材料与国际先进同类产品相比仍有较大差距、一部分磷酸铁锂供应商提供的材料存在不同程度的质量问题、批次产品之间存在质量不稳定等问题。为此,国产磷酸铁锂正极材料质量一致性又成为人们关注的“焦点”。 如何迅速解决磷酸铁锂正极材料生产中存在的关键技术问题、工艺技术问题和产品质量问题?如何提高磷酸铁锂批生产过程产品批次不稳定问题?更是从事磷酸铁锂正极材料技术研究、产品开发、中试和批生产技术攻关工作者所面临的一大“难点”。 本报告正是针对以上人们关心和关注的问题,结合实际工作中遇到的问题,浅谈一些粗浅的见解。 2、磷酸铁锂正极材料产业现状分析 国内已经形成了一批磷酸铁锂正极材料生产商,产业初具规模,并把产品投向市场,提供给锂离子电池制造商使用。但是,大家普遍感到:目前国内磷酸铁锂正极材料批量生产技术还存在突出的工艺稳定性问题。突出表现在: 一些大的锂离子电池制造商从磷酸铁锂材料平均粒径、电极加工性、电极压实密度、实际比容量、循环寿命、倍率放电、温度特性、安全性等方面对国内几个磷酸铁锂材料供应商和Valence等国外供应商所提供的材料进行了非常系统的试验评价,客观的试验数据表明:国内磷酸铁锂批产产品与Valence等国外供应商产品比较仍有较大差距; 表1: Valence公司产品与国产产品3个主要指标对比

电极正极材料磷酸铁锂初步调研报告(精)

电极正极材料磷酸铁锂初步调研报告一、锂电池正极材料情况简介

目前取代钴酸锂材料有两个方向:

一是在动力电池领域,锰酸锂和磷铁酸锂是最有希望的材料; 二是在通讯电池领域,镍钴酸锂和三元材料是最有希望代替钴酸锂的正极材料。 1.3正极材料的首选:磷酸铁锂 磷酸铁锂电池的出现,让混合动力、纯电动汽车的发展前景更为明朗,因为其动力、充电后续驶时间和成本上有很大改进。同时,磷酸铁锂的成本也要低于锰酸锂。磷酸铁锂是由 资源丰富的元素构成,价格低,而且毒性也低,有利于环境保护。由于磷与氧元素结合力强,即使电池内部发生某种短路也不会释放氧气,造成火灾危险性少。与钴酸锂型蓄电池相比,其安生性显著提高。但其致命弱点则是“导电性”不好,目前解决这一问题的主流技术有用导电碳包覆颗粒、用金属氧化物包覆颗粒、用纳米制程让颗粒微粒化等。若该问题得到有效解决,磷酸铁锂的巨大优势将促其成为车用电池的首选材料。 二、磷酸铁锂合成技术情况 正极材料的工艺极大地影响了电池的性能,因此提高和改良工艺是电池产业化的一个重要的因素。下面我们来了解几种工艺法,比较一下各自的优缺点: 1. 高温固相法 高温固相法是磷酸铁锂生产的主要方法,也是最成熟的方法。通常以铁盐(如草酸亚铁 FeC2O4 · 2H2 O、磷酸盐 (如磷酸氢二铵(NH4 2 HPO4 和锂盐(如碳酸锂Li2CO 3为原料,按化学计量比充分混匀后,在惰性气氛中先经过较低温预分解,再经高温焙烧,研磨粉碎制成。 优点: 高温固相合成法操作及工艺路线设计简单,工艺参数易于控制,制备的材料性能稳定,易于实现工业化大规模生产。 缺点:

电动车发展的市场调研报告

电动车发展的市场调研报告 一、概述 在全球资源紧张和环境污染这两大难题的制约下,具备低噪声,零排放,综合利用能源等优点的电动车辆,被公认为21世纪汽车工业改造和发展的主要方向。近年来,电动车辆的研发正逐步从实验室开发过渡到产业化批量生产,对其造型设计的研究也必将成为一个不可忽视的重要方面。 本调研报告简述了电动车辆的发展历史,分类与特点; 分析了近年国内外电动车辆的市场发展前景、造型设计现状以及相关造型设计流程的最新情况。通过市场走访以及收集资料的形式,以江苏新日电动车股份有限公司为模版作为研究方向。 二、课题研究的目的 电动车辆具备低噪声,零排放,综合利用能源以及使用成本低的优点,还符合当前最引人关心的环保要求。发展节能环保的电动车辆已成为汽车产业可持续发展的战略选择,并将促进我国汽车工业自主发展,具有重要的国民经济意义。开发、应用和推广电动车辆,走出符合我国国情的电动车辆发展道路对保障我国能源安全,建设资源节约型和环境友好型社会具有重大的战略意义。 电动车辆的造型设计是围绕着电动车辆的材料、构造、形态、色彩、加工工艺及装饰而赋予电动车辆新的品质,以满足批量生产、功能需要和人们的审美需求。其宗旨是改善人们的生存环境,提高人们的生活质量。尚处于研发阶段的电动车辆将逐步实现商业化;量产

企业的直接目标是生产市场适销的产品,降低经营成本,增加经济效益。对电动车辆进行造型设计不是那种可有可无的简单附属性美化工作,而是极具特色的综合性创作,是科学与艺术技巧高度融会交织的结晶,是电动车辆开发的重要组成部分,应该贯穿于电动车辆开发的整个过程及各个阶段。在电动车辆的造型设计中,既要考虑生产技术因素,也要考虑人的审美和市场需求。对于已经投产的电动车辆而言,一辆电动汽车无论其最高车速是多少,续驶里程有多远,给人的第一印象均于其造型。造型是否符合消费者的审美需求是他们重要的购买依据,并将直接影响这辆电动汽车的命运。对于尚处于研发阶段的电动车辆而言,概念化的造型设计可以将应用在电动车辆上的新技术和高性能更直观地表达出来,将技术与艺术完美结合,从而推动产业化的进程,提升清洁节能车辆的整体形象,加快电动车辆的普及。在车辆技术水平相当的情况下,电动车辆的造型能够通过体现个性,满足消费者的心理需求来创造更多的价值。随着蓄电池性能,驱动电机,电子控制,系统集成等关键技术的不断提高,电动车辆产业化的逐步形成,消费需求的不断变化以及市场竞争的日益激烈都将对电动车辆造型提出更高的要求。优秀的造型不仅有助于企业生产适销对路的车辆,提高经济效益,而且对美化环境、陶冶情操、提高人们的文化修养和艺术品味有着非常积极的意义。总之,电动车辆的造型设计在整个研发或生产中具有不可忽视、不可替代的地位,必将成为电动车辆最有力的竞争手段之一。电动车辆的造型设计流程是以造型设计为

六氟磷酸锂的热分解动力学研究

六氟磷酸锂的热分解动力学研究 姜晓萍,左翔,蔡烽,杨晖 (南京工业大学材料科学与工程学院,江苏南京210009) 六氟磷酸锂(LiPF6)是一种广泛使用的锂离子电池电解质材料,具有良好的导电性和电化学稳定性。但其热稳定性较差,当储存温度过高时易分解生成PF5气体,影响电解液的化学性质和电化学性能。而且六氟磷酸锂易水解,导致其与水反应释放HF气体,对锰酸锂(LiMn2O4)的循环性能有不良影响。目前已有很多针对LiPF6热分解性能的研究,但是LiPF6在不同条件下的热分解动力学还没有人研究过。LiPF6的动力学的研究对锂离子电池的失控模拟及安全性能预测有重要意义。 本文主要利用热重分析法(TGA)和傅里叶变换红外光谱法(FTIR)在线联用对LiPF6的热性质和气体逸出情况进行系统的研究和表征,同时找出LiPF6分解动力学特征。 1 实验 LiPF6标准样品由阿拉丁公司提供,纯度为99%。热重分析仪(TG2960)和傅里叶红外分析仪(FTIR)分别置于充满惰性气体的手套箱中,并使用草酸铜对惰性环境进行检查。所有实验中TG均放置使用连续流动的氩气(40 mL/min)的手套箱中,FTIR (分辨率为4 cm-1) 放置在另一个充满流动氮气(40mL/min)的手套箱中。所有实验均使用温度保持200 ℃的加热管连接TGA 与FTIR。TGA-FTIR 在线联用主要是为了表征逸出的气体。 利用真空容器将LiPF6样品从充满氩气的干燥箱(水含量<10×10-6)中转移到手套箱中。非等温分析是在不同加热速率下进行(2.5、5、10、20 ℃/min),等温分析是在恒定温度下反应1 h(110、130、150、170、190 ℃)。 2 结果与讨论 图1 为纯LiPF6样品的TG-DSC 曲线(TG 加热速率10 ℃/min,手套箱氩气的含水量小于10×10 -6,流动速率40 mL/min)。图1 中,TG曲线表明当温度达到300 ℃时,剩余固体的质量基本保持不变,为样品质量的17%,热分解过程达到稳定;DSC 曲线显示LiPF6的分解是一个吸热过程,分解焓为84.27 kJ/mol,在200 ℃左右有一个小的吸热峰出现在主峰上,原因是LiPF6发生了固相转变,相转变焓的文献值为(2.61±0.03) kJ/mol。 为了研究LiPF6在热分解过程中气态物质产生的原因是由于样品的热分解还是样品本身挥发,在TG测试过程中要同时进行FTIR 测试。图2红外堆积曲线显示热分解过程中PF5是唯一的气态产物。在图3红外谱图中,波数1018cm-1和976cm-1 处有较强的特征谱线,574cm-1 和534 cm-1处有较弱的特征谱线。分子轨道计算显示有两个化学反重合的F,表示PF5中的F(1)和F(2)。F(1)P的弯曲和拉伸模式位置为1 018cm-1和976 cm -1,F(2)P的弯曲和拉伸模式位置为976 cm-1和534 cm-1。弯曲和拉伸模式的波数的下降表明F(2)P的键强度比F(1)P 更弱。图2和图3中表明,通过FTIR探测,在110~300 ℃内,PF5是唯一的气相物质;同时由图1知,残留物质的质量是起始物质质量的17%,与LiF和LiPF6的质量比的计算值相符合。因此反应路径可以

锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览 本文来自:财富赢家https://www.doczj.com/doc/6415556392.html, 作者:冬季风点击1055次 原文:https://www.doczj.com/doc/6415556392.html,/viewthread.php?tid=145421 上市公司, 正极, 锂电池, 磷酸, 生产 磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。 [1]、杉杉股份 (600884): 湖南杉杉新材料有限公司,控股75%。主要生产锂离子电池正极材料,是中国国内发展最快、规模最大的锂离子电池正极材料制造商。拥有年产5000吨锂电正极材料的生产规模,钴酸锂年生产能力为4000吨,锰酸锂500吨。目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。2007年钴酸锂占国内市场份额的40%以上,稳稳占据全国第一、世界第三的锂离子电池正极材料生产商地位。长沙杉杉动力电池有限公司,控股82%。主要生产锂离子动力电池。目前有钢壳液态锂离子电池、聚合物锂离子电池等几十种动力电池产品。产品材料体系有锰酸锂系列、磷酸亚铁锂系列、三元体系电池。 [2]、中国宝安 (000009): 在锂电池正负极材料上拥有绝对的行业话语权。主要通过2家控股子公司进行。控股55%的贝特瑞公司是国内唯一的锂电池碳负极材料标准制定者;也是国内唯一的锂电池磷酸铁锂正极材料标准制定者,贝特瑞公司,控股55%。是锂电池碳负极材料和磷酸铁锂正极材料的龙头。锂电池碳负极材料国内第一,市占率80%,全球第二;磷酸铁锂正极材料国内第一,目前全球第三。贝特瑞09年碳负极材料产能是6000吨/年,磷酸铁锂正极材料产能是1500吨/年。天骄公司,控股75%。主营的三元正极材料,08年销量居国内第一,市场占有率30-40%。08年三元正极材料产量805吨,销量665吨;09年保守产能是1400吨,负极材料钛酸锂180吨,正极材料磷酸铁锂09年6月达产,年产能是150吨。 [3]、金瑞科技 (600390): 正极材料是锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模产业化并广泛应用于商品锂离子电池的正极材料。公司子公司长远锂科(公司占16%,大股东占84%)是专业生产钴酸锂的高新技术企业。05年钴酸锂年产量达1500吨,其中采用具有自主知识产权的湿法新技术生产的球状钴酸锂为1000吨。08年金瑞科技开展了磷酸亚铁锂制备技术和镍钴锰酸锂三元材料的研究。新型锂离子正极材料镍钴锰酸锂其比容量比钴酸锂高出30%以上。

磷化工行业现状及发展趋势分析

报告编号:1672909 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容:

一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1672909 ←咨询时,请说明此编号。 优惠价:¥7380 元可开具增值税专用发票 网上阅读: 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 磷化工包括磷肥工业、黄磷及磷化物工业、磷酸及磷酸盐工业、有机磷化物工业、含磷农药及医药工业等等。世界上磷矿石的消费结构中约8 0%左右用于农业,其余的用于提取黄磷、磷酸及制造其它磷酸盐系列产品。磷化工产品在工业、国防、尖端科学和人民生活中已被普遍应用。中国产业调研网发布的中国磷化工行业现状研究分析及市场前景预测报告(2016年)认为,除了在农业中用作磷肥、含磷农药、家禽和牲畜的饲料以外,在洗涤剂、冶金、机械、选矿、钻井、电镀、颜料、涂料、纺织、印染、制革、医药、食品、玻璃、陶瓷、搪瓷、水处理、耐火材料、建筑材料、

日用化工、造纸、弹药、阻燃及灭火等方面广泛使用。随着科技的发展,高纯度及特种功能磷化工产品在尖端科学、国防工业等方面被进一步的推广应用,出现了大量新产品,如:电子电气材料、传感元件材料、离子交换剂、催化剂、人工生物材料、太阳能电池材料、光学材料等等。由于磷化工产品不断向更多的产业部门渗透,特别是在尖端科学和新兴产业部门中的应用,使磷化工成为国民经济中的一个重要的产业。磷化工产品在人们的衣、食、住、行各个领域,发挥着越来越重要的作用。 《中国磷化工行业现状研究分析及市场前景预测报告(2016年)》在多年磷化工行业研究结论的基础上,结合中国磷化工行业市场的发展现状,通过资深研究团队对磷化工市场各类资讯进行整理分析,并依托国家权威数据资源和长期市场监测的数据库,对磷化工行业进行了全面、细致的调查研究。 中国产业调研网发布的中国磷化工行业现状研究分析及市场前景预测报告(2016年)可以帮助投资者准确把握磷化工行业的市场现状,为投资者进行投资作出磷化工行业前景预判,挖掘磷化工行业投资价值,同时提出磷化工行业投资策略、营销策略等方面的建议。 正文目录 第一章中国磷化工行业发展综述 磷化工行业界定 磷化工行业定义

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

磷酸铁锂公司企业名录

磷酸铁锂公司企业名录 Document number:PBGCG-0857-BTDO-0089-PTT1998

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司

十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

硼掺杂磷酸铁锂正极材料提高倍率

Delivered by Publishing Technology to: University of New South Wales IP: 149.171.232.34 On: Wed, 27 Feb 2013 03:01:32 Copyright American Scientific Publishers RESEARCH ARTICLE Copyright?2013American Scienti?c Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology V ol.13,1535–1538,2013 Research on High Rate Capabilities B-Substituted LiFePO4 Fu Wang,Yun Zhang?,and Chao Chen College of Materials Science and Engineering,Sichuan University,Chengdu610064,P.R.China LiFePO4is currently recognized as one of the most promising electrode materials for large-scale application of lithium ion batteries.However,the limitation of rate capability is believed to be intrinsic to this family of compounds due to the existence of larger tetrahedral(PO4 3?unit and quasi-hexagonal close-packed oxygen array.This paper report here a systematic investigation of the enhancement of rate performance by partly substitution of light small triangle oxyanion,(BO3 3?, for the larger tetrahedral(PO4 3?units in LiFePO4.Cathode electrode materials LiFeB X P 1?X O4? , in which X=0 3 6and9,mol%,were synthesized by solid-state method.The as-synthesized products were characterized by X-Ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Electrochemical Measurements.The results showed that6mol%of boron substitution had no effect on the structure of LiFePO4material,but signi?cantly improved its rate performance.The initial discharge capacity of the LiFeB0 06P0 94O4? sample was145.62mAh/g at0.1C,and the capacity retention ratios of81%at2C and76%at5C were obtained,demonstrating that a proper amount of boron substitution(lower than6mol%)could signi?cantly improve the rate performance of LiFePO4 cathode material. Keywords:LiFePO 4 ,High Rate Capability,Li-Ion Battery,Nano-Particles,Boron. 1.INTRODUCTION LiFePO4has recently received a great deal of attention owing to their advantages of competitive high theoreti- cal capacity,good cycle stability,excellent thermal stabil- ity and low toxicity,1–3aimed at utilizing it as a cathode material for large-scale application of lithium ion batter- ies,such as electric vehicle and hybrid electric vehicle. Moreover,its voltage,about3.5V versus lithium,is com- patible with the window of a solid-polymer Li-ion elec- trolyte.However,this kind of compound is a wide-gap semiconductor(3.7eV)and has an inherently extremely low electronic conductivity(~10?9S cm?1 at room tem-perature because of the existence of larger tetrahedral (PO4 3?units and quasi-hexagonal close-packed oxygen array.1Various material processing approaches have been adopted to overcome this drawback,including methods of carbon coating,4reducing particle size to nano level,5 6 and doping with super valence cations.7The aforemen- tioned methods for improving electronic conductivity and rate capability are not the most optimistic choice and have their intrinsic limitations:the shortcomings of carbon coat- ing including the lower content of active materials in the cathode material and no actual improvement in conductiv- ity for the core of LiFePO4particles.The preparation of ?Author to whom correspondence should be addressed.nano-sized particles with a uniform size distribution are extremely dif?cult for industrial scale production.And the quantity of Fe3+/Fe2+redox couples is reduced by super valence cations substitution. LiFeBO3,as a new potential cathode material with a theoretical capacity of220mAh/g which is much larger than that of LiFePO4,has been reported to have the actual speci?c capacity of over190mAh/g at1/20C.8In addi- tion,from the thermodynamic study performed in the case of LiFeBO3,the Fe3+/Fe2+reduction couple lies between 3.1V and2.9V(vs.Li/Li+ ,demonstrating an impor-tant inductive effect of BO3group,and the electrical con- ductivity of LiFeBO3is reported to be1 5×10?4S/cm,9 which is also much higher than that of LiFePO4.10Thus, it is believed that partly replacing the tetrahedral anion units,(PO4 3?,to plane triangle oxyanion,(BO3 3?,could be signi?cantly increasing the electronic conductivity of the LiFePO4particles because of the smaller and lighter (BO3 3?and the controlled off-stoichiometry of oxygen element formed. In this regard,we proposed a new method,partly sub- stitution of boron element for phosphorus element in LiFePO4,for improving the rate capability of the cathode material.We report here a systematic investigation of the enhancement of capacity at high rates of charge and dis- charge by partly substitution of light small plane triangle J.Nanosci.Nanotechnol.2013,Vol.13,No.21533-4880/2013/13/1535/004doi:10.1166/jnn.2013.59811535

相关主题
文本预览
相关文档 最新文档