当前位置:文档之家› 步进电机角度控制设计教程

步进电机角度控制设计教程

步进电机角度控制设计教程
步进电机角度控制设计教程

目录

摘要 (1)

1设计任务与要求 (2)

1.1设计目的 (2)

1.2设计要求和设计指标 (2)

2方案分析 (3)

3系统硬件部分 (4)

3.1主控模块 (4)

3.2键盘输入模块 (7)

3.3电机模块 (8)

3.4显示模块 (11)

4系统软件部分 (13)

4.1整体流程图及主程序 (13)

4.2按键流程图及程序 (14)

4.3显示模块程序 (19)

4.4电动机模块流程图及程序 (20)

4.5中断程序 (22)

5仿真运行 (24)

6心得体会 (25)

参考文献 (26)

附录一:Protues硬件仿真图 (27)

附录二:系统程序 (28)

摘要

步进电机在控制系统中具有很广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器或角位移发生器等。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

此次设计使用C语言作为编程语言。C语言是一种计算机程序设计语言,它既具有高级语言的特点,又具有汇编语言的特点。它的应用范围广泛,具备很强的数据处理能力,不仅仅是在软件开发上,而且各类科研都需要用到C语言,适于编写系统软件、三维、二维图形和动画,具体应用例如单片机以及嵌入式系统开发。

硬件部分使用89C51作为主控芯片,并使用ULN2003A将单片机的信号放大以控制步进电机,同时使用4位数码管显示转动角度及次数。

关键词:步进电机C语言AT89C51 ULN2003A 转动角度

1设计任务与要求

1.1设计目的

设计制作和调试一个由8086组成步进电机角度测控系统。通过这个过程学习熟悉键盘控制和七段数码管的使用,掌握步进电机的角度控制和角度显示方法。

1.2设计要求和设计指标

1.在显示器上显示任意四位十进制数

2.将8个键定义键值为0~7,按任意键在显示器上显示对应键值

3.实现:

(1)定义键盘按键:5个为数字键1~5;3个功能键:设置SET、清零CLR、开始START;

(2)显示器上第一位显示次数,后三位显示每次行走的角度;

(3)通过键盘的按键,设置步进电机各次的角度值;第一位设置次数,后三位设置角度值。

(4)按START键启动步进电机开始转动,按SET键停止;按CLR键清零。

2方案分析

课程设计要求设计一个直流电机微型计算机角度控制系统,定义8个键盘按键:5个为数字键1~5;3个功能键:设置SET、清零CLR、开始START;显示器上的四位可显示转动次数和每次转动角度;通过键盘的按键,设置步进电机转动次数和每次转动角度;按START键启动电机开始转动,按SET键停止;按CLR 键清零。

综合分析之后,我们应该将电路实现利用键盘按键通过89C51的P3口实现输入功能,并通过89C51的P0口和P1口实现对数码管显示的控制。同时我们可以通过P2口控制ULN2003A驱动电动机运行。

我们可以将整体电路设计成几个相对独立而又有机结合的模块,来逐一进行分析。

通过分析我们可以画出系统图,如图2-1所示。

图2-1 系统图

3系统硬件部分

3.1主控模块

3.1.1 AT89C51芯片

本次设计是使用AT89C51作为主控芯片,AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压、高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,89C2051是它的一种精简版本。89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89C51的40个引脚主要有一下几种

(1)VCC:供电电压。

(2)GND:接地。

(3)P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

(4)P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为低八位地址接收。

(5)P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

(6)P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4

个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口还有其他一些特殊功能,本事设计没有使用,故在此不做叙述。

(7)RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

(8)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

(9)/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN 信号将不出现。

(10)/EA/VPP:当/EA保持低电平时,则在此期间为外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器读取外部ROM数据。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,单片机读取内部程序存储器。(扩展有外部ROM时读取完内部ROM后自动读取外部ROM)。在FLASH 编程期间,此引脚也用于施加12V编程电源(VPP)。

(11)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

(12)XTAL2:来自反向振荡器的输出

图3-1 AT89C51芯片

3.1.2时钟电路及复位电路

在本次课程设计中,我们用到AT89C51单片机。而他需要一些特定的控制电路的控制才能更好地工作。具体到本次课设中,我们需要时钟电路、防抖电路、复位电路等。

如图3-2所示是我们的时钟电路,由电容C1、C2以及晶振组成。

图3-2 时钟电路

如图3-3所示是我们的复位电路。

图3-3 复位电路

3.2键盘输入模块

在微机化仪器仪表中,键盘是最常用的一种输入设备,用于输入数据和命令。键盘的每一个按键都被赋予一个代码,称为键码。键盘系统的主要工作包括及时发现有键闭合,求闭合键的键码。根据这一过程的不同,键盘可以分为两种,即全编码键盘和非编码键盘。全编码键盘多是商品化的计算机输入设备,自动提供对应于被安检的ASCII码,且能同时产生一个控制信号通知微处理器。此外,这种键盘具有处理抖动和多键串键的保护电路,具有使用方便、价格较贵、体积较大、按键较多等特点。非编码键盘恰如一组开关,一般组成行和列矩阵。其全部工作过程,如按键的识别、键的代码获取、防止串键及消抖等问题,都靠程序完成。因此,它所需要的硬件少,价格便宜,一般作为单板机、智能仪表等简单的输入设备。

键盘电路常用的有两种,一种是独立式键盘电路,另一种是矩阵式键盘。独立式键盘每个按键独占一根I/O线。因此键识别软件非常简单。对于只有几个按键的系统,常采用这种电路。对于多按键系统来讲,这种电路忧郁将占用更多的I/O线而变得无法实用。

矩阵式键盘电路将I/O口线的一部分作为行线,另一部分作为列线,按键设置在行线和列线的交叉点上,这就构成了行列式键盘。行列式键盘中按键的数量可达行线数n乘以列线数m。由此可以看到行列式键盘在按键较多时,可以节省I/O线。按键开关的两端分别接在行线和列线上。行线通过一个电阻接到+5V电源上,在没有键按下时,行线处于高电平状态。

判断是否有键按下的方法是:向所有的列线I/O口输出低电平,然后将行线的电平状态读入累加器中,若无键按下,行线仍保持高电平状态,若有键按下,行线至少应有一条为低电平。当确定有键按下后,即可进行求键码的过程。其方法是:依次从一条列线上输出低电平,然后检查各行线的状态,若全为高电平,说明闭合键不在该列;若不全为1,则说明闭合键在该列,且在变为低电平的行的交点上。

在键盘处理程序中,每个键都被赋予了一个键号,由从列线I/O口输出的数据和从行线I/O口读入的数据可以求出闭合键的键号。

图3-4键盘模块原理图

3.3电机模块

3.3.1步进电机结构及工作原理

步进电机又叫脉冲电机,它是一种将电脉冲信号转换为角位移的机电式数模转换器。在开环数字程序控制系统中,输出控制部分常采用步进电机作为驱动元件。步进电机控制线路接受计算机发来的指令脉冲,控制步进电机作为驱动元件。步进电机控制线路接收计算机发来的指令脉冲,控制步进电机做相应的转动。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

步进电机的驱动电路根据控制信号工作,控制信号由8086通过8255A产生。

此次设计采用四相式步进电机。

图3-5步进电机励磁线圈

(1)步进电机工作原理说明

步进电机由转子和定子组成。转子由一个永久磁铁构成,定子分别由四组绕组组成。步进电机组成和电气连接分别如图3-6和3-7所示。

图3-6 转子和定子示意图图3-7 电气连接示意图

当S1连通电源后,定子磁场将产生一个靠近转子为N极,远离转子为S极才磁场,这样的定子磁场和转子的固有磁场发生作用,转子就会转动,正确地S1、S4的送电次序,就能控制转子旋转的方向。

例如:若送电的顺序为S1闭合断开S2闭合断开S3闭合断开S4闭合断开,周而复始的循环,在定子和转子共同作用下,

电机就瞬时针旋转:

若送电的顺序为S4闭合断开S3闭合断开S2闭合断开S1闭合断开,周而复始的循环,则电机就逆时针旋转,原理同理。

3.3.2 电机驱动ULN2003A简介

ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A管脚如图3-8所示。

图3-8 ULN2003A管脚图

ULN2003 的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。ULN2003工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V 的电压,输出还可以在高负载电流并行运行。ULN2003内部还集成了一个消线圈反电动势的二极管,可用来驱动继电器。它是双列16脚封装,NPN晶体管矩阵,最大驱动电压=50V,电流=500mA,输入电压=5V,适用于TTL COMS,由达林顿管组成驱动电路。ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,它的输出端允许

通过电流为200mA,饱和压降VCE约1V左右,耐压BVCEO约为36V。用户输出口的外接负载可根据以上参数估算。采用集电极开路输出,输出电流大,故可直接驱动继电器或固体继电器,也可直接驱动低压灯泡。通常单片机驱动ULN2003时,上拉2K的电阻较为合适,同时,COM引脚应该悬空或接电源。ULN2003是一个非门电路,包含7个单元,单独每个单元驱动电流最大可达350mA,9脚可以悬空。

由于ULN2003有这些特点,所以经常作为显示驱动、继电器驱动、照明灯

驱动、电磁阀驱动、伺服电机、步进电机驱动等电路中。

ULN2003A内部结构如图3-9所示。

图3-9 ULN2003A内部结构图

图3-10 电机模块原理图

3.4显示模块

数码管是数码显示器的俗称。常用的数码显示器有半导体数码管,荧光数码管,辉光数码管和液晶显示器等。译码和数码显示电路是将数字钟和计时状态直观清晰的反映出来,被人们的视觉器官所接受。显示器件采用七段数码管。在译码显示电路输出的驱动下,显示出直观、清晰的数字符号。本设计所采用的是半导体数码管,是用发光二极管(简称LED)组成的字形来显示数字,七个条形发光二极管排列成七段组合字形,便构成了半导体数码管。半导体数码管有共阳极和共阴极两种类型,共阳极数码管的七个发光二极管的阳极连在一起,而七个阴极则是独立的。共阴极数码管与共阳极数码管相反,七个发光二极管的阴极连在一起,而阳极是独立的。

当共阳极数码管的某一阴极接低电平时,相应的二极管发光,可根据字形使

某几段二极管发光,所以共阳极数码管需要输出低电平有效的译码器去驱动。共阴极数码管则需要输出高电平有效的译码器去驱动。七段显示数码管的外部引线排列如图3-11,共阳极数码管结构示意图如图3-12所示。

图3-11 数码管外引线排列

图3-12 共阳极数码管结构示意图

在多位LED显示时,为了节省I/O口线,简化电路,降低成本,一般采用动态显示方式。动态显示方式是一位一位地分时轮流各位显示器,对每一位显示器来说,每隔一段时间轮流点亮一次,形成动态显示。

图3.13 显示模块原理图

4系统软件部分

4.1整体流程图及主程序

系统的整体软件流程图如图4-1所示

图4-1 系统流程图

主程序如下:

void main() //主函数

{

TMOD=0x01; //T0工作方式1

TH0=0xd8; //设初值,0.01秒触发一次

TL0=0xf0;

TR0=0; //关闭T0定时器

ET0=1; //允许T0定时器中断

EA=1; //开启总中断允许

P2=0x03;

while(1)

{

scan();

show();

if(num1==0) //若电机运行次数已达到设定值,则关时器

{ //并将状态位置0

TR0=0;

status=0;

}

}

}

4.2按键流程图及程序

按键流程图如图4-2所示

图4-2 按键模块流程图

按键模块程序如下:

void scan() //按键扫描

{

if(START==0&&status==0) //开始键:只有当电机不运行时才有效,且将状态位置1;

{ //并开启定时器(电机重新开始转动)。

delay(10);

if(START==0&&status==0)

{

status=1;

TR0=1; //开定时器0

num1=num;

}

}

if(SET==0&&status==1) //停止键:只有当电机运行是有效,将状态位置0;

{ //并关闭定时器(电机停止转动)。

delay(10);

if(SET==0&&status==1)

{

status=0;

TR0=0; //关定时器0

}

}

if(CLR==0&&status==0) //清零键:只有当电机不运行时,清零键才有效

{

delay(10);

if(CLR==0&&status==0)

{

P1=0;

P0=0xff;

sh=0;

}

}

if(k1==0&&status==0) //数字键1:设置为3 045。只有当电机不运行时,数字键才有效

{

delay(10);

if(k1==0&&status==0)

{

num=3;

num1=3;

bai=0;

shi=4;

ge=5;

sh=1;

key=1;

}

}

if(k2==0&&status==0) //数字键2:设置为4 090 {

delay(10);

if(k2==0&&status==0)

{

num=4;

num1=4;

bai=0;

shi=9;

ge=0;

sh=1;

key=2;

}

}

if(k3==0&&status==0) //数字键3:设置为5 090 {

delay(10);

if(k3==0&&status==0)

{

num=5;

num1=5;

bai=0;

shi=9;

ge=0;

sh=1;

key=2;

}

}

if(k4==0&&status==0) //数字键4:设置为6 045 {

delay(10);

if(k4==0&&status==0)

{

num=6;

num1=6;

bai=0;

shi=4;

ge=5;

sh=1;

key=1;

}

}

if(k5==0&&status==0) //数字键5:设置为7 090

{

delay(10);

if(k5==0&&status==0)

{

num=7;

num1=7;

bai=0;

shi=9;

ge=0;

sh=1;

key=2;

}

}

}

4.3显示模块程序

由于使用的是4为数码管,每一位需要显示不同的数字,故让各位数码管按照一定的顺序轮流显示,只要扫描频率足够高,由于人眼的“视觉暂留”现象,就能连续稳定的显示。

程序如下:

void show() //数码管显示

{

if(sh==1)

{

P1=0x01; //显示第一位

P0=smg[num];

P0=0xff;

步进电机控制实验

步进电机控制实验 一、实验目的: 了解步进电机工作原理,掌握用单片机的步进电机控制系统的硬件设计方法,熟悉步进电机驱动程序的设计与调试,提高单片机应用系统设计和调试水平。 二、实验容: 编写并调试出一个实验程序按下图所示控制步进电机旋转: 三、工作原理: 步进电机是工业过程控制及仪表中常用的控制元件之一,例如在机械装置中可以用丝杠把角度变为直线位移,也可以用步进电机带螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,用起来非常方便。步进电机还具有快速启停、精确步进和定位等特点,因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。 步进电机实际上是一个数字/角度转换器,三相步进电机的结构原理如图所示。从图中可以看出,电机的定子上有六个等分磁极,A、A′、B、B′、C、C ′,相邻的两个磁极之间夹角为60o,相对的两个磁极组成一相(A-A′,B-B′,C-C′),当某一绕组有电流通过时,该绕组相应的两个磁极形成N极和S极,每个磁极上各有五个均匀分布矩形小齿,电机的转子上有40个矩形小齿均匀地分布的圆周上,相邻两个齿之间夹角为9°。 当某一相绕组通电时,对应的磁极就产生磁场,并与转子形成磁路,如果这时定子的小齿和转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子和定子的齿相互对齐。由此可见,错齿是促使步进电机旋转的原因。 三相步进电机结构示意图 例如在三相三拍控制方式中,若A相通电,B、C相都不通电,在磁场作用下使转子齿和A相的定子齿对齐,我们以此作为初始状态。设与A相磁极中心线对齐的转子的齿为0

步进电机课程设计

汇编及接口技术课程设计 题目:步进电机控制系统 班 级: 070609 学 号: 070609313 姓 名: 赵明 时 间: 2009年12月 成绩:

目录 (一)设计任务与要求-3- (二)设计方案(包括设计思路、使用到哪些芯片、各个 芯片的作用)-------------------------------------------------3 (三)硬件线路设计(包括线路图及连线说明)----------4 (四)软件设计(包括程序流程图)-------------------------4 (五)源程序(要有注释)-------------------------------------5 (六)调试过程(包括实验过程中的硬件连线,实验步骤、 出现的问题、解决的方法、使用的实验数据等)-----8 (七)总结(在整个设计过程中的心得和体会,150字左 右)----------------------------------------------------8

课程设计题目:步进电机控制系统 一.设计任务与要求 (一)设计目的 1.了解步进电机控制的基本原理,掌握控制步进电机转动的编程方 法。 2.进一步熟练8255的使用。 (二)设计内容 编程控制步进电机,使其能够正常运转,要求: 1.开关K8控制电机的启动与停止:当K8向上拨时,电机启动,否则电机停 止; 2.开关K1~7控制电机的转速:K1向上拨时,得到最低转速,…… K7向上 拨时,得到最高转速。 3.每个开关对应一个发光二极管,要求开关向上拨时,对应的发光二极管亮。二.设计方案 (一)步进电机原理 步进电机驱动原理是通过对每相线圈中的电流的顺序切换(实验中的步进电机有四相线圈,每次有二相线圈有电流,有电流的相顺序变化),来使电机作步进式旋转。驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 本实验使用的步进电机线圈由四相组成,驱动方式为二相激磁方式,如图3.1 所示。 图3.1 步进电机原理图 如表3.1所示,首先使HA线圈和HB线圈有驱动电流,接着使HB和HC、HC和HD、HD和HA,又返回到HA和HB有驱动电流,按这种顺序切换,电机轴按顺时针方向旋转。 表3.1 步进电机激磁方式

步进电机角度控制设计

目录 摘要 (1) 1设计任务与要求 (2) 1.1设计目的 (2) 1.2设计要求和设计指标 (2) 2方案分析 (3) 3系统硬件部分 (4) 3.1主控模块 (4) 3.2键盘输入模块 (7) 3.3电机模块 (8) 3.4显示模块 (11) 4系统软件部分 (13) 4.1整体流程图及主程序 (13) 4.2按键流程图及程序 (14) 4.3显示模块程序 (19) 4.4电动机模块流程图及程序 (20) 4.5中断程序 (22) 5仿真运行 (24) 6心得体会 (25) 参考文献 (26) 附录一:Protues硬件仿真图 (27) 附录二:系统程序 (27)

摘要 步进电机在控制系统中具有很广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器或角位移发生器等。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 此次设计使用C语言作为编程语言。C语言是一种计算机程序设计语言,它既具有高级语言的特点,又具有汇编语言的特点。它的应用范围广泛,具备很强的数据处理能力,不仅仅是在软件开发上,而且各类科研都需要用到C语言,适于编写系统软件、三维、二维图形和动画,具体应用例如单片机以及嵌入式系统开发。 硬件部分使用89C51作为主控芯片,并使用ULN2003A将单片机的信号放大以控制步进电机,同时使用4位数码管显示转动角度及次数。 关键词:步进电机C语言AT89C51 ULN2003A 转动角度

步进电动机控制方法

<<技能大赛自动线的安装与调试>>项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

微机原理步进电机控制课程设计报告

河北科技大学 课程设计报告学生姓名:学号: 专业班级: 课程名称: 学年学期: 2 0 —2 0 学年第学期指导教师: 2 0 年月 课程设计成绩评定表

目录 一、设计题目………………………………………………………………. 二、设计目的………………………………………………………………. 三、设计原理及方案………………………………………………………. 四、实现方法………………………………………………………………. 五、实施结果………………………………………………………………. 六、改进意见及建议……………………………………………………….

七、设计体会………………………………………………………………. 、 一、设计题目 编程实现步进电机的控制 二、设计目的 1.了解步进电机控制的基本原理 2.掌握控制步进电机转动的编程方法 3.了解8086控制外部设备的常用电路 4.掌握8255的使用方法 三、设计原理及方案 设计原理 步进电机驱动原理是通过对每相线圈中的电流的顺序切换(实验中的步进电机有四相线圈,每次有二相线圈有电流,有电流的相顺序变化),来使电机作步进式旋转。 驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 利用 8255对四相步进电机进行控制。当对步进电机施加一系列连续不断的控制脉冲时,它可以连续不断地转动。每一个脉冲信号对应步进电机的某一相或两相绕组的通电状态改变一次,也就对应转子转过一定的角度(一个步距角)。当通电状态的改变完成一个循环时,转子转过一个齿距。四相步进电机可以在不同的通电方式下运行,常见的通电方式有单(单相绕组通电)四拍(A-B-C-D-A…),双(双相绕组通电)四拍(AB-BC-CD-DA-AB…),八拍(A-AB-B-BC-C-CD-D-DA-A…)等。 通过编程对8255的输出进行控制,使输出按照相序表给驱动电路供电,则步进电机的输入也和相序表一致,这样步进电机就可以正向转动或反向转动。 硬件连接图 四.实现方法 .步进电机控制程序流图

三相双三拍步进电机控制系统设计要点

摘要 进步电机是几点数字控制系统中常用的控制元件之一。由于其精度高,体积小,控制方便灵活,因此在智能仪表和位置中得到广泛的应用。 步进电机是机电控制中一种常见的执行机构。步进电机最早是在1920年由英国人所开发。1950年后期晶体管的发明也逐渐应用在步进电机上,这对于数字化的控制变得更为容易。以后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解性能、高响应性、信赖性等灵活控制性高的机械系统中。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。他易于实现与计算机或其他数字元件接口,适用于数字控制系统。

1 课程设计任务和要求 课程设计任务 设计一个三相步进电机控制系统,设计一个计算机步进电机程序控制系统,可以对步进电机的转速、转向以及位置进行控制。通过设计,掌握步进电机的工作原理、掌握步进电机控制系统的设计原理、设计步骤,进一步提高综合运用知识的能力。 要求完成的主要任务: (1)设计接口电路和驱动电路,对步进电机进行控制。 (2)选择控制算法,编写控制程序,实现三相步进电机在双三拍工作方式下先正转90度,然后再反转60度,要求其速度可调,转向可控。 (3)写出设计说明书。 课程任务要求 (1)查阅资料,确定设计方案 (2)选择器件,设计硬件电路,并画出原理图和PCB图 (3)画出流程图,编写控制程序 (4)撰写课程设计说明书 2 步进电机的概述 2.1 步进电机的特点 1)一般步进电机的精度为步进角的3-5%,且不累积。 2)步进电机外表允许的温度高。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。 4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的

步进电机控制开题报告

毕业设计(论文)开题报告 学生专业 学号姓名班级 指导教师及职称 题目步进电机控制设计结合毕业设计(论文)课题情况,根据所 查阅的文献资料,每人撰写500 字左右的文献综述: 一、选题的背景和意义: 步进电动机是数字控制系统中一种十分重要的自动化执行元件,在工业自动化装备,办公自 动化设备中有着广泛的运用,近年来,控制技术、计算机技术以及微电子技术的迅速发展,有力 地推动了步进电动机控制技术的进步,提高了步进电动机运动控制装置的应用水平。过去电动机 的控制多用模拟法,随着计算机应用技术的迅速发展,电动机的控制也发生了深刻的变化,步进 电机常常和计算机一起组成高精度的数字控制系统。模拟控制已经逐渐被使用单片机为主的混合 控制和全数字控制所取代。 步进电机是一种将电脉冲信号转换成角位移的执行机构,其转子角位移与输入脉冲的频率成 正比,通过改变脉冲频率可以实现大范围的调速;同时,步进电机易于与计算机和其他数字元件 接口,因此被应用于各种数字控制系统中[2] ,本设计的步进电动机控制系统由单片机(控制电路),脉冲分配电路、功率放大电路(驱动电路)、步进电动机及电源系统组成组成。 步进电动机是用电脉冲信号进行控制,将电脉冲信号转换成相应的角位移或线位移的微电动 机,它最突出的优点是可以在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反 转控制及制动等,并且用其组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自 动化设备以及各种控制装置等众多领域有着极其广泛的应用。随着微电子和计算机技术的发展, 步进电动机的需求量与日俱增,研制步进电机驱动器及其控制系统具有十分重要的意义。

单片机课设步进电机控制正反转

单片机课程设计报告设计题目:步进电机控制系统 学院自动化与信息工程学院 专业电气工程及其自动化 班级 姓名 学号 指导教师王水鱼 2010 年秋季学期

目录 1.设计目的 (2) 2.设计的主要内容和要求 (2) 3.题目及要求功能分析 (2) 4.设计方案 (5) 4.1 整体方案 (5) 4.2 具体方案 (5) 5.硬件电路的设计 (6) 5.1 硬件线路 (6) 5.2 工作原理 (7) 5.3 操作时序 (8) 6. 软件设计 (8) 6.1 软件结构 (8) 6.2 程序流程 (9) 6.3 源程序清单 (9) 7. 系统仿真 (9) 8. 使用说明 (10) 9. 设计总结 (10) 参考文献 (11) 附录 (12)

步进电机的控制 1.设计目的 (1)熟悉单片机编程原理。 (2)熟练掌握51单片机的控制电路和最小系统。 (3)单片机基本应用系统的设计方法。 2.设计的主要内容和要求 (1)查阅资料,了解步进电机的工作原理。 (2)通过单片机给参数控制电机的转动。 (3)通过按钮控制启停及反转。 (4)其他功能。 3.题目及要求功能分析 步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。 三相单、双六拍步进电机的结构和工作原理: 三相单、双六拍步进电机通电方式:这种方式的通电顺

三相步进电机原理与控制方法资料(精)

本模块由45BC340C型步进电机及其驱动电路组成。 (一步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机。因此步进电动机是一种把脉冲变为角度位移(或直线位移的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。

模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电,产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a;接着B相通电(A、C 两相不通电,转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置 2、六拍通电方式的基本原理 设A相首先通电,转子齿与定子A、A′对齐(图3a。然后在A相继续通电的情况下接通B相。这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子转到两个磁拉力平衡为止。这时转子的位置如图3b所示,即转子从图(a位置顺时针转过了15°。接着A相断电,B相继续通电。这时转子齿2、4和定子B、B′极对齐(图c,转子从图(b的位置又转过了15°。

步进电机角度控制(1)

课程设计 课程名称微型计算机控制技术 题目名称步进电机角度控制(1) 学生学院自动化学院 专业班级自动化(4)班 学号 学生姓名 指导教师 2012 年 6 月26 日

一、系统设计说明 1.硬件设计 本次设计要求通过键盘按键实现对步进电机的转动次数和每次转动的角度的控制,并通过数码管显示出来。 本方案中通过按键对步进电机的转动角度进行设定,给各个按键设置不同的键值。按下按键时,给8255A一个信号设定步进电机下一步的动作。8086通过8255A的数据总线读取该信号,并作出反应,通过给8255A一系列的指令驱动其工作,从而驱动步进电机和LED 显示器 2.软件设计 3.显示模块设计说明: 为使显示程序具有通用性和灵活性,在8086内设置一个显示缓冲区,显示缓冲区的每个单元与LED的各位一一对应。当主程序需要显示,只需将要显示的字符送入显示缓冲区,然后调用显示子程序。显示子程序的任务则是逐一取出显示缓冲区中的字符、查字形表转换成相应字型码,然后通过字段口输出显示。显示模块是用四位七段数码管来显示转动次数和每次转动的角度。给八个按键设置不同的子程序,当按下按键时,根据事先设定好的各个按键对应的转动角度的值输出到数码管进行显示。 步进电机模块设计说明: 在此设计中,采用的是八拍步进电机。步进电机控制程序就是完成环形分配器的任务,从而控制电动机的转动,以达到控制转动角度和位移的目的。控制模型可以以立即数的形式一一给出。对于步进电机模块的程序设计采用循环程序设计方法。先把转动的次数和角度的控制模型存放在内存单元中,然后再逐一从单元中取出控制模块并输出。首先启动,按下按键选择步进电机的角度,然后读入转动的控制模型驱动步进电机转动。 二、程序设计流程图

西门子200系列PLC直流步进电机控制方法

直流步进电机plc控制方法 系统功能概述: 本系统采用PLC通过步进电机驱动模块控制步进电机运动。当按下归零按键时,电机1和电机2回到零点(零点由传感器指示)。当按下第一个电机运行按键时,第一个电机开始运行,直到运行完固定步数或到遇到零点停止。当按下第二个电机运行按键时,第二个电机开始运行,运行完固定步数或遇到零点停止。两电机均设置为按一次按键后方向反向。电机运行时有升降速过程。 PLC输入点I0.0为归零按键,I0.1为第一个电机运行按键,I0.2为第二个电机运行按键,I0.3为第一个电机传感器信号反馈按键,I0.4为第二个电机传感器信号反馈按键。 PLC输出点Q0.0为第一个电机脉冲输出点,Q0.1为第二个电机脉冲输出点,Q0.2为第一个电机方向控制点,Q0.3为第二个电机方向控制点,Q0.4为电机使能控制点。 所用器材: PLC:西门子S7-224xpcn及USB下载电缆。编程及仿真用软件为V4.0 STEP 7 MicroWIN SP3。 直流步进电机2个,微步电机驱动模块2个。按键3个。24V开关电源一个。导线若干。 各模块连接方法: PLC与步进电机驱动模块的连接:

驱动模块中EN+、DIR+、CP+口均先接3k电阻,然后接24V 电源。 第一个驱动模块CP-接PLC的Q0.0,DIR-接PLC的Q0.2,EN-接PLC的Q0.4 第二个驱动模块CP-接PLC的Q0.1,DIR-接PLC的Q0.3,EN-接PLC的Q0.4 注意: 1、PLC输出时电压为24V,故和驱动器模块连接时,接了3k 电阻限流。 2、由于PLC处于PTO模式下只有在输出电流大于140mA时,才能正确的输出脉冲,故在输出端和地间接了200欧/2w下拉电阻,来产生此电流。(实验室用的电阻功率不足,用200欧电阻时功率至少在24*24/200=2.88w,即用3w的电阻) 3、PLC与驱动模块连接时,当PLC输出低电平时不能将驱动模块电平拉低,故在EN-和DIR-上接了200欧/2W下拉电阻 驱动模块与电机接法: 驱动模块的输出端分别与电机4根线连接 电机传感器与PLC连接: 传感器电源接24v,信号线经过240欧电阻(试验中两个470电阻并联得到)与24v电源上拉后,信号线接到PLC的I0.3和I0.4

单片机课程设计-单片机控制步进电机

课程设计报告 题目单片机控制步进电机 课程名称单片机原理及接口技术 院部名称 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 课程设计学时 指导教师高峰 金陵科技学院教务处制 【注:根据课程设计大纲第四项具体要求撰写课程设计报告】

目录 1设计任务和要求 (3) 2设计思路 (4) 3系统硬件设计 (5) 3.1 硬件电路的工作原理 (5) 3.2步进电机模块 (5) 3.3控制模块 (6) 3.4主要元件介绍: (6) 4软件编程 (11) 5 调试过程与结果 (20) 5.1正转结果显示: (20) 5.1.1正转加速: (21) 5.1.2正转减速: (21) 6 总结与体会 (24) 7 参考资料 (26) 8 附录 (26)

1设计任务和要求 单片机课程设计是考察学生利用所学过的专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。 本次设计考核的能力主要有: 1)专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电 气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅 助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。 2)项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT汇报与 口头表达能力。 3)电气与自动化系统的设计与实际应用能力。 要求完成的工作量包括: 1)现场仿真演示效果。 2)学生结合课题进行PPT演讲与答辩。 3)学生上交课题要求的各类设计技术文档。

步进电机控制系统设计

课程设计任务书 设计题目:微机步进电机控制系统设计 设计目的: 1.巩固和加深课堂所学知识; 2.学习掌握一般的软硬件的设计方法和查阅、运用资料的能力; 3.通过步进电机控制系统设计与制作,深入了解与掌握步进电机的运行方式、方向、速 度、启/停的控制。 设计任务及要求:(在规定的时间内完成下列任务) 任务:控制四相步进电机按双八拍的运行方式运行。按下开关SW1时启动步进电机,按ESC键停止工作。采用循环查表法,用软件来实现脉冲循环分配器的功能 对步进电机绕组轮流加电。 要求对题目进行功能分析(四项功能:快速顺时针旋转,慢速顺时针旋转, 快速逆时针旋转和慢速逆时针旋转),进行步进电机远程控制系统硬件电路设 计,画出电路原理图、元器件布线图、实验电路图;绘制程序流程图,进行 步进电机控制程序设计(采用8086汇编语言);系统调试、运行,提交一个 满足上述要求的步进电机控制系统设计。 时间安排:(部分时间,某些工作可以自己安排重叠进行) 具体要求:设计报告撰写格式要求(按提供的设计报告统一格式撰写), 具体内容如下: ①设计任务与要求②总体方案与说明 ③硬件原理图与说明④实验电路图与说明 ⑤软件主要模块流程图 ⑥源程序清单与注释 ⑦问题分析与解决方案(包括调式记录、调式报告,即在调式过程中遇到的主要问 题、解决方法及改进设想); ⑧小结与体会 附录:①源程序(必须有简单注释)②使用说明③参考资料 指导教师签名:08 年12 月01 日 教研室主任(或责任教师)签名:年月日

目录 第1章需求分析 (1) 1.1课程设计题目 (1) 1.2步进电机介绍 (1) 1.3课程设计任务及要求 (1) 1.4软硬件运行环境及开发工具 (1) 第2章概要设计 (2) 2.1设计原理及实现方法 (2) 2.1.1 步进电机控制原理 (2) 2.1.2微机步进电机控制系统原理图 (2) 2.1.3 运行方式与方向的控制——循环查表法 (3) 2.1.4步进电机的启/停控制——设置开关 (4) 2.2微机步进电机控制系统设计流程图 (4) 第3章详细设计 (5) 3.1 硬件设计与实现 (5) 3.2软件设计 (5) 3.2.1正向慢转子程序 (5) 3.2.2正向快转子程序 (6) 3.2.3反向慢转子程序 (6) 3.2.4反向快转子程序 (6) 3.2.5长延时子程序 (7) 3.2.6短延时子程序 (7) 第4章系统调试与操作说明 (7) 4.1系统调试 (7) 4.2 操作说明 (8) 第5章课程设计总结与体会 (8) 参考文献 (9) 附录微机步进电机控制系统源程序 (9)

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。要解决这个问题,必须采用加减速的办法。就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。这就是我们常说的“加减速”方法。 步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。 所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。加速和减速的原理是一样的。以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。 步电机系统解决方案

加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。使用单片机或者PLC,都能够实现加减速控制。对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。通常,完成步进电机的加减速时间为300ms以上。如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以 步电机系统解决方案

步进电机控制方法

第四节 步进电机的控制与驱动 步进电机的控制与驱动流程如图4-11所示。主要包括脉冲信号发生器、环形脉冲分配器和功率驱动电路三大部分。 步进脉冲 方向电平 图4-11 步进电机的控制驱动流程 二、步进电机的脉冲分配 环形分配器是步进电机驱动系统中的一个重要组成部分,环形分配器通常分为硬环分和软环分两种。硬环分由数字逻辑电路构成,一般放在驱动器的内部,硬环分的优点是分配脉冲速度快,不占用CPU的时间,缺点是不易实现变拍驱动,增加的硬件电路降低了驱动器的可靠性;软环分由控制系统用软件编程来实现,易于实现变拍驱动,节省了硬件电路,提高了系统的可靠性。 1.采用硬环分时的脉冲分配 采用硬环分时,步进电机的通电节拍由硬件电路来决定,编制软件时可以不考虑。控制器与硬环分电路的连接只需两根信号线:一根方向线,一根脉冲线(或者一根正转脉冲线,一根反转脉冲线)。假定控制器为AT89S52单片机,晶振频率为12MHz,如图4-18:P1.0输出方向信号,P1.1输出脉冲信号。 则控制电机走步的程序如下: (1)电机正转100步 MOV 0FH,#100D ;准备走100步 CONT1: SETB P1.0 ;正转时P1.0=1 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿 MOV 0EH,#4EH ;两脉冲之间延时20000μs(决定电机的转速) MOV 0DH,#20H ;20000的HEX码为4E20 CALL DELAY ;调用延时子程序 DJNZ 0FH,CONT1 ;循环次数减1后,若不为0则继续,循环100次 RET (2)电机反转100步 MOV 0FH,#100D ;准备走100步 CONT2: CLR P1.0 ;反转时P1.0=0 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿

基于单片机控制的步进电机控制器课程设计

基于单片机控制的步进电机控制器课程设计任务书一.设计要求 (一)基本功能 1.实现步进电机的正反转控制。 2.实现步进电机的加速控制。 3.实现步进电机的减速控制。 如过载保护、欠压保护、短路保护和防飞车等功能。 (二)扩展功能 任意设定一点为圆心,实现一个直径为10cm的圆形轨迹运动。 二.设计内容 (1)画出电路原理图,正确使用逻辑关系; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; 三.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 四.答辩 在规定时间内,完成叙述并回答问题。 五.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。

目录 1引言 (1) 2总体设计方案 (1) 2.1设计思路 (1) 2.1.1 硬件设计 (1) 2.1.2软件设计 (1) 2.2总体设计方框图 (2) 3 设计原理分析 (2) 3.1 控制按钮分析 (2) 3.2 复位电路和晶振电路分析 (3) 3.3 保护电路分析 (3) 3.4 输出驱动电路 (4) 4 总结与体会 (5) 参考文献 (6) 附录(一) (7) 附录(二) (8)

基于单片机控制的步进电机控制器 摘要:本设计为电子工程专业学生在校期间的单片机课程设计实习。是基于单片机控制的步进电机控制器。在科学技术迅速发展的今天,自动化控制技术日益完善和成熟,对步进电机的要求也越来越高,社会上所需这方面的人才也越来越多,通过本次实习,可以提高学生的动手动脑,全面综合的运用所学专业知识的能力,增强学习专业知识和技能的兴趣,掌握单片机的运用方法和技巧,深入了解步进电机的工作原理。学会用科学技术来解决生活,生产中遇到的实际问题,真正做到学以致用,造福社会。本设计是通过单片机按顺序给绕组施加有序的脉冲电流,就可以控制步进电机的转动,从而实现数字和角度的转换,转动的角度大小与施加的脉冲数成正比,转动的速度与脉冲频率成正比,而转动方向则与脉冲的顺序有关。 关键词:单片机步进电机控制系统 1 引言 步进电动机是数字控制电动机。它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电动机就转动一个角度或直线位移一步,也由此称为“步进电动机”,又称“脉冲电动机”。近十年来,数字技术,计算机技术和永磁材料的迅速发展,推动了步进电动机的发展,为步进电动机的应用开避了广阔的前景。步进电动机运用广泛,常用于军事雷达,机器人,CNC数控机床等精密控制系统。 目前,在工业中主要使用的是反应式步进电动机,它由定子和转子两部分组成。一般相数为2,3,4,5,6,每相两个绕组套在一对定子磁极上,成为控制绕组,转子是无绕组铁心。其具有力矩/惯性比高,频率响应快,步进频率高,不通电时可以自由转动,可以正反方向旋转,而且结构简单,工作寿命长。 2 总体设计方案 2.1 设计思路 2.1.1 硬件设计 (1)中心电路:中心电路采用TA89S51单片机芯片,晶振采用12MHZ,具有上电自动复位和手动复位功能。 (2)输入电路:输入电路由5个按钮组成,功能分别为正转,反转,加速,减速和停止,经过上拉电阻分别接到单片机P1口对应端。 (3)输出电路:由单片机P2口相应端输出有序的电脉冲,经过74LS04反相,驱动模拟灯有规律点亮,并经过2803A驱动器驱动,带动步进电机转动。 (4)保护电路:由模拟飞车保护电路,过载保护电路,欠压保护电路和短路保护电路组成。当电路异常时,有灯指示,并且将保护信号送到单片机P0.0口进行停车保护。 2.1.2 软件设计

步进电机角度控制 报告 最终

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:步进电机角度控制 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2014年10 月 重庆邮电大学自动化学院制

摘要 本设计以STC12C5A60S2单片机为控制核心,主要由L298电机驱动模块,步进电机,按键输入等模块组成。步进电机的特性决定了其精确控制步进角的功能,在此次课程设计中我们采用了28BYJ48步进电机,其步进角为0.6°基本符合设计需求。系统由按键设定目标角度,之后将旋转角度折合为脉冲数驱动步进电机,从而达到角度控制的目的,在控制过程中同时将已给脉冲数折合回角度量,通过1602液晶显示实时显示,经检测控制系统基本达到题目要求。 关键词:51单片机步进电机 L298电机驱动

目录 摘要 ............................................................................................................................................................ I 一、设计题目 (3) 二、设计报告正文 (3) 2.1 系统设计思路及总体方案 (4) 2.1.1 设计思路 (4) 2.1.2 系统控制总体方案 (4) 2.2 总体方案论证 (4) 2.2.1 主控芯片的选择 (4) 2.2.2 电机选择........................................................................................ 错误!未定义书签。 2.2.3 驱动芯片选择 (5) 2.2.4液晶显示器选择 (6) 2.3 硬件电路设计 (6) 2.3.1 硬件设计总体方案 (6) 2.3.2 51单片机最小系统硬件设计 (7) 2.3.3按键设计 (8) 2.3.4显示单元硬件设计 (8) 2.3.5电机驱动硬件设计 (9) 2.3.6步进电机 (10) 2.3.7原理图与PCB板 (12) 2.4 程序设计 (13) 2.4.1 程序流程 (13) 2.4.2 LCD1602显示程序 (14) 2.4.3步进电机驱动程序 (15) 四、设计总结 (13) 参考文献 (18) 附录(源代码) (19) 附录一:主程序(main.c) (19) 附录二:LCD1602程序 (19)

步进电机课程设计报告

摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给步进电机加一个脉冲信号,步进电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性频率来实现步进电机的调速,并且步进电机没有积累误差。使得在速度、位置等控制领域用步进电机来控制变得非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本次设计中步进电机的给定速度由电位器通过A/D转换输入。 关键词:步进电机调速单片机 A/D转换器

前言 把电脉冲信号变换成角位移以控制转子转动的微特电机。在自动控制装置中作为执行元件。每输入一个脉冲信号,步进电动机前进一步,故又称脉冲电动机。步进电动机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。步进电动机的驱动电源由变频脉冲信号源、脉冲分配器及脉冲放大器组成,由此驱动电源向电机绕组提供脉冲电流。步进电动机的运行性能决定于电机与驱动电源间的良好配合。主要用于数字控制系统中,精度高,运行可靠。如采用位置检测和速度反馈,亦可实现闭环控制。步进电动机已广泛地应用于数字控制系统中,如数模转换装置、数控机床、计算机外围设备、自动记录仪、钟表等之中,另外在工业自动化生产线、印刷设备等中亦有应用。 现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛,本次设计使用四相步进电机。

步进电机速度控制系统设计

目录 1 总体方案的确定 (1) 1.1 对步进电机的分析 (1) 1.2 电机的控制方案 (2) 1.3 控制算法的方案 (3) 1.4 串口通讯的模拟 (3) 2 硬件的设计与实现 (4) 2.1 微处理器的选择 (4) 2.2 控制电路的实现 (4) 2.3 键盘和显示电路 (6) 3 软件的设计与实现 (6) 3.1 控制信号输入程序 (7) 3.2 步进电机控制程序设计 (8) 3.3 程序分析及说明 (9) 4 系统的仿真与调试 (10) 4.1 程序的调试 (11) 4.2 串口通信的调试 (11) 4.3 调试结果及分析 (11) 5 设计总结 (13) 参考文献 (14) 附录 (15)

步进电机速度控制系统设计报告 1 总体方案的确定 系统以单片机为核心,接收并分析来自键盘或串口的控制指令,经过CPU 的逻辑计算输出控制信息,让步进电机按要求转动。由于步进电机是开环元件,系统不需反馈环节,但也同时要求控制信号足够精确。此外,为实现单片机与电机之间信号对接,需要加入步进电机驱动单元。 1.1 对步进电机的分析 步进电机又叫脉冲电机,它是一种将电脉冲信号转化为角位移的机电式数模转换器。在开环数字程序控制系统中,输出控制部分常采用步进电机作为驱动元件。步进电机控制线路接收计算机发来的指令脉冲,控制步进电机做相应的转动,步进电机驱动数控系统的工作台或刀具。很明显,指令脉冲的总数就决定了数控系统的工作台或刀具的总位移量,指令脉冲的频率决定了移动的速度。因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。 步进电机的工作就是步进转动。在一般的步进电机工作中,其电源都是采用单极性的直流电源。要是步进电机转动,就必须对步进电机定子的各相绕组以适当的时序进行通电。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,即可达到调速的目的。本设计是用单片机输出可调脉冲作为单片机的控制信号,通过改写脉冲频率调节单片机转速。 常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),永磁式步进一般为两相,转矩和体积较小;反应式步进一般为三相,可实现大转矩输出,但噪声和振动都很大。混合式步进是指混合了永磁式和反应式的优点,它又分为两相和五相,应用最为广泛。单片机管脚输出电压一般不足以驱动步进电机转动,所以需要在单片机和步进电机之间加入驱动电路。

几种常见步进电机控制方法庶谈

几种常见步进电机控制方法庶谈 摘要:本文对步进电机工作原理、运行性能进行了详细阐述,分析了步进电机细分驱动系统的作用和适用性,研究了步进电机常见的控制方法。 关键词:步进电动机;控制方法 1 简介 步进电机把电脉冲信号变换成角位移以控制转子转动的电机,是机电一体化的重要执行机构。步进电机整机结构简单,可以在宽广的频率范围内实现调速,其转速不受负载大小的影响,过载性好,动作相应快,控制方便,可实现快速起停、正反转控制。并且由其组成的开环系统物美价廉,实用可靠。伴随着自动化技术的突飞猛进,步进电机的运用的广度和深度与日俱增。 步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。反应式步进电机结构简单、成本低,动态性能弱、效率不高、发热量大,可靠性低;永磁式步进电机动态性能好、输出力矩大,但运转精度差;混合式步进电机集以上两种步进电机的优势于一身,输出力矩大、动态性能好,但结构复杂、成本高昂。市场是最为常见的主要是两相混合式步进电机,其突出的性价比使得其在步进电机市场中占据90%以上的市场份额。 2 PLC控制步进电机应用及举例 步进电机是数字控制电机,其驱动电路根据控制信号工作,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合单片机控制。通过单片机控制可以实现由脉冲分配进行控制换相顺序,由给定工作方式正序换相通电控制步进电机的(即实现步进电机正转或反转),通过改变两个脉冲的间隔控制步进电机的速度等调节。 如图1所示的35BY型永磁步进电机是该电机的接线图。要使用步进电机转动,只要轮流给各引出端通电即可。将COM端标识为C,只要AC、C、BC、C,轮流加电就能驱动步进电机运转。通过查阅电机的相关参数,得出控制电路的基本设计思路:工作电压为12V,最大电流为0.26A,选用ULN2003来作为驱动。通过P1.4-P1.7来控制线圈的通断(开机时,P1.4-P1.7均为高电平),将P1.4-P1.7顺序切换至低电平即可实现电机驱动运行。单片机控制35BY48S03型步进电机的电路原理图如图2所示。 ■ 图1 35BY型步进电机的接线图 ■

相关主题
文本预览
相关文档 最新文档