当前位置:文档之家› (完整版)第一章-空间几何体的表面积和体积练习题

(完整版)第一章-空间几何体的表面积和体积练习题

(完整版)第一章-空间几何体的表面积和体积练习题
(完整版)第一章-空间几何体的表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面

半径之比为( )

A.49

B.94

C.427

D.274

题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长

为6,则此球的体积为________.

题3 一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3

B .4π+2 3

C .2π+233

D .4π+233

题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中

点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( )

A .与x ,y 都有关

B .与x ,y 都无关

C .与x 有关,与y 无关

D .与y 有关,与x 无关

题5 直角梯形的一个底角为45°,下底长为上底长的32

,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积.

题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积

为( )

A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2

题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球

的表面积.

题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;

(Ⅱ)求正四棱台的体积.

题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)

求这个几何体的表面积及体积.

题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥

C A D

D ''-的体积与剩余部分的体积之比.

题11已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,求该几何体的体积.

题12如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1= 2,P是BC1上一动点,则CP+P A1的最小值是__________.

课后练习详解

题1答案:C

详解:设圆锥底面半径为1

R,高为h,球的半径为2R,则圆锥体积为2

1

1

3

R h

π,球的体积为3

2

4

3

R

π.由题意知圆锥的底面半径是球的半径的3倍,即1

R=32R.由圆锥与球的体积相等有2

1

1

3

R h

π=3

2

4

3

R

π,将2R

=1

3

R

代入,有

2

1

R h=

3

1

3

4

3

R

?,故

1

h

R=

4

33=

4

27.

题2答案:

9

2

π

详解:如图所示,设底面中心为O′,球心为O,设球半径为R,∵AB=2,则AO′=2,PO′=P A2-AO′2=2,

OO′=PO′-PO=2-R.在Rt△AOO′中,AO2=AO′2+OO′2?R2=(2)2+(2-R)2,∴R=

3

2,∴V球=

4

3

πR3=

9

2

π.

题3答案:C

详解:由几何体的三视图可知,该几何体是由一个底面直径和高都是2的圆柱和一个底面边长为2,侧棱长为2的正四棱锥叠放而成.故该几何体的体积为

V=π×12×2+

1

3×(2)

2×3=2π+

2

33,故选C.

题4答案:C

详解:设P到平面EFQ的距离为h,则V P-EFQ=

1

3×S△EFQ·h,由于Q为CD的中点,∴点Q到直线EF的距离为定值2,又EF=1,∴S△EFQ为定值,而P点到平面EFQ的距离,即P点到平面A1B1CD的距离,显然与

x有关、与y无关,故选C.

题5答案:

7

3

π.

详解:

如图所示,在梯形ABCD中,AB∥CD,∠A=90°,∠B=45°,绕AB边旋转一周后形成一圆柱和一圆锥的

组合体.

设CD =x ,则AB =32x ,AD =AB -CD =x 2,BC =22x . S 表=S 柱底圆+S 柱圆侧+S 圆锥侧=π·AD 2+2π·AD ·CD +π·AD ·BC

=π·x 24+2π·x 2·x +π·x 2·22x =5+24

πx 2. 根据题设,5+24

πx 2=(5+2)π,则x =2. 所以旋转体体积

V =π·AD 2·CD +π3AD 2·(AB -CD )=π×12×2+π3×12×(3-2)=73

π. 题6 答案:B

详解:

如图,O 1,O 分别为上、下底面的中心,D 为O 1O 的中点,则DB 为球的半径,有

r =DB =OD 2+OB 2=a 24+a 2

3=7a 212

, ∴S 表=4πr 2=4π×7a 212=73

πa 2. 题7 答案:2500πcm 2.

详解:如图为球的轴截面,由球的截面性质知,AO 1∥BO 2,且O 1、O 2分别为两截面圆的圆心,则OO 1⊥AO 1,OO 2⊥BO 2

.设球的半径为R .

∵π·O 2B 2=49π,∴O 2B =7 cm ,同理π·O 1A 2=400π,∴O 1

A =20 cm . 设OO 1=x cm ,则OO 2=(x +9) cm.在Rt △OO 1

A 中,R 2=x 2+202, 在Rt △OO 2

B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得x =15.

∴R 2=x 2+202=252,∴R =25 cm .∴S

=4πR 2=2500π cm 2. ∴球的表面积为2500π cm 2.

题8 答案:512 cm 2; 688 cm 3 详解:(Ⅰ)斜高2

2122'12132h -??=+= ??? cm S 正四棱台=S 上+S 下+S 侧=22+122+ 12×(2+12)×13=512 cm 2

(Ⅱ)V= 13(S+'SS +S′)h= 13(22+22212++122)×12=688 cm 3

题9 答案:(1)见详解.

(2) 表面积22+4 2 cm 2,体积10 cm 3.

详解: (1)这个几何体的直观图如图所示.

(2)这个几何体可看成是由正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.

由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.

故所求几何体的表面积为:

S =5×22+2×2×2+2×12×(2)2=22+4 2 cm 2,所求几何体的体积V =23+12

×(2)2×2 =10 cm 3.

题10 答案:15∶

详解: 已知长方体可以看成直四棱柱

ADD A BCC B ''''-.

设它的底面ADD A ''面积为S ,高为h ,则它的体积为V Sh =.

而棱锥C A DD ''-的底面面积为12

S ,高是h , 因此棱锥C A DD ''-的体积111326

C AD

D V Sh Sh -=?=''. 余下的体积是1566

Sh Sh Sh -=. 所以棱锥C A DD ''-的体积与剩余部分的体积之比为1:5.

题11 答案:173 详解:由三视图知,此几何体可以看作是一个边长为2的正方体被截去了一个棱台而得到,此棱台的高为2,一底为直角边长为2的等腰直角三角形,一底为直角边长为1的等腰直角三角形,

棱台的两底面的面积分别为111 222,11

222??=??=

该几何体的体积是

111717 2222228

32233

??

??-??++?=-=

?

?

??

题12答案:52.

详解:

将△BCC1沿直线BC1折到面A1C1B上,如图,连接A1C,即为CP+P A1的最小值,过点C作CD⊥C1D于D 点,△BCC1为等腰直角三角形,

∴CD=1,C1D=1,A1D=A1C1+C1D=7,

22 1149152

AC A D CD

∴=+=+=

空间几何体的表面积和体积

空间几何体的表面积和体积 [基础要点] 1.圆柱的表面积公式: 2.圆锥的表面积公式: 3.圆台的表面积公式: 4.圆锥的体积公式: 5.棱锥的体积公式: 6.圆台的体积公式: 7.球的表面积公式: 8.球的体积公式: 题型一、柱体的体积、表面积公式 例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积 变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==, 12C G =,求几何体的体积 题型二、锥体、球体的体积和表面积公式 例2、正四面体棱长为a ,求其外接球和内切球的表面积 变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积 题型三、台体的表面积与体积公式 例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积V D1 O1C1 D C B1 B A1 A O H

变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少? 题型四、实际问题与几何体面积、体积的结合 例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R , (1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计) (2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。(精确到0.1kg ) 变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少? [自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则T S 等于( ) A 、 19 B 、49 C 、 14 D 、 13 2、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝ B 、 2 542 π+㎝ C 、52㎝ D 、2 51π+㎝ 3、棱锥的高为16㎝,底面积为2 512cm ,平行于底面的截面积为2 50cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝ C 、11㎝ D 、25㎝

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

解析几何体表面积和体积

解析几何体表面积和体积 几何体的表面积和体积解答基础 1 ?如图,在底半径为2,母线长为4的圆锥中内接一个高为「的圆柱,求圆柱的表面积和圆锥的体积.

解:圆锥的高- ;,圆柱的底面半径r=1 , 表面积圆锥体积:]:=

2?如图,在正三棱台ABC- ABC中,已知其上、下底面边长分别为3cm和6cm, AA=3cm,求此三棱台的侧面积和体积. 解:由正三棱台的结构特征知,其上、下底面分别是边长为3cm和6cm的等边三角形,如图O 0为上、下底面的中心, ??? OA=AD= X =2 ", 0D=; OA=^AD=£X 汀爭=価,0口需 ???棱台的高h=—'='■, DD= h -. ii =, 第3页(共11页)

???三棱台的侧面积S=3X业X 匸「; 2 2 4 7 三棱台的体积v= X(〔X 32+〔X &+〔X 3X 6) 3 4 4 4 3 ?四边形ABCD为直角梯形,AB// CD AB=4 BC=CD=2 AB丄BC?现将该梯形绕AB旋转一周形成封闭几何体,求该几何体的表面积及体积. B

解:依题旋转后形成的几何体为上部为圆锥,下部为圆柱的图形,如下图所示: / I I --------------- ---------------- c 其表面积s=圆锥侧面积+圆柱侧面积+圆柱底面积; 「?S=4 匸+8 n +4 n =12 n +4 ~ ; 其体积▼=圆锥体积+圆柱体积; V= . 3 3

4.如图,在底面半径为2、母线长为4的圆锥中挖去一个高为二的内接圆柱; (1)求圆柱的表面积; (2)求圆锥挖去圆柱剩下几何体的体积. 解:设圆锥、圆柱的底面半径分别为R、r,高分别为h、h'. (1)圆锥的高h= — =2二, 又h'=二, ???h' = h. 2 ? S 表面积—2S 底+S侧—2 n r +2 n rh —2 n +2 n X 二—2 (1+ 二)n (2)所求体积 ■:引'|7K .. ■■:: ■■- . ■—

简单几何体的表面积与体积

第2节简单几何体的表面积与体积 最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式. 知识梳理 1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 3.简单几何体的表面积与体积公式 [常用结论与微点提醒] 1.正方体与球的切、接常用结论 正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a.

2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. 3.正四面体的外接球与内切球的半径之比为3∶1. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高之积.() (2)球的体积之比等于半径比的平方.() (3)台体的体积可转化为两个锥体的体积之差.() (4)已知球O的半径为R,其内接正方体的边长为a,则R= 3 2a.() 解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案(1)×(2)×(3)√(4)√ 2.(教材练习改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为() A.1 cm B.2 cm C.3 cm D.3 2cm 解析由题意,得S 表 =πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm). 答案 B 3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() A.12π B.32 3π C.8π D.4π 解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π. 答案 A 4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.π B.3π 4 C. π 2 D. π 4

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

常见几何体的体积和表面积公式及三视图

常见几何体的体积和表面积公式及三视图

谨记常见几何体的三视图特点:一般情况下,(1)视图中有两个是矩形的几何体是柱体;(2)视图中有两个是三角形的几何体是锥体;(3)视图有两个是梯形的几何体是台体;(4)视图中有两个是圆的几何体是球.

积为(

】如图,网格纸上小正方形的 2016年全国III高考)如图,网格纸上小正方 形的边长为1,粗实现画出的是某多面体的三视 图,则该多面体的表面积为 三视图还原几何体方法:(1)理解“正俯一样长,正侧一样高,侧俯一样宽”;(2)画一个长方体,找准三视图中的点和边在长方体中的对应位置,在长方体中排除掉没有对应的顶点;(3)把剩下的顶点用线连起来,注意线的虚实;(4)结合三视图进行检验.(此法适用于棱锥、棱柱的三视图还原,可看作是由长方体拼接或切割而成).若三视图中有半圆和圆的,要联想到圆柱、圆锥、圆台和球.

【2017课标3,理8】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为__________. 【2015高考山东,理7】在梯形ABCD 中,2 ABC π ∠= ,//,222AD BC BC AD AB === .将 梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为__________. 【2014高考陕西版理第5题】已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为___________. 【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥, 6AB =,8BC =,13AA =,则V 的最大值是____________.

空间几何体的表面积和体积练习题

空间几何体的表面积和体积 一、选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1.以三棱锥各面重心为顶点,得到一个新三棱锥,它的表面积是原三棱锥表面积的 A. B. C. D. 2.正六棱锥底面边长为a ,体积为 ,则侧棱与底面所成的角等于 A. B. C. D. 3.有棱长为6的正四面体S-ABC ,分别在棱SA ,SB ,SC 上,且S =2,S =3,S =4,则截面将此正四面体分成的两部分体积之比为 A. B. C. D. 4.长方体的全面积是11,十二条棱长的和是24,则它的一条对角线长是 A .. B. C. 5 D.6 5.圆锥的全面积是侧面积的2倍,侧面展开图的圆心角为,则角的取值范围是 A . B C D 6. 正四棱台的上、下底面边长分别是方程的两根,其侧面积等于两底面积的和,则其斜高与高分别为 A . 与2 B.2与 C.5与4 D.2与3 7.已知正四面体A-BCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体E-FGH 的表面积为T ,则 等于 A . B. C. D. 8. 三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离比为1∶2∶3,PO=2,则P 到这三个平面的距离分别是 A .1,2,3 B .2,4,6 C .1,4,6 D .3,6,9 9.把直径分别为的三个铁球熔成一个大铁球,这个大铁球的半径是 31419116 13 2 3a 6π4π3 π 125πC B A ''',,A 'B 'C 'C B A '''9181413 1 3214αα(]??90,0(]??270,180(]??180,90Φ01892 =+-x x 252 3 S T 91944 1 3114cm cm cm 10,8,6

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )( 21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1 、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

空间几何体的表面积和体积练习题

一、知识回顾 (1)棱柱、棱锥、棱台的表面积= 侧面积+ ______________; (2)圆柱:r为底面半径,l为母线长 侧面积为_______________;表面积为_______________、 圆锥:r为底面半径,l为母线长 侧面积为_______________;表面积为_______________、 圆台:r’、r分别为上、下底面半径,l为母线长 侧面积为_______________;表面积为_______________、 (3)柱体体积公式:________________________;(S为底面积,h为高) 锥体体积公式:________________________;(S为底面积,h为高) 台体体积公式:________________________; (S’、S分别为上、下底面面积,h为高) 二、例题讲解 题1:如图(1)所示,直角梯形ABCD绕着它的底 边AB所在的直线旋转一周所得的几何体的表面 积就是______________;体积就是______________。 图(1) 题2:若一个正三棱柱的三视图如图(2)所示, 求这个正三棱柱的表面积与体积 图 (2) 左视图俯视图 主视图 8

题3:如图(3)所示,在多面体ABCDEF 中,已知ABCD 就是边长为1的正方形,且ADE ?,BCF ?均为正三角形,EF//AB,EF=2,则该多面体的体积为( ) A.32 B.33 C.34 D.23 图(3) 1、若圆柱的侧面积展开图就是长为6cm,宽为4cm 的矩形,则该圆柱的体积为 2、如图(4),在正方体1111D C B A ABCD -中, 棱长为2,E 为11B A 的中点,则 三棱锥11D AB E -的体积就是____________、 图(4) 3、已知某几何体的俯视图就是如图(5)所示的矩形,正 视图(或称主视图)就是一个底边长为8、高为4的等腰三 角形,侧视图(或称左视图)就是一个底边长为6、高为4 的等腰三角形. (1)求该几何体的体积V; (2)求该几何体的侧面积S 。 图(5) (选做题)4、如图(6),一个圆锥的底面半径为2cm, E A B D C F C B A D C 1 B 1 E A 1 D 1

空间几何体表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( ) A.49 B.94 C.427 D.274 题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________. 题3 一空间几何体的三视图如图所示,则该几何体的体积为( ) A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+233 题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( ) A .与x ,y 都有关 B .与x ,y 都无关 C .与x 有关,与y 无关 D .与y 有关,与x 无关 题5 直角梯形的一个底角为45°,下底长为上底长的32 ,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积. 题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( ) A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积. 题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积. 题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积. 题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比. 题11 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所

空间几何体的表面积和体积(一)

空间几何体的表面积与体积 柱体、锥体、台体的表面积与体积 [新知初探] 1.柱体、锥体、台体的表面积公式 2.柱体、锥体、台体的体积公式 柱体的体积公式V=Sh(S为底面面积,h为高); 锥体的体积公式V= 1 3Sh(S为底面面积,h为高); 台体的体积公式V= 1 3(S′+S′S+S)h. [点睛](1)圆柱、圆锥、圆台的侧面积公式之间的关系:

[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)锥体的体积等于底面面积与高之积( ) (2)台体的体积可转化为两个锥体的体积之差( ) 答案:(1)× (2)√ 2.侧面都是等腰直角三角形的正三棱锥,底面边长为a 时,该三棱锥的表面积是( ) A.3+34a 2 B.34a 2 C.3+32 a 2 D.6+34 a 2 解析:选A ∵侧面都是等腰直角三角形,故侧棱长等于2 2 a ,∴S 表 = 34a 2+3×12 × ??? ?22a 2=3+34a 2. 3.若圆锥的底面半径为3,母线长为5,则圆锥的体积是________. 解析:由已知圆锥的高h =4, 所以V 圆锥=1 3π×32×4=12π. 答案:12π 柱、锥、台的表面积 [典例] 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该 直四棱柱的侧面积. [解] 如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9, ∴a 2+52=152,b 2+52=92, ∴a 2=200,b 2=56. ∵该直四棱柱的底面是菱形, ∴AB 2= ????AC 22+????BD 22=a 2+b 2 4=200+564 =64,∴AB =8. ∴直四棱柱的侧面积S =4×8×5=160. (1)求几何体的表面积问题,通常将所给几何体分成基本几何体,再通过这些基本几何体的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.

空间几何体的表面积与体积 示范教案

1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积 整体设计 教学分析 本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题. 教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形,圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系.由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下. 关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等;②一个几何体的体积等于它的各部分体积的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积公式的推导是建立在等体积概念之上的. 柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论. 与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系,是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式. 值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来增强空间想象能力. 三维目标 1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.

空间几何体的表面积和体积-教案

学习过程 一、复习预习 空间几何体的表面积:各个面的面积之和。 二、知识讲解 考点/易错点1 空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积2 2 R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= 考点/易错点2 空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?= 底3 1 222r rl S ππ+=

3台体的体积 h S S S S V ?++ =)31下下上上( 4球体的体积 33 4 R V π= 三、例题精析 【例题1】 【题干】 如图所示,长方体ABCD-A 1B 1C 1D 1中,AB=a ,BC=b ,BB 1=c ,并且a >b >c >0. 求沿着长方体的表面自A 到C 1 的最短线路的长. 【解析】 将长方体相邻两个面展开有下列三种可能,如图所示. 三个图形甲、乙、丙中AC 1的长分别为: 22)(c b a ++=ab c b a 2222+++, 22)(c b a ++=bc c b a 2222+++, 22)(b c a ++=ac c b a 2222+++, ∵a >b >c >0,∴ab >ac >bc >0.故最短线路的长为bc c b a 2222+++. 【例题2】 【题干】 如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积. 【解析】如图所示,过C 作CO 1⊥AB 于O 1,

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

相关主题
文本预览
相关文档 最新文档