当前位置:文档之家› 高考数学函数单调性与最值试题选讲

高考数学函数单调性与最值试题选讲

高考数学函数单调性与最值试题选讲
高考数学函数单调性与最值试题选讲

第4讲 函数的单调性与最值

★知识梳理

函数的单调性定义:

设函数)(x f y =的定义域为A ,区间A I ?

如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间

如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间

如果用导数的语言来,那就是:

设函数)(x f y =,如果在某区间I 上0)(>'x f ,那么)(x f 为区间I 上的增函数; 如果在某区间I 上0)(<'x f ,那么)(x f 为区间I 上的减函数;

1.函数的最大(小)值

设函数)(x f y =的定义域为A

如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;

如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。

★重、难点突破

重点:掌握求函数的单调性与最值的方法

难点:函数单调性的理解,尤其用导数来研究函数的单调性与最值 重难点:1.对函数单调性的理解

(1) 函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域;

(2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即

)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

(3)若用导数工具研究函数的单调性,则在某区间I 上0)(>'x f (0)(<'x f )仅是)

(x f

为区间I 上的增函数(减函数)的充分不必要条件。

(4)关于函数的单调性的证明,如果用定义证明)(x f y =在某区间I 上的单

调性,那么就要用严格的四个步骤,即①取值;②作差;③判号;④下结论。但是要注意,不能用区间I 上的两个特殊值来代替。而要证明)(x f y =在某区间I 上不是单调递增的,只要举出反例就可以了,即只要找到区间I 上两个特殊的1x ,2x ,若21x x <,有

)()(21x f x f ≥即可。如果用导数证明)(x f y =在某区间I 上递增或递减,那么就证明在

某区间I 上0)(>'x f 或0)(<'x f 。

(5)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数x

y 1

=

分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数x

y 1

=

的单调递减区间为)0,(-∞和),0(+∞ (6)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)

。②复合函数的单调性规则是“异减同增”

2.函数的最值的求法

(1)若函数是二次函数或可化为二次函数型的函数,常用配方法。

(2)利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用函数的单调性求最值。

(3)基本不等式法:当函数是分式形式且分子分母不同次时常用此法(但有注意等号是否取得)。

(4)导数法:当函数比较复杂时,一般采用此法

(5)数形结合法:画出函数图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围。

★热点考点题型探析

考点1 函数的单调性

题型1:讨论函数的单调性

[例1] (2008广东)设R k ∈,函数??

?

??≥--<-=1,1,1,11

)(x x x x x f R x kx x f x F ∈-=,)()(.

试讨论函数)(x F 的单调性.

[解题思路]分段函数要分段处理,由于每一段都是基本初等函数的复合函数,所以应该用导数来研究。

[解析]: 因为?????≥--<-=1,1,1,11)(x x x x x f ,所以R x kx x kx x kx x f x F ∈??

?

??-----=-=,111

)()(.

(1)当x<1时,1-x>0,)1(,)1(1

)(2

<--='x k x x F

①当0≤k 时,0)(>'x F 在)1,(-∞上恒成立,故F(x)在区间)1,(-∞上单调递增;

②当0>k 时,令)

1(,0)1(1

)(2

<=--='x k x x F ,解得k k x -=1, 且当k k x -

<1时,0)(<'x F ;当11<<-x k

k

时,0)(>'x F 故F(x)在区间)1,(k k --∞上单调递减,在区间)1,1(k

k

-上单调递增;

(2)当x>1时, x-1>0,)1(,1

21

)(>---

='x k x x F ①当0≥k 时,0)(<'x F 在),1(+∞上恒成立,故F(x)在区间),1(+∞上单调递减;

②当0

21)(>=---

='x k x x F ,解得241

1k x +=, 且当24111k x +<<时,0)(<'x F ;当2

41

1k

x +>时,0)(>'x F 故F(x)在区间)411,1(2k +上单调递减,在区间),411(2

+∞+k 上单调递增; 综上得,①当k=0时,F(x)在区间)1,(-∞上单调递增,F(x)在区间),1(+∞上单调递减;

②当k<0时,F(x)在区间)1,(-∞上单调递增,在区间)41

1,1(2k

+上单调递减,在区间 ),411(2+∞+k 上单调递增;③当0>k 时,F(x)在区间)1,(k k --∞上单调递减,在区间

)1,1(k

k -上单调递增,在区间),1(+∞上单调递减.

【名师指引】求函数的单调区间或研究函数的单调性是高考的一个热点,分段落函数用注意分段处理.

题型2:研究抽象函数的单调性

[例2] 定义在R 上的函数)(x f y =,0)0(≠f ,当x >0时,1)(>x f ,且对任意的a 、b ∈R ,有f (a +b )=f (a )·f (b ). (1)求证:f (0)=1;

(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)求证:f (x )是R 上的增函数; (4)若f (x )·f (2x -x 2)>1,求x 的取值范围.

[解题思路]抽象函数问题要充分利用“恒成立”进行“赋值”,从关键等式和不等式的特点入手。 [解析](1)证明:令a =b =0,则f (0)=f 2(0).

又f (0)≠0,∴f (0)=1.

(2)证明:当x <0时,-x >0,

∴f (0)=f (x )·f (-x )=1. ∴f (-x )=

)

(1

x f >0.又x ≥0时f (x )≥1>0, ∴x ∈R 时,恒有f (x )>0.

(3)证明:设x 1<x 2,则x 2-x 1>0. ∴f (x 2)=f (x 2-x 1+x 1)=f (x 2-x 1)·f (x 1). ∵x 2-x 1>0,∴f (x 2-x 1)>1. 又f (x 1)>0,∴f (x 2-x 1)·f (x 1)>f (x 1). ∴f (x 2)>f (x 1).∴f (x )是R 上的增函数. (4)解:由f (x )·f (2x -x 2)>1,f (0)=1得f (3x -x 2)>f (0).又f (x )是R 上的增函数,

∴3x -x 2>0.∴0<x <3.

【名师指引】解本题的关键是灵活应用题目条件,尤其是(3)中“f (x 2)=f [(x 2-x 1)+x 1]”是证明单调性的关键,这里体现了向条件化归的策略. [新题导练]

1.(珠海北大希望之星实验学校09届高三)函数()()

2

2log 4f x x x =-的单调递减区间是

( )

A .(0,4);

B .(0,2);

C .(2,4);

D . (2,)+∞

[解析] C ;由042

>-x x 得40<

2

2log 4f x x x =-的单调递减区间是)4,2(

2.(东皖高级中学09届高三月考)函数212

log (56)y x x =-+的单调增区间为( )

A .52??+∞ ???,;

B .(3)+∞,

;C .52??-∞ ???

,;D .(2)-∞, [解析] D ;由0652

>+-x x 得2x ,又函数4

1)25(6522-

-=+-=x x x u 在(2)-∞,上是减函数,u y 2

1log =在),0(+∞上是减函数,所以函数

212

log (56)y x x =-+的单调增区间为(2)-∞,

3. (2008全国Ⅰ卷)已知函数32

()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;

(Ⅱ)设函数()f x 在区间2

133??-- ???

,内是减函数,求a 的取值范围. [解析] (1)3

2

()1f x x ax x =+++;(2)74

a ≥

(1)3

2

()1f x x ax x =+++求导:2

()321f x x ax '=++ 当2

3a

≤时,0?≤,()0f x '≥,()f x 在R 上递增

当2

3a >,()0f x '=

求得两根为3

a x -=

即()f x

在?-∞ ??

递增,

??

递减,?

+∞????

递增 (2

)2

31

33

a -?

-+?-??

,且23a >解得:7

4

a ≥

考点2 函数的值域(最值)的求法 题型1:求分式函数的最值

[例3] (2000年上海)已知函数x

a

x x x f ++=2)(2).,1[,+∞∈x

当2

1

=

a 时,求函数)(x f 的最小值; [解题思路]当21=a 时,221

)(++

=x

x x f ,这是典型的“对钩函数”,欲求其最小值,可以考虑均值不等式或导数; [解析]当21=

a 时,221

1)(',221)(x

x f x x x f -=++

= 1≥x ,∴0)(>'x f 。∴)(x f 在区间),1[+∞上为增函数。 ∴)(x f 在区间),1[+∞上的最小值为2

7

)1(=

f 。 【名师指引】对于函数,221

)(++

=x

x x f 若0>x ,则优先考虑用均值不等式求最小值,但要注意等号是否成立,否则会得到2222122)21()(+=+?≥++

=x

x x x x f 而认为其最小值为22+,但实际上,要取得等号,必须使得x x 21=

,这时),2

1

[+∞?x 所以,用均值不等式来求最值时,必须注意:一正、二定、三相等,缺一不可。其次,不等

式恒成立问题常转化为求函数的最值。本题考查求函数的最小值的三种通法:利用均值不等式,利用函数单调性,二次函数的配方法,考查不等式恒成立问题以及转化化归思想; 题型2:利用函数的最值求参数的取值范围

[例4] (2000年上海)已知函数x

a

x x x f ++=2)(2).,1[,+∞∈x

若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围。

[解题思路] 欲求参数a 的取值范围,应从[1,),()0x f x ∈+∞>恒成立的具体情况开始。

[解析] 02)(2>++=

x a

x x x f 在区间),1[+∞上恒成立; ∴022>++a x x 在区间),1[+∞上恒成立; ∴a x x ->+22在区间),1[+∞上恒成立;

函数x x y 22+=在区间),1[+∞上的最小值为3,∴3<-a

即3->a

【名师指引】这里利用了分离参数的方法,将问题转化为求函数的最值。 题型3:求三次多项式函数的最值

[例5](09年高州中学)已知a 为实数,函数))(1()(2

a x x x f ++=,若0)1('=-f ,求函数)(x f y =在3

[,1]2

-

上的最大值和最小值。 [解题思路]求三次多项式函数在闭区间上的最值,应该用导数作为工具来研究其单调性。 [解析]∵123)(,)(0)1(223++='+++==-ax x x f a x ax x x f f ,由,, ,2,0123==+-∴a a ……………………3分

143)(2++='∴x x x f ……………………4分

)1)(3

1

(3)(++='x x x f 由 得:

当31

10)(->-<>'x x x f 或时, ……………………5分

当31

10)(-<<-<'x x f 时,

……………………6分 因此,)(x f 在区间]1,31[]1,23[---和内单调递减,而在]3

1

,1[--内单调递减,

且27

50

)31()(,2)1()(=-==-=f x f f x f 极小值极大值

又813)23(=-f 8

13

2750,6)1(>=且f ,

8

13

)23(,6)1(]1,23[)(=-=-∴f f x f 最小值上的最大值在,………………10分

【名师指引】用导数来研究其单调性和最值是高考考查的重点和热点,同时也是难点,要求考生熟练掌握用导数来研究其单调性和最值的方法和步骤。

[新题导练]

4.(09年广东南海)若函数2

13ln()1x y x x +=+-??

????-∈21,21x 的最大值与最小值分别为M,m ,则M+m =

[解析] 6;由)]1ln()1[ln()11ln(

)(22

x x x x x

x x f --+=-+=知)(x f 在]2

1,0[上是增函数 又因为函数)11ln()(2

x x x x f -+=是奇函数,所以函数2

13ln()1x y x x +=+-??

????-∈21,21x 是增函数,故M+m=6)]2

1121

1ln()21(3[)]211211ln(

)21(3[22=+--++-++ 5.(高州中学09届模拟)已知函数)0(4

)(2≠++=

x x

ax x x f 。 (Ⅰ)若)(x f 为奇函数,求a 的值;

(Ⅱ)若)(x f 在),3[+∞上恒大于0,求a 的取值范围。 [解析](Ⅰ)0=a ;(Ⅱ)a 的取值范围为3

13

->a (Ⅰ))(x f 的定义域关于原点对称

若)(x f 为奇函数,则)(4

)()()(2x f x

x a x x f -=-+-+-=

- ∴0=a (Ⅱ)2

41)(x x f -

=' ∴在),3[+∞上0)(>'x f ∴)(x f 在),3[+∞上单调递增 ∴)(x f 在),3[+∞上恒大于0只要)3(f 大于0即可, ∴3

130133-

>?>+a a 若)(x f 在),3[+∞上恒大于0,a 的取值范围为3

13-

>a 备选例题:(06年重庆)已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

[解析](Ⅰ)因为()f x 是奇函数,所以0)0(=f ,即1

11201()22x

x b b f x a a +--=?=∴=++ 又由)1()1(,--=∴f f 知1

112

2 2.41

a a a -

-=-?=++

(Ⅱ)[解法一]由(Ⅰ)知11211

()22221

x x x f x +-==-+++,易知()f x 在(,)-∞+∞上

为减函数。又因()f x 是奇函数,从而不等式: 22(2)(2)0f t t f t k -+-< 等价于222(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得:

2222t t k t ->-.即对一切t R ∈有:2320t t k -->,

从而判别式14120.3

k k ?=+

[解法二]由(Ⅰ)知1

12()22

x

x f x +-=+.又由题设条件得: 2

2

222221

21

1212022

22

t t

t k

t t t k ---+-+--=

<++,

即222221

221

2(2

2)(12

)(2

2)(12

)0t k t t

t t t k

-+--+-+-++-<,

整理得2

3221,t

t k

-->因底数2>1,故:2320t t k -->

上式对一切t R ∈均成立,从而判别式14120.3

k k ?=+

★抢分频道

基础巩固训练:

1.(华师附中09高三数学训练题)若函数b a x x x f +-+=||)(2

在区间]0,(-∞上为减函数,则实数a 的取值范围是( ) A.0a ≤;B.1a ≤;C.0a ≥;D.1a ≥

[解析] C ;因为?????<++-≥+-+=+-+=)

()

(||)(222

a x

b a x x a x b a x x b a x x x f ,由其图象知,若函数

b a x x x f +-+=||)(2在区间]0,(-∞上为减函数,则应有0a ≥

2.(普宁市城东中学09)若函数3

2)(k

x k x x h +-=在),1(+∞上是增函数,则实数k 的取值范围是( )

A .[2,)-+∞;

B .[2,)+∞;

C .(,2]-∞-;

D .(,2]-∞ [解析] A ;若函数32)(k x k x x h +-

=在),1(+∞上是增函数,则02)(2≥+='x

k

x h 对于),1(+∞∈x 恒成立,即22x k -≥对于),1(+∞∈x 恒成立,而函数)),1[(22+∞∈-=x x u 的

最大值为2-,实数k 的取值范围是[2,)-+∞

3.(09汕头金中)下列四个函数中,在区间)4

1

,0(上为减函数的是( )

A .x

x y ??

? ??=21;B .x y )21(-=;C .x x y 2log =;D .31

x y = [解析] C ;显然x y )21(-=在)41,0(上是增函数,31

x y =在)41

,0(上也是增函数

而对x

x y ??

? ??=21求导得)2ln 1()21(2ln )21()21(x x y x x x -=-=',对于)41,0(∈x ,0>'y

,所以x

x y ??

? ??=21在区间)41,0(上为增函数,从而应选择C 4.(09潮州金山中学)已知函数12)(2

++=x x x f ,若存在实数t ,当[]m x ,1∈时,

x t x f ≤+)(恒成立,则实数m 的最大值是( )

A .1;

B .2;

C .3;

D .4

[解析] D ;依题意,应将函数)(x f 向右平行移动得到)(t x f +的图象,为了使得在[]m ,1上,

)(t x f +的图象都在直线x y =的下方,并且让m 取得最大,则应取2-=t ,这时m 取得

最大值4

5.(06北京改编)已知(31)4,1

()log ,1

a a x a x f x x x -+

值范围是

[解析] )3

1

,71[;要x y a log =在)1[∞+,

上是减函数,则10<

3

171<≤a 6.(2008浙江理)已知t 为常数,函数t x x y --=22

在区间[0,3]上的最大值为2,

则=t

[解析]1;显然函数t x x y --=22

的最大值只能在1=x 或3=x 时取到,

若在1=x 时取到,则221=--t ,得1=t 或3-=t

1=t ,3=x 时,2=y ;3-=t ,3=x 时,6=y (舍去);

若在3=x 时取到,则269=--t ,得1=t 或5=t

1=t ,1=x 时,2=y ;5=t ,1=x 时,6=y (舍去) 所以1=t

综合提高训练:

7.(06陕西改编)已知函数2()24(03),f x ax ax a =++<<若01,2121=-++

[解析] 12()()f x f x <;函数2()24(03),f x ax ax a =++<<的图象开口向上,对称轴为1-=x ,因30<

)2

1

,1(221-∈+x x ,又 21x x <,所以2x 的对应点到对称轴的距离大于1x 的对应点到对称轴的距离,故 12()()f x f x <

8.已知函数)21(1223)(≠--=

x x x x f ,求)2010

2009

()20102()20101(f f f +++ 的值 [解析]

26027;为31

)1(22

)1(31223)1()(=----+--=

-+x x x x x f x f , 令)20102009

()20102()20101(

f f f S +++= ,则 )2010

1()20102008()20102009(f f f S +++= ,

从而

3

2009)]20101

()20102009([)]20102008()20102([)]20102009()20101(

[2?=++++++=f f f f f f S

所以26027)20102009()20102()20101(=+++=f f f S 9.(09年汕头金中)对于函数M x f x x x f ≥+=)(,2)(2

在使成立的所有常数M 中,我

们把M 的最大值-1叫做的下确界x x x f 2)(2

+=,且则对于R ∈b a ,,0,不全为b a 2

2

2)

(b a b a ++的下确界为( )

A .

21;B .2;C .4

1

;D .4 [解析] A ;因为2

1

)()(2)(2

222222222222=++++≥+++=++b a b a b a ab b a b a b a b a , 故2

2

2)(b a b a ++的下确界为21

10.(08年湖南)设][x 表示不超过x 的最大整数(如2]2[=,1]4

5

[=),对于给定的n ∈N *

,

定义[][](1)(1),(1)(1)

x n

n n n x C x x x x --+=

--+ x ∈[)1,+∞,

求当x ∈3,32

??????

时,函数x C 8的值域 [解析] ]28,3

28(]316,

4( ;当)2,23[∈x 时,1][=x ,x C x 8

8=,因为函数x u 8=在)

2,23[上是减函数,得316

84≤<

x ;当)3,2[∈x 时,2][=x ,)

1(568-=x x C x ,因为6)1(2<-≤x x ,由单调性得28)1(56328≤-

时,函数x C 8的值域是]28,328(]316,4(

高一数学函数的单调性知识点

高一数学函数单调性 一、函数单调性知识结构 【知识网络】 1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间 4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用 二、重点叙述 1. 函数单调性定义 (一)函数单调性概念 (1)增减函数定义 一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 : 如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数; 如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。 如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。 (2)函数单调性的内涵与外延 ⑴函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,是一个局部概念。 ⑵由函数增减性的定义可知:任意的x1、x2∈D, ① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性) ② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小) ③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。(可用于比较自变量值的大小) 2. 函数单调性证明方法 证明函数单调性的方法有:定义法(即比较法);导数法。 实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。 (1)定义法:利用增减函数的定义证明。在证明过程中,把数式的大小比较转化为求差比较(或求商比

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

高中数学函数的单调性

一、选择题 1.若),(b a 是)(x f 的单调增区间,()b a x x ,,21∈,且21x x <,则有( ) A . ()()21x f x f < B . ()()21x f x f = C . ()()21x f x f > D . ()()021>x f x f 2.函数()2 2-=x y 的单调递减区间为( ) A .[)+∞,0 B .(]0,∞+ C .),2[+∞ D .]2,(-∞ 3.下列函数中,在区间)2,0(上递增的是( ) A .x y 1= B .x y -= C .1-=x y D .122++=x x y 4. 若函数1 2)(-= x a x f 在()0,∞-上单调递增,则a 的取值范围是( ) A .()0,∞- B .()+∞,0 C .()0,1- D .()+∞,1 5. 设函数x a y )12(-=在R 上是减函数,则有( ) A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 6. 如果函数2)1(2)(2+-+=x a x x f 在区间(]2,∞-上是减函数,那么实数a 的取值范围是( ) A .3≤a B .3≥a C .3-≥a D .3-≤a 二、填空题 7.函数1-=x y 的单调递增区间是____________. 8.已知函数)(x f 在()+∞,0是增函数,则)2(f a =,)2(π f b =,)2 3 (f c =的大小关系是__________________________. 9.函数32)(2 +--= x x x f 的单调递增区间是_______. 10.若二次函数45)(2 ++=mx x x f 在区间]1,(--∞是减函数,在区间),1(+∞- 上是增函数,则=)1(f ________. 三、解答题 11. 证明函数x x f 11)(-=在 )0,(-∞ 上是增函数. 12.判断函数x x y 1+ =在区间),1[+∞上的单调性,并给出证明.

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高考数学专题:函数的单调性

高考数学函数的单调性复习教案 考纲要求:了解函数单调性的概念,掌握判断一些简单函数的单调性的方法 。 函数单调性可以从三个方面理解 (1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。 (2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。 (3)定量刻画,即定义。 上述三方面是我们研究函数单调性的基本途径 判断增函数、减函数的方法: ①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 与之相等价的定义:⑴()()02121>--x x x f x f ,〔或都有()()02 121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。 ⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。 ②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`a 且0≤b 。 (年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是

汇总高考数学函数专题习题及详细答案.doc

函数专题练习 1.函数1 ()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1 (0,)3 (C )11[,)73 (D )1[,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠, 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2 ()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()lg .f x x =设 63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ D 7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

2020高考数学《函数的单调性》

函数的单调性 1.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞) 2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1] D .[1,+∞) 3.函数f (x )=x 1-x 在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数 4.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y =x +1 B.y =(x -1)2 C.y =2-x D.y =log 0.5(x +1) 5.下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A.f (x )=x 12 B.f (x )=x 3 C.f (x )=? ????12x D.f (x )=3x 6.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2 -x 1)<0恒成立,设a =f ? ?? ??-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c 7.已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________. 8.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________. 9.函数()f x 的定义域为R,(1)2f -=,对任意的x R ∈,'()f x 2>,则不等式()24f x x >+的解集为( ) A()1,1- B()1,-+∞ C(),1-∞- D(),-∞+∞ 10.函数()f x ()x ∈R 满足(1)1f =,1()2 f x '<,则不等式221()22x f x <+的解集为____ 11.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13 ,则a +b =

2015高考数学专题复习:函数零点

2015高考数学专题复习:函数零点 函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图像与x 轴交点的横坐标. ()x g x f y -=)(的零点(个数)?函数()x g x f y -=)(的图像与x 轴的交点横坐标(个数) ?方程()()0=-x g x f 即()x g x f =)(的实数根(个数) ?函数)(x f y =与)(x g y =图像的交点横坐标(个数) 1.求下列函数的零点 1.232-+=x x y 2.x y 2log = 3.62 -+=x x y 4.1ln -=x y 5.2 1sin + =x y 2.函数22()(2)(32)f x x x x =--+的零点个数为 3.函数()x f =???>-≤-+) 0(2ln ) 0(322x x x x x 的零点个数为 4.函数() () ???>+-≤-=13.41.44)(2x x x x x x f 的图像和函数()ln g x x =的图像的交点个数是 ( ) .A 1 .B 2 .C 3 .D 4 5.函数5 ()3f x x x =+-的零点所在区间为 ( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4] 6.函数1()44x f x e x -=+-的零点所在区间为 ( ) A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 7.函数()2ln(2)3f x x x =--的零点所在区间为 ( ) A. (2,3) B. (3,4) C. (4,5) D. (5,6) 8.方程2|2|lg x x -=的实数根的个数是 9.函数()lg ()72f x x g x x ==-与图像交点的横坐标所在区间是 ( ) A .()21, B .()32, C .()43, D .()54, 10.若函数2 ()4f x x x a =--的零点个数为3,则a =______

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

高考数学:利用导数研究函数的单调性、极值、最值

利用导数研究函数的单调性、极值、最值 一、选择题 1.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是 ( ) A.[-1,1] B.11,3 ? ? -??? ? C.11,33??- ???? D.11,3? ? --???? 【解析】选C.方法一:用特殊值法: 取a=-1,f (x )=x-1 3 sin2x-sinx , f'(x )=1-23 cos2x-cosx , 但f'(0)=1-23-1=-23 <0,不具备在(-∞,+∞)上单调递增,排除A ,B ,D. 方法二:f'(x )=1-23 cos2x+acosx ≥0对x ∈R 恒成立, 故1-23 (2cos 2x-1)+acosx ≥0, 即acosx-43cos 2 x+53 ≥0恒成立, 令t=cosx ,所以-43t 2+at+53 ≥0对t ∈[-1,1]恒成立, 构造函数f (t )=- 43 t 2 +at+53 , 开口向下的二次函数f (t )的最小值的可能值为端点值, 故只需()()1f 1a 0,31f 1a 0,3 ?-=-≥????=+≥?? 解得-13≤a ≤13 . 2.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切 线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2)

C.(0,+∞) D.(1,+∞) 【解题指南】设出两切点的坐标,两切线方程,从而求出点P 的坐标,表示出三角形的面积,进而求出取值范围. 【解析】选A.由题设知:不妨设P 1,P 2点的坐标分别为: P 1(x 1,y 1),P 2(x 2,y 2),其中0??得l 1的斜率k 1为-11 x ,l 2的斜率k 2为2 1x ;又l 1与l 2垂直,且00,f'(x )<0的解集得出函数的极值点. 【解析】选D. f'(x )=3x 2-12=3()()x 2x 2-+,令f'(x )=0,得x=-2或x=2,易知f (x )在()2,2-上单调递减,在()2,∞+上单调递增,故f (x )的极小值为f ()2,所以a=2. 二、解答题 4.(2016·全国卷Ⅰ高考理科·T21)已知函数f (x )=(x-2)e x +a (x-1)2 有两个零点. (1)求a 的取值范围. (2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 【解析】(1)f'(x )=(x-1)e x +2a (x-1)=(x-1)(e x +2a ).

2010高考数学复习专题:函数的最值

函数的最值(值域) ●高考要求 掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法 最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了 ●重难点归纳 (1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、导数法 数形结合法(图像法)导数法 数形结合法、判别式法、部分分式、均值不等式、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域 (2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强 (3)运用函数的值域解决实际问题 此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力 ●知识点归纳 一、相关概念 1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。 2、最值:求函数最值常用方法和函数值域的方法基本相同。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。 最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最大值。记作()max 0y f x = 最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最小值。记作()min 0y f x = 注意: ①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ; ② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

相关主题
文本预览
相关文档 最新文档