当前位置:文档之家› 设备状态监测与故障诊断综述

设备状态监测与故障诊断综述

设备状态监测与故障诊断综述
设备状态监测与故障诊断综述

设备状态监测与故障诊断综述

姓名:

摘要

从设备管理的角度,介绍了典型的设备状态监测与故障诊断的诊断理论、技术手段和具体方法。首先对设备状态监测与故障诊断的意义、发展,基础理论和现状进行了介绍,阐述了设备状态监测、故障诊断与设备管理的关系。进而对振动监测、温度检测、无损检测等基本监测手段的原理及诊断方法。

关键字:状态监测;故障诊断;振动;设备

1设备状态监测和故障诊断概述

1.1设备状态监测和故障诊断的意义和发展历史

1.1.1设备故障及故障诊断的意义

随着现代化工业的发展,设备能否安全可靠地以最佳状态运行,对于确保产品质量、提高企业生产能力、保障安全生产都具有十分重要的意义。

设备的故障就是指设备在规定时间内、规定条件下丧失规定功能的状况,通常这种故障是从某一零部件的失效引起的。设备的故障诊断则是发现并确定故障的部位和性质。寻找故障的起因,预报故障的趋势并提出相应的对策。

1.1.2 设备故障诊断技术发展历史

设备故障诊断技术的发展是与设备的维修方式紧密相连的。可以将故障诊断技术按测试手段分为六个阶段,即感官诊断、简易诊断、综合诊断、在线监测、精密诊断和远程监测。。从时间考察,故障诊断技术大致可以分为20世纪60年代以前、60年代到80年代和80年代以后几个阶段。

1.2现代设备故障诊断技术

在故障诊断学建立之前,传统的故障诊断方法主要是依靠经验的积累。将反映设备故障的特殊信号,从信息论角度出发对其进行分析,是现代设备故障诊断

技术的特点。可以分为统计诊断、逻辑诊断、模糊诊断。其中有几种方法做简单的介绍。贝叶斯法,此方法是基于概率统计的推理方法,以概率密度函数为基础,综合设备的故障信息来描述设备的运行状态,进行故障分析。此外还有最大似然法、时间序列、法灰色系统法和故障树分析法。故障树分析法模型是一个基于被诊断对象结构、功能特性的行为模型,是一种定性的因果模型。

1.3基于知识的故障诊断方法

基于知识的故障诊断方法,不需要待测对象精确的数学模型,而且具有智能特性。目前,这种故障诊断方法主要有:专家系统故障诊断方法;模糊故障诊断方法,神经网络故障诊断方法,信息融合故障诊断方法;基于Agent的故障诊断方法等。

1.3.1专家系统故障诊断方法

专家系统故障诊断方法,是指计算机在采集被诊断对象的信息后,综合运用各种专家经验,进行一系列的推理,以便快速地找到最终故障或最有可能的故障,再由用户来证实。此种方法国内外已有不少应用实例。、

1.3.2 模糊故障诊断方法

所谓“模糊”,是指一种边界不清楚,在质上没有确切的含义,在量上又没有明确的界限的概念,磨损状态的转变,正是典型的、带有明显中介过渡性的模糊现象。对于这种事物是不能用经典数学的二值逻辑方法的,即以[0,1]区间的逻辑代替传统的二值0,1逻辑,而且要用能综合事物内涵与外延性态的合理数学模型——隶属度函数,来定量处理模糊现象。典型的模糊故障诊断方法是向量的识别法。

1.3.3人工神经网络故障诊断方法

人工神经网络源于1943年,是模仿人的大脑神经元结构特性建立起来的一种非线性动力学网络系统,它由大量的简单的非线性处理单元高度并联、互联而成。由于故障诊断的核心技术是故障模式识别,而人工神经网络本身具有信息处理的特点,如并行性、自学习、自组织性、联想记忆功能等,所以能够解决传统模式识别方法不能解决的问题。

2设备状态监测与故障诊断技术

2.1简易振动诊断技术

在机械设备的状态监测和故障诊断技术中,振动监测及诊断技术是普遍采用的基本方法。在工业领域中,机械振动是普遍存在并作为衡量设备状态的重要指标之一。当机械内部发生异常时,随之会出现振动加大。

2.1.1.机械振动的一般描述

机械振动,从物理意义上来说,是指物体在平衡位置附近来回往复的运动。

机械振动表示机械系统运动的位移、速度、加速度量值的大小随时间在其平均值上下交替重复变化的过程。各种机械设备在运行中,都不同程度地存在振动,这是机械运行的共性。按振动规律分类,可将机械振动分为确定性振动、瞬态振动和随机振动。按产生振动的原因分类,可以分为自由振动、受迫振动、自激振动。

按振动频率分类,可以分为低频振动、中频振动和高频振动。

2.1.2 简易振动诊断的常用仪器设备

振动监测及故障诊断所用的典型仪器设备包括测振传感器、信号调理器、信号记录仪、信号分析与处理设备等。传感器将机械振动量转换为适于电测的电参量,经信号调理器进行放大、滤波、阻抗变换后,可用信号记录仪将所测振动信号记录、存储下来,也可直接输入到信号分析与处理设备,对振动信号进行各种分析、处理、取得所要的数据。随着计算机技术的发展,信号分析与处理己逐渐由以计算机为核心的监视、分析系统来完成。

2.1.3简易振动监测参数的测量

通常用于描述机械振动响应的三个参数是位移、速度、加速度。从测量的灵敏度和动态范围考虑,高频时的振动强度由加速度值度量,中频时的振动强度由速度值度量,低频时的振动强度由位移值度量。从异类种类考虑,冲击是主要问题时测量加速度;振动能量和疲劳是主要问题时测量速度;振动的幅度和位移是主要问题时应测量位移。实际测量中,可由所测得的振动频谱来决定应采用的最佳参数。对于大多数机器来说,最佳参数是速度,这是许多振动标准采用该参数的原因之一。

首先确定测量轴振动还是轴承振动。一般来说,监测轴比测试轴承座或机壳的振动信息更为直接和有效。在出现故障时,转子上振动的变化比轴承座或机壳

要敏感得多。其次是确定测点位置。一般情况下,测量点选择的总原则是:能对设备振动状态作出全面的描述;应是设备振动的敏感点;应是离机械设备核心部位最近的关键点;应是容易产生劣化现象的易损点。并且要进行定期检测,在早期发现故障,以免故障迅速发展到严重的程度,检测的周期应尽可能短一些;但如果检测周期定得过短,则在经济上可能是不合理的。因此,应综合考虑技术上的需要和经济上的合理性来确定合理的检测周期。

2.2精密振动诊断技术

精密诊断技术是使用精密的仪器和方法,对简易诊断难以确诊的设备做出详细评价的技术。近年开发的计算机辅助设备诊断系统和人工智能与诊断专家系统等,也都属于精密诊断技术范畴,一般多用于关键机组和诊断比较复杂的故障原因。精密诊断除用于设备的开发研制过程外,更多用于使用维修阶段。

2.2.1 精密振动诊断的常用仪器设备

精密振动诊断所用的典型仪器设备包括测振传感器、信号传感器、信号记录仪、信号分析与处理设备等几大部分。信号分析仪种类很多,一般由信号放大、滤波、A/D转换、显示、存储、分析等部分组成,有的还配有软盘驱动器,可以与计算机进行通信。离线监测与巡检系统一般由传感器、采集器、监测诊断软件和微机组成,有时也称为设备预测维修系统。

2.2.2 机械振动信号的分析方法

信息中包含对诊断有用的信息,但是也存在一些无用的东西,为了提取有用信息,我们必须对信号进行处理。任何信号都不可能是纯正的,去伪求真处理的最终目的,就是要提取与状态有关的特征参数。任何信息的采集都是以信号的形势存在,如果没有信号的分析处理,就不可能得到正确的诊断结果,因此信号处理广泛地应用于各种各样的领域,信号处理是设备诊断中不可缺少的重要手段。

机械故障诊断与监测所需的各种机械物理量一般用相应的传感器转换为电信号在进行深处理。幅域分析尽管也是用样本时间的波形来计算,但它不关心数据产生的先后顺序,将数据次序任意排序,所得结果一样。对于机械故障的诊断而言,时域分析所能提供的信息量是非常有限的。时域分析往往只能粗略地回答机械设备是否有故障,有时也能得到故障严重程度的信息,但不能提供故障发生部位等信息。

2.3温度监测诊断技术

温度是工业生产中的重要工艺参数,为保证生产工艺在规定的温度条件下完成,需要对温度进行监测和调节;另一方面,温度也是表征设备运行状态的一个重要指标,设备出现机械、电气故障的一个明显特征就是温度的升高,同时温度的异常变化又是引发设备故障的一个重要因素。

2.3.1接触式温度测量

在日常生活和生产中,测量温度的方式大量的是“接触式测量”,即必须把温度计和被测物的表面很好地接触,方可得出正确的的结果,顾称为接触式温度。

常用于设备诊断的接触式温度监测仪器有热膨胀式温度计,电阻式温度计热电偶温度计。

2.3.2非接触式温度测量

接触式测温由于沿着测温元件有热量导出而破坏被测物的温度场,从而造成误差;测量时还需要有一个同温过程。随着生产和科学技术的发展,对温度监测提出了越来越高的要求,接触式测温方法已远不能满足许多场合的测温要求。

近年来非接触式测温获得迅速发展,除了敏感元件技术的发展外,还由于它不会破坏被测物的温度场,适用范围也大大拓宽许多接触式测温无法测量的场合和物体,采用非接触式测温,得到很好的解决。

2.4无损检测

无损检测以不改变被检测对象的状态和使用性能为前提,应用物理和化学理论,对各种工程材料、零部件和产品进行有效的检验和测试,借以评价它们的完整性、连续性、安全可靠性及力学、物理性能等,是一门新兴的综合性应用科学。

无损检测主要包括三个内容:无损探伤、测试和监控。目前,无损检测技术已在机械制造、冶金、石油化工、航空航天、核能电力、交通等行业获得广泛应用,成为控制产品质量、保证设备安全运行的重要技术手段。

2.4.1 渗透检测

渗透检测是用黄绿色的荧光渗透液或者红色的着色渗透液来显示放大了的缺陷图像的痕迹,从而能够用肉眼检查出试件表面的开口缺陷的一种检测方法。根据不同色调的渗透液和不同的清洗方式,渗透检测方法可以分为荧光和着色渗透检测法、水洗型、后乳化型和溶剂去除型渗透检测法和湿式、快干式、干式和无

显像渗透检测法。渗透检测装置有便携式装置和内压式喷罐。

渗透检测的基本操作程序包括试件表面的预处理、渗透剂的施加和滴落、渗透剂的去除及干燥、显像剂等环节。

2.4.2声发射检测

当材料受力作用产生变形或断裂时,或者构件在受力状态下使用时,以弹性波形式释放出应变能的现象称为声发射。声发射的频率范围从次声波、声频到超声频,幅度从微观位错运动到宏观断裂。

3结论

机械设备状态将直接关系到生产质量、生产效益和生产安全。为此,一是要采用先进的设备维护管理方式,对设备实行“健康”状况连续监测,二是要针对设备转速低、负载重、冲击大、移动频繁,工作环境恶劣等特点,开发具有针对性的监控技术,三是要建立起新的设备维修与维护管理体系,实行状态监测、点检维护、故障诊断、预测维修等系列内容,从根本上解决现有设备管理中存在的问题,延长设备的使用寿命,做到科学管理、合理使用、预知检修和安全运转。

参考文献

[1] 廖伯琦.机械故障诊断基础[M]. 北京:冶金工业出版社,2002.

[2] 陈大禧, 朱铁光.大型回转机械诊断现场实用技术[M]. 北京:机械工业出版

社,2002.

[3] 杨志伊.工业设备管理中的油液分析与状态监测[M]. 北京:煤炭工业出版

社,2002.

[4] 戴绍诚, 等. 高产高效综合机械化采煤技术装备[M]. 北京: 煤炭工业出版

社, 1998.

[5]沈复,李阳初.石油加工单元过程原理(下册)[M].北京:中国石化出

版社,2005:91-147.

[6]杨向平.《化工原理》课程设计的几点教学体会[J].中国成人教育,2007,

(2):153-154.

[7]付家新.浅谈化工仿真在化工原理教学中的应用[J].中国科技信息,2009,(5):207-214.

[8]Aspen Technology Inc.Aspen Plus User Guide Version 11.1[EB/OL],2001.

[9]刘雪暖,汤景凝.化工原理课程设计[M].东营:石油大学出版社,2001:52-91.

[10]梁文懂,童仕唐,毛磊.化工原理课程设计教学的改革设想与实践[J].1999,(3):98-99.

旋转机械的常见故障诊断

龙源期刊网 https://www.doczj.com/doc/6f16504026.html, 旋转机械的常见故障诊断 作者:马昊刘天保刘鸿亮 来源:《科技资讯》2014年第16期 摘要:沈鼓做为一家世界知名的鼓压风机制造企业,旋转机械是我们厂的支柱产品。所以,旋转机械的故障诊断与分析,对于我厂产品的质量的好坏,产品是否能够让用户满意,以至于企业的生存和核心竞争力,都有着致关重要的作用。作为一门独立的学科,依靠振动分析仪对旋转机械的异常故障进行诊断和判别,必须有较高的技术水平。这个诊断和判别与医学上的诊断和判别是一个道理。要能够准确地诊断和判别,要依靠大量的临床实践和临床经验,这必须有医学上的理论基础根据。 关键词:鼓压风旋转机械诊断判别 中图分类号:TH165 文献标识码:A 文章编号:1672-3791(2014)06(a)-0105-01 尽管旋转机械的故障是由机械仪表自行诊断是最终目的,但机械还是机械,它不是万能的,现实的问题不能全部死搬硬套,自动诊断。系统的诊断只能做参考,最终诊断还需要人的大脑。人—机对话,还需要人的大脑。 下面举几个各种类型振动的典型例子,可以认为是固定模式的一类,可以在判断故障时做以参考。 1 不平衡 大家知道,转动部分在转动过程中,一定会产生振动,振动是绝对的,不振动是相对的,不平衡是绝对的,平衡也是相对的。转动部分或多或少会有残余的不平衡量存在。这种不平衡量是由于转子的重心偏移所产生的。由于重心偏移而引起离心力F=W/gεω2(W:转子重量,kg;g:重力加速度,cm/s2;ε:偏心量;ω:回转角速度;F:离心力)。这种情况,机械在转动时会发生振动,明显地表现为1次/转。如是3000 r/min,振动频率为50 Hz。这种由于偏心、不平衡产生的离心力,迫使转子在运转过程中发生振动,其振动频率为转速的一次方成正比,转速高而高,转速低而低,这是判断转子由于偏心而产生振动的不平衡的最简单也是最直观的判断方法。 2 热的不平衡 已在常温下平衡好的转子,当进入工况后,由于热的影响温度的上升,转子转轴导热性的影响,转子可能会产生弯曲。这种振动可随时间的延长而变大。也可能随负荷的变化而改变。 3 找正同轴度的变化,而引起的不平衡振动

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

电力系统故障的智能诊断综述

智能电网技术及装备专刊·2010年第8期 21 电力系统故障的智能诊断综述 李再华1 刘明昆2 (1.中国电力科学研究院,北京 100192;2.北京供电公司海淀供电分公司,北京 100086) 摘要 电力系统是人类制造的最复杂的系统,故障诊断是现代复杂工程技术系统中保障其可靠运行的非常重要的手段,故障的智能诊断是该领域的热点和难点。本文综述了电力系统故障的智能诊断技术的发展现状,总结了几种常用的智能技术在故障诊断应用中存在的若干问题以及解决这些问题的相关新技术。最后,展望了智能诊断技术的发展趋势:以专家系统为基础,融合其他先进的智能技术,以提高诊断的速度和准确度,及其对电力系统发展的适应性,逐步实现在线诊断。 关键词:电力系统;智能故障诊断;专家系统;发展趋势 Review of Intelligence Fault Diagnosis in Power System Li Zaihua 1 Liu Mingkun 2 (1.China Electric Power Research Institute ,Beijing 100192; 2. Haidian branch Company, Beijing Power Supply Company, Beijing 100086) Abstract Power system is the most complex system by man-made in the world, fault diagnosis is a kind of very important methods to ensure the reliable operation of modern complex engineering system. Intelligence fault diagnosis (IFD) is the hot and difficult subject in this field. The paper reviews the actual state of development of IFD in power system, and then summarizes some existing problems in application and new relation technology to resolve these problems. IFD technologies include expert system (ES), artificial neural network (ANN), decision-making tree (DT), data mining (DM), fuzzy theory (FT), Petri network (PN), support vector machine(SVM), bionic theory (BT), etc. To adopt these kinds of methods synthetically is very helpful to improve the intelligence of ES. At last, development trends of IFD are expected: based on ES, integrates with other advanced intelligence technologies, to heighten the speed and accuracy of fault diagnosis, and the adaptability to the development of power system, so as to realize online IFD gradually. Key words :power system ;intelligence fault diagnosis ;expert system ;development trend 1 引言 电网的发展和社会的进步都对电网的运行提出了更高的要求,加强对电网故障的诊断处理显得尤为重要。随着计算机技术、通信技术、网络技术等的发展,采用更为先进的智能技术来改善故障诊断系统的性能,具有重要的研究价值和实际意义。 故障的智能诊断技术也被称为智能故障诊断技 术,包括专家系统(Expert System ,ES )、人工神 经网络(Artificial Neural Network ,ANN )、决策树(Decision Tree ,DT )、数据挖掘(Data Mining , DM )、模糊论(Fuzzy Theory ,FT )、Petri 网理论(Petri Network Theory ,PNT )、支持向量机(Support Vector Machine ,SVM )、仿生学理论(Bionics Theory ,BT )的应用等,其中前四种技术得到了较多的研究,相对比较成熟和常用。本文对电力系统故障诊断领域的智能诊断技术的发展现状以及存在的问题进行综述,并对解决相关问题的方法进行了总结。 2 智能故障诊断技术发展现状 美国是对故障诊断技术进行系统研究最早的国家之一,1961年美国开始执行阿波罗计划后,出现了一系列设备故障,促使美国航天局和美国海军积

机械故障诊断技术课后复习资料

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

旋转机械故障相关诊断技术(标准版)

旋转机械故障相关诊断技术 (标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0100

旋转机械故障相关诊断技术(标准版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 XXX图文设计 本文档文字均可以自由修改

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

机械故障诊断技术的现状及发展趋势

机械故障诊断技术的现状及发展趋势 摘要:随着机械行业的不断发展,机械故障诊断的研究也不断提出新的要求,进20年来,国内外的故障诊断技术得到了突飞猛进的发展,对机械故障诊断的发展现状进行了详细的论述,并对其发展趋势进行了展望。 关键词:故障诊断;现状;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本锣鼓后语国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研究的系统与实际情况相差甚远,往往是从高等院校或者科研部门开始,在进行到个别企业,而国外的发展则是从现场发现问题进而反应到高等院校或者科研单位,是的研究有的放矢。 记过近二十年的努力,我国自己开发的故障诊断系统已趋于成熟,在工业生产中得到了广泛应用。但一些新的方法和原理的出现,使得故障诊断技术的研究不断向前发展,正逐步走向准确、方便、及时的轨道上来。 1.故障诊断的含义及其现状 故障诊断技术是一门了解和掌握设备运行过程中的状态,进而确定其整体或者局部是否正常,以便早期发现故障、查明原因,并掌握故障发展趋势的技术。其目的是避免故障的发生,最大限度的提高机械地使用效率。 1.1设备诊断技术的研究内容主要包括以下三个环节: (1)特征信号的采集:这一过程属于准备阶段,主要用一些仪器测取被测仪器的有关特征值,如速度、湿度、噪音、压力、流量等。 现在信号的采集主要用传感器,在这一阶段的主要研究基于各种原理的传感技术,目标是能在各种环境中得到高可靠、高稳定的传感测试信号。国内传感器类型:电涡流传感器、速度传感器、加速度传感器和湿度传感器等;最近开发的传感技术有光导纤维、激光、声发射等。(2)信号的提取与处理:从采集到的信号中提取与设备故障有关的特征信息,与正常信息只进行对比,这一步就可以称之为状态检测。目前,小波分析在这方面得到广泛应用,尤其是在旋转机械的轴承故障诊断中。基于相空间重构的GMD数据处理方法也刚刚开始研究,此方法对处理一些复杂机械的非线性振动,从而进一步预测故障的发展趋势非常有效。(3)判断故障种类:从上一步的结果中运用各种经验和知识,对设备的状态进行识别,进而做出维修决策。这一步关键是研究系统参数识别和诊断中相关的实用技术,探讨多传感器优化配置问题,发展信息融合技术、模糊诊断、神经网络、小波变换、专家系统等在设备故障诊断中的应用。 1.2故障诊断及时的发展历程· 故障诊断技术的大致三个阶段: (1)事后维修阶段;(2)预防维修阶段;(3)预知维修阶段。现在基本处于预知维修阶段,预知维修的关键在于对设备运行状态进行连续监测或周期检测,提取特征信号,通过对历史数据的分析来预测设备的发展趋势。 1.3故障诊断的发展现状 目前,国内检测技术的研究主要集中在以下几个方面:

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

相关主题
文本预览
相关文档 最新文档