当前位置:文档之家› 错位相减法万能公式

错位相减法万能公式

错位相减法万能公式
错位相减法万能公式

精心整理

精心整理

错位相减法万能公式

骚年们,还在为数学考试中数列知识中做到错位相减法而头疼吗?

现在为你展现错位相减法公式:

(通常来说是C n ,下面出现的S n 其实就是C n 是不是一看到就觉得很简单呢?

是不是想问了A=?,B=?呢?

我们都知道错位相减法起初的通向公式为

Tn=a n *b n 的数列其中数列a n 数列b n =a 1*q n

我们将Tn 化为Tn=(an+b 然后我们的A 、B A=B=

现在是不是有人会这样问:

这是不是我们的常规套路呢?

解题格式:

在这期中我们只用写到(1-q)S n =____________就行了!然后在草稿纸上算出A 、B 然后直接写出经化简,得Sn 就行

其中(1-q)S n 只用写到这步就

精心整理

精心整理

我们也可以使用待定系数法来求出C n中的A、B

我们只需手动算出C

1、C

2

然后带入C

n

直接求出A、B

本人建议按照套路去写,然后在草稿纸上求出A、B就行,这样可以减省许多时间

错位相减法-(含答案)

— 1. 设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足 *12 12 1 1,2 n n n b b b n N a a a +++ =-∈ ,求{}n b 的前n 项和n T 2. (2012年天津市文13分) 已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1122=++ +n n n T a b a b a b ,+n N ∈,证明1+18=n n n T a b --+(2)n N n >∈,。 … 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。

由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,()23225282132n n T n =?+?+?+-?+ ①; ∴()234+12225282132n n T n =?+?+?+?+- ②; 由②-①得, : ()()234+1122232323+2332n n n T n =-?-?+?+?-+??+ ()()()()()()+12341+1+1+1+11=4+323222+2412111=4+323=4+32+1232142 =8+3=+8 n n n n n n n n n n n n a b ----?+++??---? --?----- ∴1+18=n n n T a b --+ (2)n N n >∈,。 3.(2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=++ +n n n n T a b a b a b -,+n N ∈,证明:+12=2+10n n n T a b -+()n N ∈. 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 & 由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,231212222n n n n n T a a a a --=+++?+ ①;[

错位相减法万能公式

错位相减法万能公式 一、公式推导: 差比数列1()n n c an b q -=+,则其前n 项和()n n S An B q C =++,其中:,,11 a b A A B C B q q -===---,证明如下:221()(2)(3)[(1)]()(1)n n n S a b a b q a b q n a b q an b q --=++++++???+-+++ 231()(2)(3)[(1)]()(2)n n n qS a b q a b q a b q n a b q an b q -= ++++++???+-+++ (2)(1)-得: 121(1)(1)()()()()()1()()11n n n n n n q q q S a b a q q q an b q a b a an b q q a a an b q b q q ----=-+-++???+++=-+-++-=+-----

11()111 n n a a b b a q q S n q q q q ----=+----.

二、习题精练: 1.(2017山东理数)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式; (Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T . 2. (2016山东理数)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)另1 (1).(2)n n n n n a c b ++=+求数列{}n c 的前n 项和T n . 3. 设数列{}n a 的前n 项和为n S .已知2n S =3n +3.

错位相减法求和附答案

错位相减法求和专项 错位相减法求和适用于{a n'b n}型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意: 项的对应需正确; 相减后应用等比数列求和部分的项数为(n-1)项; 若等比数列部分的公比为常数,要讨论是否为1 1.已知二次函数的图象经过坐标原点,其导函数/■]■:I “亠],数列?的前 项和为,点均在函数:=y:/.::的图象上? (I)求数列的通项公式; (n)设,,■是数列的前」项和,求?’? [解析]考察专题:2.1 , 2.2 , 3.1 , 6.1 ;难度:一般 [答案](I)由于二次函数-的图象经过坐标原点, 则设, 又点「均在函数的图象上, 二当心时,?、、= J ;:? ;?■■■ L] 5 T

又忙:=.:「=乜,适合上式,

I ............................................... (7 分) (n)由(i)知 - 2 - :' 2 - :......................................... |;■:■: 2 ? ? :' - 'I+(2?+ l)^"kl,上面两式相减得 =3 21 +2 (21 +23十…4『r)-(2打+ 】 卜2* 4屮一才丨, , : ■ . 1=2 整理得:,?................. 2.已知数列’的各项均为正数,是数列’ (14 分)的前n项和,且 (1)求数列’的通项公式; (2)二知二一- [答案]查看解析 解出a i = 3, [解 析] 又4S n = a n? + 2a n —3 ①

数列求和方法-错位相减法-分组求和

错位相减法求和 如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 例1. 已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。 例2 求和S n = n n n n 2 12232252321132-+-++++- 例3:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。 例4设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且 1(1)21n a n d n =+-=-,112n n n b q --==.求数列n n a b ?????? 的前n 项和n S .

例5.设数列{a n }满足a 1+3a 2+32a 3+…+3 n-1a n = 3n ,n ∈N *. (1)求数列{a n }的通项; (2)设n n a n b = ,求数列{b n }的前n 项和S n . 分组求和 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1:S n =-1+3-5+7-…+(-1)n (2n-1) 例2已知数列{}n a 的前五项是111111,2,3,4,5,392781243 (1)写出该数列的一个通项公式; (2)求该数列的前n 项和n S . 例3 求下面数列的前n 项和: 1147(3n 2)+,+,+,…,+-,…11121a a a n -

例4 求数列:1223 131311,,31311,311,1n +++++++ 的前n 项的和. 例5求2222121234(1)n S n -=-+-+ +-(n N +∈) 例6、求和:??? ? ??+++???? ??++???? ?? +n n y x y x y x 11122 ()1,1,0≠≠≠y x x 例7 求数列{n(n+1)(2n+1)}的前n 项和.

数列求和之错位相减法练习

数列求和之错位相减法专项练习 一、解答题 1.已知正项数列{a a}是递增的等差数列,且a2?a4=6,a6=4. (1)求数列{a a}的通项公式; }的前n项和. (2)求数列{a a 2a?1 2.在数列{a a}中,前n项和为a a,a a+a a=a,a1=a1,a a=a a? a a?1(a≥2). 3.(1)设a a=a a?1,求证:{a a}为等比数列. 4.(2)求{(a+1)a a}的前n项和a a. 5. 6. 7. 8. 9. 10. 11. 12.设数列{a a}的前n项和为a a,且a a=2(a a?1)

(1)求数列{a a}的通项公式; (2)若a a=a(a a?1),求数列{a a}的前n项和a a. 13.已知等差数列{a a}的公差是1,且a1,a3,a9成等比数列. (1)求数列{a a}的通项公式; (2)求数列{a a 2a a }的前n项和a a . 14.已知{a a}是公差不为零的等差数列,满足a2+a4+a5=19,且a2是a1与a5的 等比中项,a a为{a a}的前n项和. (1)求a a及a a; (2)若a a=a a+1?3a a,求数列{a a}的前n项和.

15.已知数列{a a}是首项为1的等差数列,数列{a a}是首项a1=1的等比数列,且 a a>0,又a3+a5=21,a5+a3=13.(Ⅰ)求数列{a a}和{a a}的通项公 式; 16.(Ⅱ)求数列{2a a a a}的前n项和a a. 17. 18. 19. 20. 21. 22. 23. 24.已知数列{a a}的前n项和a a=3a2+8a,{a a}是等差数列,且a a=a a+ a a+1. (1)求数列{a a}的通项公式; (2)令a a=(a a+1) (a a+2)a a+1 ,求数列{a a}的前n项和.

错位相减法(提高篇)

数列求和之错位相减法 [例1] 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。 解析:(Ⅰ)113354(2)n n n n S S a a n ---=-≥,11 22n n n n a a a a --∴==,,……(3分) 又12a =,{}22n a ∴是以为首项,为公比的等比数列,……………………………(4分) 1222n n n a -∴=?=. ……………………………………………………………………(5分) (Ⅱ)2n n b n =?, 1231222322n n T n =?+?+?++?, 23121222(1)22n n n T n n +=?+?+ +-?+?.…………………………(8分) 两式相减得:1212222n n n T n +-=++ +-?, 12(12)212n n n T n +-∴-=-?-1(1)22n n +=-?-,………………………………………(11分) 12(1)2n n T n +∴=+-?.…………………………………………………………………(12分) [例2] 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=-3 2,求数列{n ·a n }的前n 项和T n . 解析:(1)由已知得2S 3=S 1+S 2, ∴2(a 1+a 2+a 3)=a 1+(a 1+a 2), ∴a 2+2a 3=0,a n ≠0, ∴1+2q =0,∴q =-1 2 . (2)∵a 1-a 3=a 1(1-q 2)=a 1(1-14)=34a 1=-3 2, ∴a 1=-2,∴a n =(-2)·(-12)n -1=(-12 )n - 2,

错位相减法 (含答案)

1.设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足 *12 12 1 1,2 n n n b b b n N a a a ++ + =-∈ ,求{}n b 的前n 项和n T 2. (2012年天津市文13分) 已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1122=++ +n n n T a b a b a b ,+n N ∈,证明1+18=n n n T a b --+(2)n N n >∈,。 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 由条件44+=27a b ,44=10S b -得方程组

3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,()23225282132n n T n =?+?+?+-?+ ①; ∴()234+12225282132n n T n =?+?+?+?+- ②; 由②-①得, ()()234+1122232323+2332n n n T n =-?-?+?+?-+??+ ()()()()()()+12341+1+1+1+11=4+323222+2412111=4+323=4+32+1232142 =8+3=+8 n n n n n n n n n n n n a b ----?+++??---? --?----- ∴1+18=n n n T a b --+ (2)n N n >∈,。 3.(2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b , 44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=++ +n n n n T a b a b a b -,+n N ∈,证明:+12=2+10n n n T a b -+()n N ∈. 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,231212222n n n n n T a a a a --=+++?+ ①;[ ∴234+1 12122222n n n n n T a a a a --=+++?+ ②; 由②-①得,

利用错位相减法解决数列求和的答题模板

利用错位相减法解决数列求和的答题模板 数列求和是高考的重点,题型以解答题为主,主要考查等差、等比数列的求和公式,错位相减法及裂项相消求和;数列求和常与函数、方程、不等式联系在一起,考查内容较为全面,在考查基本运算、基本能力的基础上又注重考查学生分析问题、解决问题的能力. [典例] ( 满分12分)已知数列{a n }的前n 项和S n =-12 n 2+kn ,k ∈N *,且S n 的最大值为8. (1)确定常数k ,求a n ; (2)求数列???? ??9-2a n 2n 的前n 项和T n . 规范审题模板 1.审条件,挖解题信息 观察条件―→S n =-12 n 2+kn 及S n 的最大值为8 n S n ???????→是于的二次函关数 当n =k 时,S n 取得最大值 2.审结论,明解题方向 观察所求结论 ―→求k 的值及a n ――――→应建立关于k 的方程S n 的最大值为8,即S k =8,k =4n S ?????→可求的表式达 S n =-12n 2+4n 3.建联系,找解题突破口 根据已知条件,可利用a n 与S n 的关系求通项公式 ―――――→注意公式的使用条件a n =S n -S n -1=92-n n ,a 1=S 1=72 ―――――→验证n =1时,a n 是否成立a n =92-n 教你快速规范审题

1.审条件,挖解题信息 观察条件―→a n =92-n 及数列???? ??9-2a n 2n 922n n a ?????????????→-可化列简数 9-2a n 2n =n 2 n -1 2.审结论,明解题方向 观察所求结论―→求数列??????9-2a n 2n 的前n 项和T n 12n n ???????→-分析通的特项点 可利用错位相减法求和 3.建联系,找解题突破口 ――――→同乘以2 ――――→错位相减

错位相减法专题复习

例1. 设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足 2*2,n n T S n n N =-∈. (1)求1a 的值;(2)求数列{}n a 的通项公式. 例2. 已知数列{}n a 的前n 项和212 n S n kn =-+(其中k N +∈),且n S 的最大值为8。 (1)确定常数k ,并求n a ;(2)求数列92{ }2n n a -的前n 项和n T 。 例 3. 已知数列{}n a 的前n 项和n n S kc k =-(其中c ,k 为常数),且 263=4=8a a a , (1)求n a ;(2)求数列{}n na 的前n 项和n T 。 例8.已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. ( (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 1.已知正项等差数列{}n a 的前n 项和为n S ,若312S =,且1232,,1a a a +成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)记3 n n n a b = 的前n 项和为n T ,求n T . 2.在数列}{n a 中,41 , 4111==+n n a a a 已知,*)(log 324 1N n a b n n ∈=+. (1)求数列}{n a 的通项公式; (2)求证:数列}{n b 是等差数列; (3)设数列n n n n b a c c ?=满足}{,求{}n c 的前n 项和n S . @ 3.已知数列{}n b 前n 项和n n S n 2 1232-=.数列{}n a 满足 )2(3 4+-=n b n a )(*∈N n ,数列{}n c 满足n n n b a c =。

错位相减法数列求和法

特定数列求和法一错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归 纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求 和的方法一一错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学 习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过 程: 数列a n 是由第一项为a i ,且公比为q 的等比数列,它的前n 项和是 由已知有 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简 化了,从而得到等比数列的求和公式, 这种方法叫错位相减法,那我们是不是遇 到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过 程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的 复杂数列的。可以归纳数学模型如下: S n a i a i q a i q 2 a i q n i ,求S n 的通项公式。 两端同乘以 q ,有 i 时, i 时, 于是 S n a i a i q a i q 2 ... qs n aiq 2 aiq 3 a i q n ... (1 q)s n a i n a i q 由①可得 由③可得 S n s n S n n a i (q i)或者 na i i)

已知数列4是以a i 为首项,d 为公差的等差数列,数列 0是以b i 为首 项,q(q 1)为公比的等比数列,数列C n a n b n ,求数列C n 的前n 项和. 解 由已知可知 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接 地写明所求数列是一个等比数列乘以一个等差数列的形式, 通过对最近几年高考 中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知 这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差 数列,则只要证明或者求出另一个是等比数列, 那么就可以用错位相减法来求解 该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解, 得另 找他法了 ■ 例1.(2013湖南文)设S n 为数列{a n }的前n 项和,已知: a 1 0,2a n a 1 S 1 S n , n N (1)求a 1,并求数列{a n }的通项公式 (2)求数列{na n }的前n 项和. 两端同乘以q 可得 qC n a1?q :a 1b 2 a 2 b 2q a ? b 3 asdq 83 匕4 .. . ...a n 1 b n 1 q a n b n q a n 1b n a n b n q 由①-②得 (1 q)C n a 1 b 1 d(b 2 b 3 ...b n 1 b n ) a n b n q 化简得 C n Cd d(b 2 b 3 ... b n 1 b n ) a n b n q / (q C n a i b 1 a 2b 2 a 3b 3 ■■- i q

错位相减法数列求和法(供参考)

特定数列求和法—错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法——错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程: 数列{}n a 是由第一项为1a ,且公比为q 的等比数列,它的前n 项和是 111121...n n a a q a q a q s -=++++ ,求 n s 的通项公式。 解 由已知有 111121...n n a a q a q a q s -=++++, ○ 1 两端同乘以q ,有 ○ 1-○2得 当1q =时,由○ 1可得 当1q ≠时,由○ 3可得 于是 1(1)n s na q == 或者 11(1)1n n a a q s q q -=≠- 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是遇到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下: 已知数列{}n a 是以1a 为首项,d 为公差的等差数列,数列{}n b 是以1b 为首项,(1)q q ≠为公比的等比数列,数列n n n c a b =,求数列{}n c 的前n 项和. 解 由已知可知 两端同乘以q 可得 = 11223311...n n n n n qc a b q a b q a b q a b q a b q --=+++++

(word完整版)错位相减法13年间的高考题

专项训练:错位相减法 目录 1.(2003北京理16) (2) 2.(2005全国卷Ⅰ) (2) 4.(2005湖北卷) (2) 5.(2006安徽卷) (2) 6.(2007山东理17) (2) 7.2007全国1文21) (2) 8.(2007江西文21) (2) 9.(2007福建文21) (2) 10.(2007安徽理21) (3) 11.(2008全国Ⅰ19) (3) 12.(2008陕西20) (3) 13.(2009全国卷Ⅰ理) (3) 14.(2009山东卷文) (3) 15.(2009江西卷文) (3) 16.(2010年全国宁夏卷17) (3) 17.(2011辽宁理17) (4) 18.(2012天津理) (4) 19.2012年江西省理 (4) 20.2012年江西省文 (4) 21.2012年浙江省文 (4) 22.(2013山东数学理) (4) 23.(2014四川) (4) 24.(2014江西理17) (5) 25.(2014安徽卷文18) (5) 26.(2014全国1文17) (5) 27.(2014四川文19) (5) 28.(2015山东理18) (5) 29.(2015天津理18) (5) 30.(2015湖北,理18) (5) 31.(2015山东文19) (5) 32.(2015天津文18) (6) 33.(2015浙江文17) (6) 专项训练错位相减法答案 (7)

已知数列{}n a 是等差数列且12a =,12312a a a ++= (1)求数列{}n a 的通项公式; (2)令()n b a x x R =?∈ 数列{}b 的前n 项和的公式 在等差数列{}n a 中,11a =,前n 项和n S 满足条件 242 ,1,2,1 n n S n n S n +==+L , (1)求数列{}n a 的通项公式; (2)记(0)n a n n b a p p =>,求数列 b 的前n 项和n T ? 设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n n n T a a a a = -+--L . 9.(2007福建文21) 数列{}n a 的前n 项和为n S ,11a =,* 12()n n a S n +=∈N . (1)求数列{}n a 的通项n a ; (2)求数列{}n na 的前n 项和n T .

错位相减法专题复习

1 / 2 例1. 设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足 2*2,n n T S n n N =-∈. (1)求1a 的值;(2)求数列{}n a 的通项公式. 例2. 已知数列{}n a 的前n 项和212 n S n kn =-+(其中k N +∈),且n S 的最大值为8。 (1)确定常数k ,并求n a ;(2)求数列92{ }2n n a -的前n 项和n T 。 例 3. 已知数列{}n a 的前n 项和n n S kc k =-(其中c ,k 为常数),且 263=4=8a a a , (1)求n a ;(2)求数列{}n na 的前n 项和n T 。 例8.已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 1.已知正项等差数列{}n a 的前n 项和为n S ,若312S =,且1232,,1a a a +成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)记3n n n a b = 的前n 项和为n T ,求n T . 2.在数列}{n a 中,41 , 4111==+n n a a a 已知,*)(log 324 1N n a b n n ∈=+. (1)求数列}{n a 的通项公式; (2)求证:数列}{n b 是等差数列; (3)设数列n n n n b a c c ?=满足}{,求{}n c 的前n 项和n S . 3.已知数列{}n b 前n 项和n n S n 2 123 2-=.数列{}n a 满足 )2(3 4+-=n b n a )(*∈N n ,数列{}n c 满足n n n b a c =。 (1)求数列{}n a 和数列{}n b 的通项公式;

粉笔资料分析听课笔记(整理版)

粉笔资料分析听课笔记(整理版)一、常用分数、百分数、平方 1 3=33.3% 1 4=25% 1 5=20% 1 6=16.7% 1 7=14.3% 1 8=12.5% 1 9=11.1% 1 10=10% 1 11=9.1% 1 12=8.3% 1 13=7.7% 1 14=7.1% 1 15=6.7% 1 16=6.3% 1 1.5=66.7% 1 2.25=44% 1 2.5=40% 1 3.5=28.6% 1 4.5=22% 1 5.5=18.2% 1 6.5=15.4% 1 7.5=13.3% 1 8.5=11.8% 1 9.5=10.5% 1 10.5=9.5% 1 11.5=8.7% 1 12.5=7.8% 1 13.5=7.4% 1 14.5=6.9% 1 15.5=6.5% 1 16.5=6.1% 22=2 32=942=1652=2562=3672=4982=64 92=81 102=100112= 121122=144132=169 142=196152=225 162=256 172=289182=324192=361202=400212=441 222=484232=529 242=576252 =625 262=676272=729 282=784292=841 二、截位直除速算法 三、其他速算技巧 1、一个数×1.5,等于这个数本身加上这个数的一半。 2、一个数×1.1等于这个数错位相加. 3、一个数×0.9等于这个数错位相减. 4、一个数÷5,等于这个数乘以2,乘积小数点向前移1位。

5、一个数÷25,等于这个数乘以4,乘积小数点向前移2位。 6、一个数÷125,等于这个数乘以8,乘积小数点向前移3位。 7、比较类:①分母相同,分子大的大;分子相同,分母小的大。 ②分子大分母小>分子小分母大。③当分母大分子大,分母小分子小时,看分母与分母的倍数,分子与分子的倍数,谁倍数大听谁的,谁小统统看为1,再比较。 四、统计术语 1、基期:相对于今年来说,去年的就是基期。 2、现期:相对于去年来说,今年的就是现期。 3、基期量:相对于今年来说,去年的量就是基期量。 4、现期量:相对于去年来说,今年的量就是基期量。 5、增长量:现期量和基期量的差值,就是增长量。 6、增长率:增长量与基期量的比值,就是增长率。 7、倍数:A 是B 的多少倍;A 为B 的多少倍,等于增长率加1。 辨析:A 比B 增长了500%,那么就是A 比B 增长(多)5倍,A 是B 的6倍。 8、比重:A 占B 的比重,A 占B 为多少;都等于 A B 。 A 占B 的比重比C 的比重为:A B - C B 。 9、平均数:在一组数据中所有数据之和再除以数据的个数。 10、同比:同比看年,今年与去年同期比。 11、环比:环比看尾,“年”“月”“日”等。

资料分析

资料分析 第一节速算技巧 一、计算型 1.速算技巧: (1)一个数*1.5→本身+本身的一半。例:86.4*1.5=86.4+43.2=129.6。 (2)一个数*1.1→错位相加。例:12345*1.1=12345+1234.5=13579.5。 (3)一个数*0.9→错位相减。例:12345*0.9=12345-1234.5=11110.5。 (4)练一练:①124.6*1.5=124.6+62.3=186.9。 ②13579*1.1=13579+1357.9=14936.9。 ③13579*0.9=13579-1357.9=12221.1。 2.截位直除: (1)一步除法:建议只截分母。 (2)多步计算:建议上下都截。 截几位: (1)选项差距大,截两位。①选项首位不同。②选项首位相同,次位差大于首位(2)选项差距小,截三位。首位相同且次位差小于等于首位。 总结:(截位直除) (1)差距大,截两位;差距小,截三位。 (2)一步除法,截分母;多步计算,上下截。 注意:除前看选项,差距比较大,存在10倍以上的差别,位数和小数点不能忽略,保留两位计算。 二、比较型 1.分数比较 (1)一大一小,直接比,分子大,分数大; (2)同大同小,竖着直接除,横着看速度(倍数)。谁快谁牛皮,慢的看成 1。例:

①7/24和 3/12如何比较。分子:7>3,分母:24>12,分子大分母也大,同大同小。方法一:竖着直接除,看首位商几。 方法二:横着看速度,速度相当于倍数,24是 12的 2倍,7是 3的 2+倍, 分子的倍数大,慢的看成 1,即分母看成 1,7/1>3/1,因此 7/24>3/12。 ②3/5和 6/15横着比较。分子:3和 6之间为 2倍的关系,分母:5和 15 之间为 3倍的关系,谁快谁牛皮,分母快,把分子看成 1,分母小的分数大, 1/5>1/15,因此 3/5>6/15。 第二节快速找数 1.文字材料就找关键词!!! (1)5~10秒内,每段总结出 1~2个关键词。 (2)要求:与众不同的。 (3)举例:商场的负一层是停车场,一层卖化妆品、手表,二层卖男装,三层卖装,四层卖运动装,五层卖吃的。如果要买女装,不需要逐层爬,可以坐直梯直奔三楼,这样速度更快,想找吃的到五楼,想找运动装到四楼,想看男装去二楼,直奔题。即:标记段落主题词,与题干进行匹配;注意相近词、时间、单位等。 2.表格材料:横纵标目、标题、单位、备注。 3.图形材料:标题、单位、图例。(饼形图构成原则:12点钟方向顺时针依次排布) 4.综合材料:不同类型材料之间的关系、材料结构。 【注意】坑点: 1.表格材料,“总计”坑。 例:材料四中,按消费类别分,增长率大于 7%的有几个,类别不包含总计, 总计大于 7%也不能算,共 5个。 2.单位坑(民航、人口)。 (1)运输方式有公路、水路、铁路、民航,飞机比较少,运输量小,故而民航的运输单位通常是万吨,其他运输方式的单位通常是亿吨,相差较大,需要留意。 (2)人口:涉及出生率、死亡率、自然增长率等,人口量较多,通常按照 千分比计算(不是百分比)。

高中数学数列求和-错位相减法

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可. 目录 简介 举例 错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列. 编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 编辑本段错位相减法解题 错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)在(1)的左右两边同时乘上a.得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式.(1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S 的通用公式了.例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x 的n-1次方所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方.化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法这个在求等比数列求和公式时就用了Sn= 1/2+1/4+1/8+.+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+.+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n

错位相减法专题复习

例1.设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足 2*2,n n T S n n N =-∈. (1)求1a 的值;(2)求数列{}n a 的通项公式. 例 2.已知数列{}n a 的前n 项和212 n S n kn =-+(其中k N +∈),且n S 的最大值为8。 (1)确定常数k ,并求n a ;(2)求数列92{ }2n n a -的前n 项和n T 。 例 3.已知数列{}n a 的前n 项和n n S kc k =-(其中c ,k 为常数),且 263=4=8a a a , (1)求n a ;(2)求数列{}n na 的前n 项和n T 。 例8.已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 1.已知正项等差数列{}n a 的前n 项和为n S ,若312S =,且1232,,1a a a +成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)记3n n n a b = 的前n 项和为n T ,求n T . 2.在数列}{n a 中,41 , 4111==+n n a a a 已知,*)(log 324 1N n a b n n ∈=+. (1)求数列}{n a 的通项公式; (2)求证:数列}{n b 是等差数列; (3)设数列n n n n b a c c ?=满足}{,求{}n c 的前n 项和n S . 3.已知数列{}n b 前n 项和n n S n 2 123 2-=.数列{}n a 满足 )2(3 4+-=n b n a )(*∈N n ,数列{}n c 满足n n n b a c =。 (1)求数列{}n a 和数列{}n b 的通项公式;

数列求和裂项法错位相减法分组求和法

数列求和裂项法错位相减法分组求和法 Modified by JEEP on December 26th, 2020.

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412,813,……n n 21+,…… (2)1,211+,3211 ++…… n +??+++3211 …… (3)5,55,555.……,55……5,……(4),,,……,……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+= n n a n (2)) 2(1 +=n n b n (3){a n }满足a n = 1 1++n n ,求S n (4)求和:+?+?= 5 34 3122 2 n S ……+) 12)(12()2(2 +-n n n (5)求和) 2)(1(1 43213211+++??+??+??=n n n S n 例4、求数列 ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 2 1 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足 )3(2,,2,1,02525≥=?=>-n a a n a n n n 且 ,则当1≥n 时,=+++-1221212log log log n a a a A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 11 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

相关主题
文本预览
相关文档 最新文档