当前位置:文档之家› 暖通空调水系统的水力平衡调节

暖通空调水系统的水力平衡调节

暖通空调水系统的水力平衡调节
暖通空调水系统的水力平衡调节

暖通空调水系统的平衡调节

摘要通过对集中供热和空调水系统流量变化的分析,阐述了选用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀的原因,并介绍了这几种阀门的特性和控制机理,包括控制方式、方法。探讨了这几种阀门的调试过程,提出了暖通空调水系统调试的重要性。

关键词:水力失调静态水力平衡动态水力平衡压差控制调试方法

前言

集中供热和中央空调的水系统运行中,水力失调是常见的问题。水力系统的失调有两方面的含义:一是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的。如不加以解决影响将始终存在。称之为稳态失调。二是指系统运行中,当一些用户的水流量改变时(关闭或调节时),会使其它用户的流量随之变化。这涉及到水力稳定性的概念。对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。

产生水力失调的原因。管网水力失调的原因是多方面的,归纳起来主要有两种:(1)管网中流体流动的动力源(一般泵、重力差等)提供的能量与设计要求不符。例如:泵的型号,规格的变化及其性能参数的差异,动力电源的波动,流体自由液面差的变化等,导致管网中压头和流量偏离设计值。(2)管网的流动阻力特性发生变化,很多原因会导致管网阻抗发生变化。例如:在管路安装中,管材实际粗糙度的差别,焊接光滑程度的差别,存留于管道中泥沙、焊渣多少的差别,管路走向改变而使管长度的变化,弯头、三通等局部阻力部件的增减等,均会导致管网实际阻抗与设计值偏离。尤其是一些在管网设置的阀门,改变其开度即可能大大改变管网的阻力特性。

水力失调对管网系统运行会产生不利影响。管网系统往往是多个循环环路并联在一起的管路系统。各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。在水力失调发生的同时,管网中的压力分布也发生了变化。在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。

空调、采暖水系统中,由于水力失调导致流量分配不合理,区域流量过剩和区域流量不足,造成了某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起了能源的浪费,为了解决这个问题,提高水泵的扬程,但仍会产生冷热不均及更大的能源浪费。因此必须采用相应的调节阀门对系统的流量分配进行控制和调整。虽然通用阀门如截止阀、球阀等也具有一定的调节能力,但由于调节性能不好以及无法对调节后的流量进行测量和控制。近年来,在越来越多的暖通空调水系统,普遍采用了平衡阀系列产品对水系统的流量分配起到了积极地作用,使管网的运行得到了保证,特别是近年来变流量系统的控制。平衡阀系列产品包括:静态水力平衡阀、动态水力平衡阀等等,下面会和大家一起来分析一下,究竟什么系统需要什么样的水力平衡阀。

静态水力平衡阀

静态水力平衡阀的工作机理

静态水力平衡阀亦平衡阀、手动平衡阀、数字锁定平衡阀、双位调节阀等。它是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流动阻力以达到流量分配的目的,并配有流量、压差测量装置。其作用的对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部分负荷的流量需求,起到热平衡的作用。

静态水力平衡阀的使用技巧

1.控制单元的选择

当平衡各个支路上的各个末端时,你可以将支路看作为一个“黑匣子”,即一个单元,该元件对单元外部流量的调整起比例的反应,合作阀门能够容易地补偿这种扰动。在下一步中,各支路单元使用立管平衡阀作为合作阀门来进行相互平衡。随后立管上的所有单元构成一个较大的单元,其流量可使立管的平衡阀来调节。最后,各立管通过将每个立管作为一个单元来相互平衡,而主管上的平衡阀作为合作阀门。所谓的较好的控制单元为(1)控制阀的阀权度最大化以精确控制;(2)显示水泵的尺寸过大,并能使泵压及相应的泵的成本降至最低。

单元控制示意图

2.针对流量特性的选择

大家普遍认为等百分比特性的阀门是最好的静态水力平衡阀,我们认为只针对末端装置的静态水力平衡阀为等百分比特性就可以了,对于支路、立管、总

管的平衡阀完全可以是线性特性的静态平衡阀。因为只有这样,我们的系统阻力才会降到最低;而全用等百分比特性的阀门无疑就会增大了系统的阻力;精确控制的方法应是尽大量的降低系统各个环节的阻力。

3.完全采用静态水力平衡阀控制水力平衡的系统,建议每个控制环节都要安装静态水力平衡阀。

4.静态水力平衡阀的调试步骤:在设计资料中查出静态水力平衡阀的设计压降;根据设计图纸,查出(或算出)静态水力平衡阀的设计流量;根据设计压降和设计流量以及阀门的口径,查水力平衡阀压损列线图,找出这时静态水力平衡阀所对应的开度;旋转静态水力平衡阀手轮,将其开度旋至设计开度锁定即可。;

动态水力平衡阀

动态水力平衡阀分动态流量平衡阀、动态压差平衡阀、动态平衡电动调节阀、动态平衡电动二通阀等。

动态流量平衡阀我们叫做自力式流量控制阀,在工作压差范围内,依靠自身的机械结构,自主控制被控环路流量不变的阀门。自力式流量控制阀作用的对象是流量,不管循环系统的水量变化和末端负荷的变化,仍旧保持流量不变。而如果系统循环总水量被主动下调,再按照原来的流量分即则总流量就不够了,而自力式流量控制阀又不能提供动力;增加流量,于是有利环路的流量得到了设计流量,不利环路的流量控制阀全开,但流量仍达不到需求,此时不平衡出现了。因此这种系统中,自力式流量阀不能取代平衡阀的作用,动态(稳定性)失调问题,有这样的系统,末端的调节,是通过改变水量调节出力的。比如有些风机盘管系统就是靠变水量来调节出力的,某些建筑,用户使用空调的时间段不同,系统末端水量主动变化的,如空调系统中风机盘管前安装电动两通阀。

动态压差平衡阀我们叫做自力式压差控制阀,在工作流通能力范围内,依靠自身的机械结构动作,自主控制被控环路压差不变的阀门。它是用压差作用来调节阀门的开度,利用阀芯变化来弥补管路阻力的变化,从而使在水力工况发生变化时保持被控系统的压差不变。

供水管路安装示意图

回水管路安装示意图

基本功能:

1. 消耗掉多余压头,保证资用压头。

2. 满足配套设备的正常工作,以消除系统流量(压力)变化压力的影响。

3. 为控制阀提供良好的工作条件(最佳状态下工作)。

4. 保证通过流量限制在最大流量范围内,并且最大限制流量是可以调节的。

动态平衡电动调节阀

动态平衡电动调节阀是一种新型的电动调节阀,此阀为电动调节阀与自力式压差控制阀的组合,自控系统指令使电动调节阀停留在某一开度,相当于设定一流量,自力式压差控制阀保持此流量不变,当指令改变时电动调节阀开度改变,设定新的流量值,自力式压差控制阀再保持新流量不变,这样可不受外界影响,而保持机组的流量为设计值,使系统调节比较稳定。

动态平衡电动调节阀原理示意图

基本特性:

1.动态平衡电动调节阀安装在组合空调机和新风机组的回水管上,对于随时需要进行流量调节的这些空调末端设备,该阀可以由弱电控制,接受电压或电流信号,按照设定的温度要求和实际的温度变化,适时地按比例的调节方式进行流量调节,同时由于阀门自身的水力自动调节孔板可以根据不同的压差变化自动地保持阀内的压差不变,使设定的流量自动保持恒定,不受系统压差变化的干扰,使得中央空调变水量输配能量的目的得到充分实现。

2.动态平衡电动调节阀可以在最小到最大的流量范围内进行30种流量的设定,以保证在接受最大信号时,给所控设备提供所需的额定流量。此功能同时也保证同一规格的动态平衡电动调节阀在控制不同额定水量的末端设备时,同样接受最大的电信号而给出不同的额定水量以满足不同设备的需求。

3.与弱电配合

动态平衡电动调节阀在电动调节上与普通电动调节阀是一样的,都是控制区域的温度与设定温度发生偏差时接受弱电系统控制器给出的标准电信号(0—10V或2—10 V.,0—20mA或4—20mA) 来驱动阀门的电动执行器,调整阀门开度的。与弱电接线方式:根据弱电不同的信号,按不同的方式接线。

动态平衡电动二通阀

动态平衡电动二通阀是压差控制和电热驱动器的组合体,通过面板控制电热驱动器的开关动作,通过压差控制功能维持系统的水力平衡。

动态平衡电动二通阀原理示意图

动态平衡电动两通阀可以方便得安装在风机盘管回水管处,与普通电动两通阀一样。它也是接受房间温控器的电信号控制,根据需要的不同可以开关量控制或模拟量控制。

目前市场上的动态平衡电动二通阀的产品比较杂乱,有电热驱动器+静态平衡阀的、电热驱动器+定流量阀的、电动二通阀+定流量阀的的等等,大家选用的时候一定要分清楚,我们的目的是想怎样的去控制,想达到一个什么效果。

水力平衡的方法

空调、采暖的空调水系统的控制模式多种多样,基于最基本的控制模式,基本理念为:负荷调节和水力平衡调节共用的模式,质量并调。在采暖系统中,用户安装的散热器恒温阀作为用户的负荷调节,根据室内外温度的变化情况,调节散热器恒温发的开度;换热站的负荷调节主要依靠电动调节阀,根据气候补偿器的需要,调节电动调节阀的开度,用自力式压差控制阀一是限制换热器所供应的最大流量,二是控制换热站与换热站的水力平衡。锅炉房内的锅炉与锅炉之间的水力平衡同样需要静态水力平衡阀来平衡其阻力的大小,以保证其出力。(也可以用自立式流量控制阀替代静态水力平衡阀,主要看用户的需要而定)在空调系统中,末端用户主要靠电动二通阀来调节其负荷的大小,用静态水力阀和支路的压差控制阀来解决其水力平衡的问题。(也可以用动态平衡电动二通阀来替代,主要看项目对舒适度的要求)空气处理机和新风机组主要是靠电动调节阀来调节其负荷大小,用自力式压差控制阀第一是限制其最大流量,第二是保证其系统的水力平衡。(也可以用动态平衡电动调节阀来替代电动调节阀和自力式压差控制阀,主要是项目对舒适度的要求)制冷机与制冷机之间的水力平衡可以用静态水力平衡

阀、也可以用自力式流量控制阀来保证它们之间的水力平衡。冷却塔之间需要用自力式流量控制阀来保证冷却塔的定流量运行。

变流量系统中自力式压差控制阀与水泵变频之间的关系

对于自力式压差控制阀恒定压差的理解应该是恒定被控制环路的压差,对于整个管网系统来说,由于自力式压差控制阀自身压差的影响,末端回路(包括自力式压差控制阀在内)的压差是变化的,也就是说自力式压差控制阀阀前压差是变化的,阀后压差是恒定的。当被控环路用户自身阻力改变时,自力式压差控制阀阻力同向变化,使得作用在被控环路上的压差不变(注意是阀后被控环路压差);当被控环路外用户或系统阻力改变时,自力式压差控制阀阻力反向变化,使得被控环路压差不变。如此,在设计过程中,自力式压差控制阀自身在设计工况下就必须保证足够的储备压降(阀权度),用以平衡或抵消系统压力波动对被控环路的影响。

理解了末端自力式压差控制阀的作用,关于水泵的变频控制就好理解了。当用户负荷减少,恒温阀关小,末端阻力增大,压降增加时,作用其上的自力式压差控制阀也关小,增加自身阻力抵消被控环路用户压差的增加,以维持不变。但此时,对整个管网系统来说,末端的阻力是增加的,压差也是增加的,流量是减少的,水泵可以通过变频调节减少扬程和流量,反馈到末端表现为资用压力不足,此时,压差控制器开大,自身阻力减少,压降减少,以补偿被控环路用户压差的变化,维持恒定。如此反复便构成了水泵变频-自力式压差控制阀-恒温阀的反馈控制。

综上所述,平衡阀系列产品对于用户来说提供同样的调节环境,避免了用户自主调节带来的相互影响。同样也使系统的控制变得更简单可行,不管你是计量也好,不计量也好,避免了不必要的浪费。

空调、采暖水系统的流量变化分析

(1)串联水系统流量特性分析:

串联管道系统中各个部件的流量是一致的,即

Q1=Q2=Q3=Q4=…………=Qn=Q0

(Q1~ Qn:系统中第1~n个支路的流量,Q0系统中各个支路的总流量)

(2)并联水系统流量特性分析:

并联管道系统中各个部件的流量与相应的管道特性阻力数开根号的倒数成正比,即:

Q12:…………: Qn=1/(Sp1)0.5: 1/(Sp2)0.5:…………1/(Spn)

0.5

Q0= Q1+ Q2+ Q3+ …………+ Qn

(Q1~ Qn:系统中第1~n个支路的流量,Q0系统中各个支路的总流量,Sp1~ Spn:系统中第1~n个支路的管道特性阻力数)

(3)串并联组合水系统流量变化趋势分析:

绝大多数的管道系统均为串并联组合系统,对于任何串并联复合系统,均可按电路模拟法将其简化成并联系统。

简化水系统管道采用如下公式:

①串联水系统

Sp= Sp1 +Sp2+ Sp3 +…………+Spn

Sp串联系统总的管道特性阻力数

Sp1~ Spn:系统中第1~n个支路的管道特性阻力数

②并联水系统

1/(Sp)0.5=1/(Sp1)0.5+1/(Sp2)0.5+…………+1/(Spn)0.5

将水系统简化成简单的并联系统后,按管道特性阻力数对流量进行分配,然后逐级按同样的方式对各支路计算分配流量。

水力平衡的重要性

下面我们简单分析一下以采暖系统为例,分析其系统水力平衡的关键点,先看一下流量输配的基本规律。

流量输配时受沿程阻力和局部阻力的影响,在供水管与回水管之间产生近端压差大、远端压差小的的偏差,从而造成近端流量大、远端流量小的问题,无论我们设计的多摸仔细和完善,都不能彻底解决这一平衡问题,真正的平衡只能靠设备控制来实现。

流量分配的其它影响因素

a.管道锈蚀会大大增加管道的粗糙度,压力降将增40%~70%;

b.管道直径误差每1%引起的压力降计算误差为5%;

c.水温在20~80℃时,管道压力降减少12-18%。

因此,系统水力平衡计算很明显是一项既具近似性但又必须做的工作,真正的平衡只能通过设备控制来获得。

在采暖的系统控制中,只依靠温控阀也不能解决热网平衡,温控阀不能弥补系统设计中的基本错误,也不能确保各组散热器之间流量的合理分配。当系统启动时,例如每天早晨,温控阀取用着最大可能的流量,经常会损害系统的其他部分。为避免这些影响,应将每个散热器的流量通过另一控制设备限制到设计值。温控阀需要其他设备提供合适的压差才能正常工作。温控阀必须有人去调,才能既感觉舒适又节能。

每个房间散热器所需要的热水流量是控制出来的,不是设计出来的;每组散热器都要装有流量控制设备;工作人员要入室反复细调。

解决冷热不均、提高收费率、减少维护量。节热能15~20%、节电20~70%、节水、多带面积、减少设备。

据相关资料显示,供热时,房间温度高于所需温度1℃将引起能耗增加,此增加量可由以下公式估算

室温1℃的变化对耗热能的影响

即平衡以后,室内平均温度降低1℃时,在北京地区可节约热能10%左右。

空调水系统同样会出现上述问题。据相关资料介绍,空调系统过冷1℃,空调系统的能耗增加20%

采暖系统平衡后,常常可以降低平均室温1-3℃,而空调系统则可提高

1-2℃

平衡阀系列产品的调试及重要性

就目前国内平衡阀系列产品的使用状况而言,相关的调试已经逐渐被大家认可,但是力度还是尚缺。平衡阀的调试是检验平衡阀在系统中的控制性能的具体体现,呼吁相关业界人士对平衡阀的调试工作重视起来,使平衡阀真正起到作用,让系统更加安全稳定的运行。暖通空调水系统的平衡的方式有很多,但能耗最低的方式只有一个

以中央空调系统为例,中央空调水系统以冷水机组为核心,与冷冻水泵、冷却水泵、管道、冷却塔、组合空调机、空调柜以及各类阀门等设备组成统一整体,分为冷冻水系统与冷却水系统。

冷冻水系统由冷冻水泵、组合空调柜、管路阀门等设备与冷水机组组成,为大、小系统提供冷冻水,实现输送冷量的功能。冷却水系统是由冷却水泵、冷却塔、管路阀门等设备与冷水机组组成,将冷水组中冷剂的相态变化所产生的热量散发到空气中。

冷冻水系统的动态平衡影响冷量的实际分配,根据设计流量合理地分配冷冻水,使之处于系统的动态平衡,满足末端负荷需求,并接近机组的额定工况,使机组能耗比大大提高。冷却水系统的动态平衡影响冷水机组的运行工况,当冷却水量过多或者过少、不符合冷水机组的需求时,则可能出现多种机组故障,如冷却水回水温度过高等故障。

冷冻、冷却水系统的动态平衡影响系统的运行工况及制冷效果,因此进行动态平衡调试显得极为重要。

水系统动态平衡调试的理论性方法

资料准备

准备好完整的水系统的工艺图、系统图;收集各水泵、组合空调机、集分水器等设备的性能参数,如设计流量、设计进出水压力、进出水温等相关参数以及水泵特征曲线等。

分析水路

通过仔细读图,分析水系统的水路流向,搞清楚哪些管道连通哪些机组、哪些水泵供应哪些设备,制定出相关的水力平衡调试方案。

制作调试读数表格

包含进出水温度、进出水压、进出水压差、流量等数据,最好列明设计值以便作为参考。

3.4 调节阀门

根据调试方案,首先全部打开末端的电动调节阀,根据设计要求,用自力式压差控制阀限制其用户的最大流量。每个用户都调整到设计需求的要求,整个的水力系统始终处于平衡状态。

调试工具:平衡阀专用智能仪表、超声波流量计、电磁流量计等

目前可以采用的初调节方法较多,其各有特点和适用条件,下面简单介绍六种

1.预定设计法

图1—1预定计划简图

2、阻力系数法

阻力系数法的基本原理基于流量分配与阻力系数的关系。使用该法进行初调节时,要求将各热用户的启动流量和热用户局部系统的压力损失调整到一定比例,以便使其系数S达到正常工作时的理想值,即根据:

S= △H/G2 mH2O/

(m3/h)2

式中G——热用户的理想流量,m3/h;

△H——热用户局部系统的压力降,mH2O。

G与△H值可根据供热系统原始资料和水利计算机资料求得,因此S很容易算出。

阻力系数法看似容易,实际性也较差。实际操作的主要难点是:阻力系数S的理想值计算,需要反复测量其流量G和压力降△H,反复调节阀门才能实现。故属于试凑法,现场操作繁琐、费时。

3、比例法

由于前两种方法的缺陷,为适用初调节的需要,瑞典TA公司研制了平衡阀和智能仪表(信息微处理机),将二者配套使用,可以直接测量平衡阀前后压差和通过的流量。同时提出了比例法和补偿法。

比例法的基本原理基于当各热用户阻力系数一定时,系统上游端的调节,将引起各热用户流量成比例地变化。既当各热用户阀门未调节时,系统上游端的调节将使各热用户流量的变化遵循一致等比失调的规律。具体地说,如果两条并联管路中的水流量为某一比例(如1:1),那末当总流量在+30%范围内变化时,其流量比仍然不变(仍为1:2)

调节的基本方法是:(1)利用平衡阀测出各热用户流量,计算其失调度。(2)从失调度最大的区段调节起:(a)先从最末段用户开始,将其流量调至该区段失调度最小值;(b)以其为参考环路,逐一调节其他热用户,使各用户环路中的流量失调度分别接近为参考环路的失调度(每调一个用户,其值皆不同);(c)调节区段总阀门使总流量等于理想流量。则该区段以调各用户流量均达到理想流量。

比例法原理简单,效果很好,但现场调节还是繁琐;首先必须使用两套智能仪表(与平衡阀联用)配备两组测试人员,通过报话机进行联络,核对数据,工作量较大;其次平衡阀重复测量次数过多,调节过程费时费力,但总体讲,由于有平衡阀、智能仪表作基础,这种方法使初调节在实际工作的应用有了可能性。

4、补偿法

补偿法是瑞典TA公司推荐的另一种方法。由于此法是依靠供热系统上游端平衡阀的调节,来补偿下游端因调节引起的系统阻力的变化,故称为补偿法。具体地说,为确保系统中已经平衡了的平衡阀处流量不受其他平衡调试的影响,必须保持其压降不变。办法是调试其他平衡阀时,用改变其上一级的平衡阀开度来保持已调试后阀的压将降不变,但决不能改变已调试好的阀门开度。

5、计算机法

计算机法是中国建筑科学研究院空气调节研究所提出的,其特点是借助平衡阀和配套智能仪表测定用户局部系统的实际阻力特性系数。

其操作方法如下:(1)将用户平衡阀任意改变两个开度;(2)分别测试两种工况下的用户流量、压降以及平衡阀前后压降;(3)进而求出用户阻力特性系数,算出理想工况下用户平衡阀的理想阻力值及开度;(4)在现场直接调整平衡阀至要求的开度。

计算机法计算过程已编为程序,故计算比较方便;现场调节无次序要求,操作也较简便。不足之处是把平衡阀二次不同开度下支线总压降视为相等,与实际工况不符。当安装平衡阀的用户热入口与系统干、支线分支点相距较远时将引起较大误差。

6、简易快速法

简易快速法是一种简单易行而实用的方法。其调节步骤如下:

(1)测量供热系统总流量,改变循环水泵进行台数或调节系统供、回水总阀门,使系统总过渡流量控制在总理想流量的120%左右。

(2)以热源为准,由近及远,逐个调节各支线用户。将最近的支线用户的过渡流量调至理想流量的80%~90%;将较近支线用户的过渡流量调至理想流量的85%~90%;将较远支支线用户的过渡流量调至理想流量的90%~95%;将最远支线用户的过渡流量调至理想流量的95%~100%。

(3)当供热系统支线较多时,应在支线母管上安装调节阀此时仍按由近及远的原则,先调支线再调各支线或用户,过渡流量的确定方法同上。

(4)在调节过程中,如遇某支线或用户在调节阀全开时仍未达到要求的过度流量,此时跳过该支线或用户,按既定顺序继续调节。等最后用户调节完毕后再复查该支线或用户的运行流量。若与理想流量偏差超过20%时,应检查,排除有关故障。

(5)若有必要,开大系统总调节阀门。当供热系统循环水泵配置过大时,这一步骤可提高总循环流量,降低系统工作压力,有利于供热效果的改善和系统的安全运行。

采用简易快速法是可安装各种类型的调节阀(平衡阀、调配阀)。流量测量应根据实际条件选用超声波流量计或智能仪表;当用户入口安装的是平衡阀(可以测流量),则可能采用智能仪表;当用户入口安装的是手动流量调节阀或节流孔板,则可以采用绑在管道外壁上的超声波流量计来测流量。

采用简易快速调节方法,供热量的最大误差不超过10%

7、温度调节法。温度调节法利用用户室温与系统供回水温度具有特定关系的原理进行的。当用户室温一定时(如设计温度18度C),不管系统循环流量大小,室外温度所对应的系统供回水平均温度始终不变。同样,当近似看作各用户供回水温度相同时,则用户室温相同时对应的回水温度也相同。温度调节法,就是依据上述原理或调回水温度或调供回水的平均温度。该方法由于系统的滞后性,实际也不易操作,多用于计算机自动控制。

8、自力式调节法。在供热系统中,采用温控阀和自力式压差控制阀,调试方法是全部打开温控装置,自力式压差控制阀的最大通过流量为设计的最大负荷,这样的话,调试就变得简单易行,每个控制环路都限制了最大流量,整个系统始终处于平衡状态运行;在空调系统中,调试的方法为全部打开电动二通阀,自力式压差控制阀的最大通过流量为设计的最大负荷,使系统每个环路都按设计负荷范围变化,这种方法简单易行,是目前国内流行的一种控制模式。

采用质量—流量调节方法,网路流量随供暖热负荷的减少而减少,可以大量节省网路循环水泵的电能消耗。但在系统中需设置变速循环水泵和配置相应的自控设施(用于控制网路供、回水温差恒定,控制变速水泵转速),才能达到更加满意的运行效果。

结束语

通过上述的基本原理,暖通空调水系统的平衡调节需要我们有好的设计思路,完善的平衡阀产品,周到的售后服务,才能真正的使系统安全、舒适、可控的运行。

对暖通空调水力平衡浅析

对暖通空调水力平衡浅析 摘要:在建筑物暖通空调工程中 ,水力平衡的调节是个重要的 课题。水力平衡又分为静水力平衡和动态水力平衡两种 ,水力平衡的实现将有助于工程的完善 ,同时保证全系统的正常运行。 关键词:水力;平衡; 系统;流量 abstract: in the hvac engineering building, hydraulic balance regulation is a very important issue. hydraulic balance and divided into static hydraulic balance and dynamic hydraulic balance two kinds, the realization of the hydraulic balance will help to the improvement of the project, and at the same time guarantee the normal operation of the whole system. keywords: hydraulic; balance; system; flow 中图分类号:tu831.3+5文献标识码:a 文章编号: 在建筑物暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。 一、水力失调和水力平衡的各种类型 1.1静态水力失调和静态水力平衡 由于各种原因导致的系统管道特性阻力数比与设计要求管道特

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

暖通空调系统定压补水装置的选用

暖通空调系统定压补水装置的选用 引言 暖通空调系统补水装置的作用,是保证采暖或中央空调水系统冷热介质(水),在系统内不倒空、不汽化、不超压,并保持有一定供系统循环的压力,保证系统冷热交换稳定正常。 目前,暖通空调系统常用的有以下几种定压补水装置:①、膨胀水箱定压补水装置;②、定压罐定压补水装置;③、变频泵定压补水装置; 其他如连续补水泵补水、水射器补水、自来水直接补水等装置,因为其适用范围小或缺陷明显使用少,这里不做介绍。 膨胀水箱: 膨胀水箱定压原理: 膨胀水箱定压原理是通过水箱容积的缓冲调节作用,通过水箱高低水位的控制,实现补水(溢流)的作用,以调节由于系统水温变化或泄露引起的系统介质(水)的容积变化,保持其系统冷热媒介(水)压力的相对恒定。它是中小型系统和空调水系统常用的定压装置之一。 膨胀水箱位置:膨胀水箱位置应该根据系统型式、作用半径、建筑物的高度、供水温度等具体因素来选择。其安装位置及高度不同,给系统产生的工况也不同。可靠的系统,其工况必须满足不汽化、不超压、不倒空,并有足够循环动力的要求。 开式膨胀水箱将水箱设在系统的最高点,通常接在循环水泵吸水

口的回水干管上。 膨胀水箱型式的分类:分开式(高位)和闭式(落地) 闭式膨胀水箱容积计算: Vt=Vs(v2/v1-1-3αΔt)/(1-P1/P2) Vt—膨胀水箱容积:m3Vs—系统水总容量:m3 v1—低温时水的比容,m3/Kg;v2—高温时水的比容,m3/Kg; α—线性膨胀系数,钢为×10-6℃-1,铜为×10-6℃-1 Δt—水系统中最大温差,℃(一般为5) P1—低温时水压力,KpaP2—高温时水压力,Kpa P1、P2的确定: P1,箱体静压头+系统顶部的最小压力值P2,运行时最高压力 开式膨胀水箱容积计算方法: Vp=αΔtVs Vp---膨胀水箱有效容积,m3α---水的体积膨胀系数,α=,1/℃Δt---系统内最大水温变化值,℃Vs---系统内的总水容量,m3 说明:当水箱同时用于采暖和采冷时分别计算,取大值 特点:(1)优点:它具有装置简单、安全、少维护、运行费用低、压力稳定、不用电等;可以有效消除系统非正常工况下的超压。(2)缺点:对最高点有空间位置要求;系统有氧化腐蚀缺陷;不适应大面积以及高层、超高层建筑物需要。 定压罐: 定压罐工作原理:定压罐定压,是在膨胀水箱基础上发展起来的

关于空调水系统全面水力平衡的分析

摘要:本文将分析产生水力失调的原因,着重介绍平衡阀的分类以及各自的功能与特性,分析各类平衡阀在水力平衡调节中所起的作用,总结出平衡阀在设计选用以及合理性布置方面的一些经验。 关键词:静态平衡阀;动态流量平衡阀;动态压差平衡阀;水力失调 在空调水系统中水力失调的现象是普遍存在的,一方面由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的静态水力失调。另一方面当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的动态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。对于空调水系统存在的静态和动态水力失调,通过在管道系统中增设静态水力平衡阀对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。以及利用动态水力平衡阀的屏蔽作用,使其自身的流量不随其他用户阀门开度发生变化而变化,实现系统的动态平衡。因此平衡阀在空调水系统的水力平衡中具有很好的调节作用,也是保证空调系统正常运行必不可少的重要部件。 1水力失调和水力平衡的概念: 1.1在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。 水力失调的程度可以用实际流量与设计要求流量的比值x来衡量,x称水力失调度。 x = qs/qj(qs:用户的实际流量,qj:用户的设计要求流量) 1.2水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。 r=1/ xmax = qj/ qmax (qj:用户的设计要求流量,qmax:用户出现的最大流量) 2产生水力失调的原因与分析 2.1静态失调 空调水系统虽经过详细的水力计算,但在施工安装过程中,各用户的流量仍不能达到设计要求。如管网中流体流动的动力源(一般指泵、重力差等)提供的能量与设计要求不符,泵的型号、规格的变化及其性能参数的差异,流体自由液面差的变化等,导致管网中压头和流量偏离设计值;再比如管材粗糙度,焊接光滑度,管路路由的长度量,三通的增减等参数发生变化时,均会导致管网的实际流动阻力特性与设计值偏离。这种水力失调是稳定的、根本性的,是不以设计为转移的,如不加以解决影响将始终存在。 2.2动态失调 系统在实际运行中,当一些末端用户的水流量发生改变时(关闭或调节),会使其它用户的流量随之产生变化。 因此,在通过详细的水力计算选择合适的管径及设备的基础上,为使水流量合理完善地分配至每一个环路的采暖或空调末端,满足每一栋建筑及功能房间的冷、热负荷需求,我们往往会通过平衡阀来有效的解决这个问题。 接下来,将针对平衡阀的选择设置进行探讨,以供同行在工程设计中参考。 3 平衡阀的选择与应用 3.1平衡阀的分类及特性 结合目前市场上的水力平衡阀,主要可分为两类:静态平衡阀和动态平衡阀。其中,静

暖通空调水系统的水力平衡调节

暖通空调水系统的平衡调节 摘要通过对集中供热和空调水系统流量变化的分析,阐述了选用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀的原因,并介绍了这几种阀门的特性和控制机理,包括控制方式、方法。探讨了这几种阀门的调试过程,提出了暖通空调水系统调试的重要性。 关键词:水力失调静态水力平衡动态水力平衡压差控制调试方法前言 集中供热和中央空调的水系统运行中,水力失调是常见的问题。水力系统的失调有两方面的含义:一是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的。如不加以解决影响将始终存在。称之为稳态失调。二是指系统运行中,当一些用户的水流量改变时(关闭或调节时),会使其它用户的流量随之变化。这涉及到水力稳定性的概念。对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。 产生水力失调的原因。管网水力失调的原因是多方面的,归纳起来主要有两种:(1管网中流体流动的动力源(一般泵、重力差等)提供的能量与设计要求不符。例如:泵的型号,规格的变化及其性能参数的差异,动力电源的波动,流体自由液面差的变化等,导致管网中压头和流量偏离设计值。(2)管网的流 动阻力特性发生变化,很多原因会导致管网阻抗发生变化。例如:在管路安装中,管材实际粗糙度的差别,焊接光滑程度的差别,存留于管道中泥沙、焊渣多少的差别,管路走向改变而使管长度的变化,弯头、三通等局部阻力部件的增 减等,均会导致管网实际阻抗与设计值偏离。尤其是一些在管网设置的阀门,改变其开度即可能大大改变管网的阻力特性。 水力失调对管网系统运行会产生不利影响。管网系统往往是多个循环环路并联在一起的管路系统。各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。在水力失调发生的同时,管网中的压力分布也发生了变化。在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。 空调、采暖水系统中,由于水力失调导致流量分配不合理,区域流量过剩和区域流量不足,造成了某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起了能源的浪费,为了解决这个问题,提高水泵的扬程,但仍会产生冷热不均及更大的能源浪费。因此必须采用相应的调节阀门对系统的流量分配进行控制和调整。虽然通用阀门如截止阀、球阀等也具有一定的调节能力,但由于调节性能不好以及无法对调节后的流量进行测量和控制。近年来,在越来 越多的暖通空调水系统,普遍采用了平衡阀系列产品对水系统的流量分配起到了积极地作用,使管网的运行得到了保证,特别是近年来变流量系统的控制。平衡阀系列产品包括:静态水力平衡阀、动态水力平衡阀等等,下面会和大家一起来分析一下,究竟什么系统需要什么样的水力平衡阀。 静态水力平衡阀 静态水力平衡阀的工作机理

述论暖通空调水力平衡的调节方法

述论暖通空调水力平衡的调节方法 发表时间:2018-07-05T10:34:28.580Z 来源:《建筑学研究前沿》2018年第2期作者:翁善 [导读] 对于建筑的暖通空调系统,如果在运行过程中,因为某一或部分用户的制冷或制热需求的改变而使系统网络的流量分配与各热用户所要求的流量偏离。 佛山欧思丹热能科技有限公司 528244 摘要:在暖通工程中受水力失调的影响导致了暖通系统流量不能够进行合理的分配,不同的区域之间要么流量过剩,要么流量不足,进而影响了暖通空调系统功能的正常发挥,系统所传送的冷热能量不能够满足季节对暖通空调系统的基本需求,同时也造成了能量的巨大浪费,因此,运用调节阀门对暖通空调系统的流量进行有效地调节和配置是空调水利平衡调节的重要方法。基于此,本文就从暖通空调水力平衡的调节方法展开分析。 关键词:暖通空调;水力平衡;调节方法 1、水力平衡的概述 对于建筑的暖通空调系统,如果在运行过程中,因为某一或部分用户的制冷或制热需求的改变而使系统网络的流量分配与各热用户所要求的流量偏离,造成各用户的供冷供热量不符合要求,这种现象就是水利失调。相对而言,水力平衡就是说在暖通空调制冷或制热过程中,系统内任何一个用户制冷制热需求的改变都不会个系统中其他的用户制冷制热带来影响,即系统水力稳定性强。在空调行业中,通常运用水力稳定系数来衡量暖通空调水力平衡的程度,水力稳定系数用y来表示。y值时暖通系统中热用户的规定流量与工况变化后可能达到的最大流量的比值,y值越大,就说明设计越成功,y值过小,用户的制冷制热要求就难以得到保障。但是,虽然说r值越大越好,但是过大的话容易造成投资方资金浪费现象,因此,r值是不能无限制过大的。r值为1时,水稳定处于最佳状态,水力最平衡,其他数值则表示水力失调。 2、暖通空调系统水力调节现状 为确保暖通空调系统提高效能运转,必须高度重视水力调节工作。解决水力失调问题的根本在于系统流量分配不均情况的解决,目前,最常用的措施就是阀门调节方法,通过调节作用确保系统流量分配的均匀性。在实际应用中,球阀及截止阀是暖通空调系统设计及技术人员进行系统流量分配调节的常用调节装置。阀门虽然能够具有一定的调节作用,但是却不能从根本上解决水力失调问题,同时这种方法在应用上也存在着一些不足及弊端,比如应用后不利于流量的有效测量,调节方法也存在很大的不确定性等等。那么,为了有效弥补阀门调节方法的不足,现阶段,设计人员为加强水系统流量分配的均匀性,往往采用在关键位置设置水力平衡阀的措施。实践证明,水力平衡阀在水力调节性能方面还是比较突出的,它不仅具有很好的水力平衡调节作用,而且可以实现系统流量的实时检测,因此,是一种比较值得推广应用的方法。 3、产生水力失调的原因分析 3.1静态失调 空调水系统虽经过详细的水力计算,但在施工安装过程中,各用户的流量仍不能达到设计要求。如管网中流体流动的动力源(一般指泵、重力差等)提供的能量与设计要求不符,泵的型号、规格的变化及其性能参数的差异,流体自由液面差的变化等,导致管网中压头和流量偏离设计值;再比如管材粗糙度,焊接光滑度,管路路由的长度量,三通的增减等参数发生变化时,均会导致管网的实际流动阻力特性与设计值偏离。这种水力失调是稳定的、根本性的,是不以设计为转移的,如不加以解决影响将始终存在。 为了使系统达到静态水力平衡状态,需要在水利平衡系统失衡状态下安装水力平衡调节装置来实现水力系统的平衡。对系统静态水力平衡状态进行判断,主要是根据系统中所配备的平衡设备是否与系统设计参数之间保持协调一致。当二者之间保持一致时,系统内全部末端设备所配备的温度控制阀到达全开位置时,此时整个系统末端设备流量与设计流量便会保持基本一致。 3.2动态失调 系统在实际运行中,当一些末端用户的水流量发生改变时(关闭或调节),会使其它用户的流量随之产生变化。 运用水力平衡装置作用于系统某些容易出现失衡的位置,可以提高系统水力平衡的整体效果。动态水力平衡基本内容主要可以概括为两个方面。一方面是当系统其它环路出现不同状况时,动态水力平衡系统自身环路当中的关键点压差就会随之做出适当的调整,当温控阀、电动调节阀等动态阀门的开度呈不变状态时,此时系统流量也会处于不变状态。另一方面则是受外部环境的影响,动态水力平衡系统自身的环路处于变化状况时,可以通过运用平衡调节设备,使系统关键点压差保持不变。 4、暖通空调水力平衡的调节方法 4.1定流量系统的水力平衡 这种系统之出现在静态的水力失调之中,不会存在动态的水力失调,针对这种情况,只要在相关位置装配静态的水力平衡设备就可以了。至于末端全部定流量的系统而言,系统里面不包含动态的阀门,一般采用的节流元件是静态平衡阀、节流孔板、定流量阀等,来实现管路阻力和流量的有效调整。从而达到每个环路的实际的流量是符合设计流量的标准或维持在一个恒定的定值。对系统进行必要的调节之后能实现后阀门的开度不需要做其他的变动。系统的各处的流量能够持续控制在稳定的状态,也就实现了静态的水力平衡。这样的水力平衡,会导致严重的能量浪费。随着空调周围的环境改变,人流量的增加,以及日照辐射度等因子发生变化,会出现空调承担负荷的变更,从而引起末端设备对空调的温度需求的改变。假如一直给末端提供最大量的、稳定的空调水流量,就必然在许多时候发生能源和能量的大量浪费,使空调的系统性能和经济效能变差。 4.2变流量系统水力平衡的调控 随着人们的节能环保意识的不断增强,变流量水系统得到越来越广泛的应用。变流量系统的运转过程之中,各个分部环路的流量的高低是随着负荷的变化产生相应的变化。鉴于空调一年的极大部分都是在部分的负荷下工作,系统的水流量很长时间内都是处在一个低于设计流量的情形下,因此,变流量系统显得格外的高效和节能环保。不是说变流量水系统就是完美无缺的,它也有一个很大缺陷。并联环路

有压引水系统水力计算

一、设计课题 水电站有压引水系统水力计算。 二、设计资料及要求 1、设计资料见《课程设计指导书、任务书》; 2、设计要求: (1)、对整个引水系统进行水头损失计算; (2)、进行调压井水力计算球稳定断面; (3)、确定调压井波动振幅,包括最高涌波水位和最低涌波水位; (4)、进行机组调节保证计算,检验正常工作状况下税基压力、转速相对值。 三、调压井水力计算求稳定断面 <一>引水道的等效断面积:∑= i i f L L f , 引水道有效断面积f 的求解表 栏号 引水道部位 过水断面f i (m 2 ) L i (m) L i/f i

所以引水道的等效断面积∑= i i f L L f =511.28/21.475=23.81 m 2 <二>引水道和压力管道的水头损失计算: 引水道的水头损失包括局部水头损失 h 局和沿程水头损失h 沿两部分 压力管道的水头损失包括局部水头损失h 局和沿程水头损失h 沿两部分 1, 2 2g 2h Q ?ξ局局= g :重力加速度9.81m/s 2 Q :通过水轮机的流量取102m 3/s ω :断面面积 m 2 ξ:局部水头损失系数 局部水头损失h 局计算表 栏号 引水建筑物部位及运行 工况 断面面积 ω(m 2 ) 局部水头损失系数 局部水头损失 10-6Q 2(m ) 合计(m) (1) 进 水 口 拦污栅 61.28 0.12 0.017 0.307 (2) 进口喇叭段 29.76 0.10 0.060 (3) 闸门井 24.00 0.20 0.184 (4) 渐变段 23.88 0.05 0.046 (5) 隧 洞 进口平面转弯 23.76 0.07 0.066 0.204 (6) 末端锥管段 19.63 0.10 0.138 (7) 调 压 正常运行 19.63 0.10 0.138 2.202 (1) 拦污栅 61.28 4.1 0.067 (2) 喇叭口进水段 29.76 6.0 0.202 (3) 闸门井段 24.00 5.6 0.233 (4) 渐变段 2 3.88 10.0 0.419 (5) D=5.5m 23.76 469.6 19.764 (6) 锥形洞段 21.65 5.0 0.231 (7) 调压井前管段 19.63 10.98 0.559

暖通空调节能措施

暖通空调节能措施 建筑能耗主要包括建筑物在采暖、通风、空调、照明、电器和热水供应等需求方面的能耗,而暖通空调系统的能耗又是建筑能耗的主要构成部分,占30%~50%。因此,有效地较低暖通空调的能耗,对于节能环保具有重大意义。 一、围护结构 1、采用必要的遮阳、隔热措施 建筑物的屋顶、外墙与外窗传入室内的热量较多,建议多采用必要的遮阳措施,如选用遮阳板、双层玻璃等。屋顶宜采取隔热措施,如设置遮阳棚,屋顶花园等。 2、改善建筑围护结构的保温性能,减少冷热损失 建议围护结构加设外保温材料,采用气密性较好的门窗,加设密闭条提高门窗气密性。 二、空调室内参数设置 1、室内温度 建议降低室内温度的设置标准。在满足室内要求的前提下,适当提高夏季室内温度和降低冬季室内温度。室内制冷时温度宜设置在26℃以上,制热温度宜设置在20℃以下。 2、室内湿度 对于对室内相对湿度无严格要求的对象,建议降低室内相对湿度的设置标准。夏季室内相对湿度不大于70%,冬季相对湿度不小于30%。 3、新风量 应合理地控制新风量。对于夏季供冷、冬季供热的空调房间,新风量俞大,系统能耗愈大,在这种情况下,新风量宜控制到卫生要求的最小值。在过渡季节,宜充分利用自然通风,减少新风机组的运行时间。 在符合室内卫生条件的基础上,应利用有效手段对新风量进行控制。比如:缩减房间的换气频次;在新风入口加设旁通,设置双风机;在回风处安装CO2检测仪器,按照回风中气体的浓度自动调整新风风门的开启大小;尽量利用室外的天然新风;按照室内人员变化规律,确立新风风阀控制方式。 三、空调风系统 1、宜采用尽可能大的送风温度差,减少送风量,从而降低能耗。 2、应根据温湿度控制标准、控制精度、房间朝向、使用时间、洁净度等级等因素划分为不同的空调区域,从而避免过冷过热,减少冷热抵消等现象,避免不必要的能源浪费。 3、建议使用变风量系统代替定风量系统,对风量进行变频控制调节,能随负荷变化自动调节运行状况, 以达到节能的目的。 4、建议选用变频风机,使风机的工作频率能够以实际需求情况为依据来选择,避免了一直处于全负荷的工作状态,以节省能耗。 5、空气处理设备应最大限度地利用回风,新风量宜采用允许的最小新风量标准不要随意扩大。 6、对风管应进行必要的保温防潮处理,减少冷热损失。

工程变流量水力系统全面平衡

工程变流量水力系统全面平衡 在暖通空调工程中,水力平衡的调节是个重要的课题。本文分析了暖通空调工程定流量和变流量系统水力平衡的特点;提出了变流量系统全面平衡的概念;同时对水力平衡和水力失调系统进行了比较;最后结合工程实例分析了全面平衡水力系统的舒适节能性。 一.水力平衡的概念及分类: 1、静态水力失调和静态水力平衡: 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调,叫做静态水力失调。 静态水力失调是稳态的、根本性的,是系统本身所固有的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端设备流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 系统实际运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调,叫做动态水力失调。 动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的流量并不随之变化,末端设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二.定流量系统的静态水力平衡: 定流量系统是早期的暖通空调工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端设备无须通过流量来进行调节的系统,如采用变风量来调节的风机盘管和空调箱等。

中央空调系统水平衡调整

暖通空调水系统水力平衡调节 作者:王晓松上传:water 来源:网易行业 2005-09-07 00:00 1、引言: 在建筑物暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。因此近些年来,在越来越多的暖通空调工程水系统的关键部位(如集水器)、特别是在一些国外设计公司设计的工程项目中,均大量地选用水力平衡阀来对系统的流量分配进行调节(包括系统安装完后的初调节和运行管理调节,本文主要阐述的是前者,也可作后者的参考)。 水力平衡阀有两个特性:⑴、具有良好的调节特性。一般质量较好的水力平衡阀都具有直线流量特性,即在阀二端压差不变时,其流量与开度成线性关系;⑵、流量实时可测性。通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。 2、系统水力平衡调节: 水系统水力平衡调节的实质就是将系统中所有水力平衡阀的测量流量同时调至设计流量。 2.1 单个水力平衡阀调节 单个水力平衡阀的调节是简单的,只需连接专用的流量测量仪表,将阀门口径及设计流量输入仪表,根据仪表显示的开度值,旋转水力平衡阀手轮,直至测量流量等于设计流量即可。 2.2 已有精确计算的水力平衡阀的调节 对于某些水系统,在设计时已对系统进行了精确的水力平衡计算,系统中每个水力平衡阀的流量和所分担的设计压降是已知的。这时水力平衡阀的调节步骤如下:⑴、在设计资料中查出水力平衡阀的设计压降;⑵、根据设计图纸,查出(或计算出)水力平衡阀的设计流量;⑶、根据设计压降和设计流量以及阀口径,查水力平衡阀压损列线图,找出这时水力平衡阀所对应的设计开度;⑷、旋转水力平衡阀手轮,将其开度旋至设计开度即可。 2.3 一般系统水力平衡阀的联调 对于目前绝大部分的暖通空调水系统,其设计只有水力平衡阀的设计流量,而不知道压差,而且系统中包含多个水力平衡阀,在调节时这些阀的流量变化会互相干扰。这时如何对系统进行调节,使所有的水力平衡阀同时达到设计流量呢? 2.3.1 系统水力平衡调节的分析:

水带系统水力计算资料

第二节水带系统水力计算 一、了解水带压力损失计算方法 每条水带的压力损失,计算公式如下:hd= SQ2 式中:hd――每条20米长水带的压力损失,104 Pa S ――每条水带的阻抗系数, Q――水带内的流量,L/ s 注:1mH2O=104 Pa(1米水柱=104帕);1Kg/cm2=105 Pa(1千克/厘米2) 二、了解水带串、并联系统压力损失计算方法 同型、同径水带串联系统压力损失计算: 压力损失叠加法:公式Hd=nhd 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; hd――每条水带的压力损失,104 Pa 。 阻力系数法:公式Hd=nSQ2 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; S――每条水带的阻抗系数; Q――干线水带内的流量,L/ s 。 不同类型、不同直径水带串联系统压力损失计算: 压力损失叠加法:公式Hd =hd1+ hd2+ hd3+…+ hdn 式中:Hd――水带串联系统的压力损失,104 Pa;

hd1、hd2、hd3、hdn――干线内各条水带的压力损失,104 Pa 。 阻力系数法:公式:Hd=S总Q2 Hd――水带串联系统的压力损失,104 Pa; S总――干线内各条水带阻抗系数之和; Q――干线水带内的流量,L/ s 。 同型、同径水带并联系统压力损失计算: 流量平分法公式:Hd =hd1+ hd2+ hd3+…+ hdn或Hd=S总(Q∕n)2 式中:Hd――并联系统水带的压力损失,104 Pa; hd1、hd2、hd3、hdn――任一干线中各条水带的压力损失,104 Pa; S总――并联系统中任一干线中各条水带阻抗系数之和;Q――并联系统的总流量,L/ s n――并联系统中干线水带的数量,条。 阻力系数法公式:Hd=S总Q2或S总=S∕n2 式中:Hd――并联系统水带的压力损失,104 Pa; S总――并联系统总阻抗系数之和; Q――并联系统的总流量,L/ s S――每条干线的阻抗; n――并联系统中干线水带的数量,条 灭火剂喷射器具应用计算

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案 建筑能耗在我国能源总消费中所占的比例已达35%,且持增长态势。大型公共建筑中空调系统耗能约占建筑总能耗的50~65%。空调系统存在的典型问题:能耗高、舒适度低。 1)制冷机组、水泵、空调机组等设备工作效率较低; 2)空调房间温度无法达到设定值、波动较大; 3)水系统的噪音。 水力失调: 静态水力失调:主要由于系统在设计、产品选型、施工等过程中的种种误差迭加产生的,设计需要的系统管道阻力特性与实际系统管道阻力特性不相符,所造成的实际流量与设计流量不一致的水力失调状态。静态水力失调:天生的,所有系统都有,平衡调试后消失。 动态水力失调:在暖通空调水系统上安装了很多调控设备,应用了变流量技术,从而使系统的瞬时阻力特性与设计所需阻力特性不符,而造成了系统的瞬时失调状况。后天的,所有系统都有,必须由动态阀门修正! 水力平衡阀的分类: 一、静态平衡阀—并联管路 二、动态平衡阀 1、动态流量平衡阀/定流量阀—冷冻机干管

2、动态压差平衡阀/压差调节器—水平支管、垂直立管 三、电动平衡阀—末端设备 1、动态平衡电动二通阀—风机盘管 2、动态平衡电动调节阀—新风机组、组合式空气处理机组 水力平衡阀的作用: 平均分配流量(按设计流量分配):静态平衡阀; 按需分配流量(按实时负荷分配):动态平衡阀。 阀门流量计算公式: 静态(水力)平衡阀: 各主要并联管路的平衡方案(集水器、垂直立管、水平支管)

水力失调的典型现象(存在的问题): 部分区域过流从而导致部分区域欠流的冷热分配不均; 为照顾不利环路而加大流量运行导致能源浪费; 有利环路阀门、末端设备处存在水流噪音。 并联环路流量分配与压降的关系: 平衡方案:各并联管路设置静态平衡阀。 平衡原理:通过调节自身开度改变阀门阻力,平衡各并联环路的阻力比值,使流量合理分配,达到实际流量与设计流量相同; 消除水系统存在的部分区域过流从而导致部分区域欠流的冷热分配不均现象,有效避免了为照顾不利环路而加大流量运行的能源浪费现象,因此可节省冷/热量,同时还可以减少水泵运行费用。

二级换热系统的水力平衡调节

二级换热系统的水力平衡调节 首都机场动力能源公司暖通分公司秦春雨夏晨宇 摘要:本文介绍了首都机场动力能源公司暖通分公司供暖站解决水力失调的几种方法和措施,提出了一套根据不同年代建筑的单位面积热负荷和建筑面积进行水力平衡调节的计算公式和理论依据,并介绍了针对不同情况的高温水系统、低温水系统进行水力平衡调节的步骤和方法,最后对水力平衡调节的节能效果进行了分析。 关键词:二级换热系统、水力平衡调节、高温水系统、低温水系统 1、系统概况 1.1供热系统布置情况介绍 在一个以3台75吨、l台45吨燃气蒸汽锅炉为热源的180万平方米大型供热系统中, 有一级换热站3个,直接将燃气蒸汽锅炉生产出压力为0.9MPa、温度约为230℃的过热蒸汽, 换热成高温水。大部份高温水需要经过二级换热站换热后用于供暖,小部分高温水直接用于 供暖。各换热站的关系如图1.所示。其中:1#、2#、6#换热站为汽一水一级换热站,4#、 5#、7#、航站楼等换热站为水一水二级换热站。6#、7#换热站负责住宅区的供热,其余几个 站负担工作区的供热。供回水设计温度:一次高温热水130/90℃,二次低温热水95/70℃。 图1.各换热站关系 1.2系统的运行方式 一级换热站均已采用变频自控技术,电脑控制变频器,使水泵流量随室外温度自动改变 见表l,通过电脑调节蒸汽电动阀使供水回水温度随室外温度变化,调节曲线见图2。

循环水流量调节表 2.供回水温度随室外温度变化 1.3水力失调现象: (1)以前对高温水系统未进行水力平衡调节,只对一部分换热站点的低温水进行水力平衡调节,以l#站高温水为例见图3. 图3.1#站部份高温水水力平衡失调度图 *表示水力失调度:实际流量/计算流量*100% 一些近端二级换热站(4#站)的高温水水力失调度达2.46,远端换热站(国航货运)的高温水水力失调度为0.76。(2)水力失调的影响: a.对用户的室内温度影响:个别用户室温低于16度,05年1月底开展的测温活动发现室温低于16度的用户如下:西消防支队温度15度,货运仓库14度,场务队特种车库14度。

水力平衡

暖通空调水力平衡的调节 摘要:在暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 关键词:静态;动态;水力平衡;定流量;变流量 Hydronic Balancing Analysis of Heating and Air Conditioning Abstract:Introduces the conception and classify of hydronic maladjustment and hydronic balancing . Analyses the characteristic of hydronic maladjustment and step of realizing hydronic balancing in invariableness flowrate system and variableness flowrate system . Deeply analyses a few typical system forms . Keywords:static: dynamic; hydronic balancing; invariableness flowrate; variableness flowrate 0.引言 在暖通空调工程中,水力平衡的研究是个很重要的课题。本文提出了静态水力平衡和动态水力平衡的概念,并结合二种水力平衡的特点,分析了定流量系统和变流量系统中几种典型方式的水力平衡设备的选择及实现水力平衡的方式。 1 水力失调和水力平衡的分类 1.1 水力失调和水力平衡的概念 在热水供热系统以及空调冷冻水系统中,各热(或冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调,反之,称为水力平衡。 1.2 静态水力失调和静态水力平衡 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的。通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量,各末端设备流量也均达到设计流量时,系统实现静态水力平衡。 1.3 动态水力失调和动态水力平衡 当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离要求流量,从而导致的水力失调,叫做动态水力失调。动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,从而使得系统实现动态水力平衡。 2 定流量系统水力平衡分析 定流量水力平衡系统是暖通空调设计中常见的水系统,在运行过程中系统各处的流量基本保持不变。常用的主要有以下三种形式: 2.1 完全定流量系统 完全定流量系统是指系统中不含任何动态调节阀门,系统在初调试完成后阀门开度无需作任何变动,系统各处流量始终保持恒定。完全定流量系统主要适用于末端设备无需通过流

水暖供热系统水力平衡的调节

目录 一、水力平衡的基本概念 (1) 二、定流量系统的静态水力平衡 (2) 三、变流量系统的全面水力平衡 (2) 四、水力平衡和水力失调系统的比较 (3) 五、结束语 (9)

水暖供热系统水力平衡的调节 供热管网是一个复杂的水力系统,系统中各环路间水力状况的变化相互影响和制约。因此,在供热工程中,水力平衡的调节是个重要的问题。通过调节系统水力平衡,可以实现供热水力系统的舒适性和节能性。 一、水力平衡的基本概念: 1、静态水力失调和静态水力平衡: 静态水力失调是系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。静态水力失调是系统本身所固有的。它是由于设计、施工、管材等原因导致的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端用户流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 动态水力失调实际上是系统运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。动态水力失调是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的

流量并不随之变化,末端用户散热设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二、定流量系统的静态水力平衡: 定流量系统是早期供热工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端用户无须通过流量来进行调节室内热量的系统。 定流量系统只存在静态水力失调,基本不存在动态水力失调,因此只需在相关部位安装静态水力平衡调节阀即可。 三、变流量系统的全面水力平衡: 随着人们对室内温度舒适性要求、节能意识的不断提高,变流量水力系统在供热工程中占据越来越重要的位置。 变流量系统是指系统在运行过程中各分支环路的流量随外界负荷的变化而变化。由于近年暖冬的出现,变流量供热系统的管道流量都低于设计流量,因此这种系统是高效节能的。 变流量系统一般既存在静态水力失调,也存在动态水力失调,因此必须采取相应的水力平衡措施来实现系统的全面平衡。 1、静态水力平衡的实现: 通过在相应的部位安装静态水力平衡阀,使系统达到静态水力平

暖通空调系统水力平衡方案及比较分析

暖通空调系统水力平衡方案及比较分 析

暖通空调系统水力平衡方案及比较分析 在建筑物暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。 一、水力平衡技术是节能及提高供热(冷)品质的关键 在供热空调系统中,由于种种原因,大部分输配环路及热(冷)源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量不符。加上水泵选型偏大,水泵运行不合适的工作点处,导致水系统处于大流量、小温差运行工况,水泵运行效率低、热量输送效率低。而且各用户处室温不一致,近热(冷)源处室温偏高(高),远热(冷)源处室温偏低(高)。对热(冷)源来说,机组达不到其额定出力,使实际运行的机组台数超过按负荷要求的台数。以上种种原因,造成了能耗高,供热 (冷)品质差的弊病。

1、静态水力失调系统的流量计算: 在未安装静态水力平衡设备前,现场测得的末端设备流量及经过改造水泵来满足流量的计算结果如表1所示,该系统为静态失调 的水力系统。 表1 设备 流量设备1 设备2 设备3 设备4 总流量 (m3/h) 设备实测流量(m3/h) 28 24 18 16 86 设计流量 20 20 20 20 80 实测流量与 设计流量比较实测>设计实测>设计实测<设计实 测<设计 为保证设计流量 必须采取的措施必须经过增大水泵流量的方法 以保证设备4的流量达到设计流量 水泵流量增大后的流量数值 (m3/h) 35 30 22.5 20 107.5 由上表可见,设计总流量为80(m3/h),但为了保证最不利环路达到设计流量,实际水泵所需的最小流量为107.5(m3/h),远

暖通空调系统中的水力平衡问题

暖通空调系统中的水力平衡问题 时间:2012-06-12 16:15 来源:特灵空调编辑:公司编辑点击:1492次字号:小大 在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调 在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量要求不符。 1.产生水力失调的原因和结果 水力失调有两方面:动态水力失调,是指当某些用户的水流量改变时,会影响其它用户的流量也随之变化,偏离设计要求。静态水力失调,是指系统虽然经过水力平衡计算,并达到规定的要求,但由于设计、施工安装、设备材料等原因导致的,各用户的实际流量与设计要求不符引起的系统水力失调。这种水力失调是先天性的、根本的,如果不加以解决,影响将始终存在。 水力不平衡常会导致: (1)系统中某些用户流量过大引起其他用户流量过小,不利环路无法获得所需要的流量。 (2)由于冷热源与输配管路流量不匹配,在满负荷时,供热温度比预期值低,供冷温度比预期值高,导致水系统处于大流量、小温差运行工况。 (3)水泵选型偏大,水泵运行在偏离高效区不合适的工作点处。能量输配效率低下,无法进行整体调控和节能运行。 (4)在大流量小温差的工况下运行,冷热源难以达到其额定出力,使实际运行的机组超负荷或运行机组台数超过实际负荷要求的台数。 (5)在装备有自动控制的系统中,往往由于水量不符合设计要求,而使自控装置失灵或不能充分发挥其控制功能,导致温控效果差。 (6)由于调节阀的调节相互影响,电机频繁动作,使用寿命缩短。 2.解决水力失调的方式 目前,国内中央空调水系统按流量的稳定性可分为定流量和变流量系统;按布置形式又分为同程式系统和导程式系统。本文将就这不同系统中如何克服水力失调进行探讨。 2.1同程系统不能解决水力平衡问题 同程系统在所有末端要求完全相同的设计流量的情况下,各用户盘管的水阻力大致相等,所以流量是可以得到均匀分配的。但这种均匀分配也只是在满负荷时的设计流量下的平衡,如果末端设备由电动二通调节阀进行调节时,此时同程系统的平衡作用也就不再起作用了。因此同程系统的平衡实际上也只是适用于设计流量工况,而不适用于部分负荷工况。 2.2平衡阀的种类 我们已经知道水力失调并不能通过在设计时进行平衡计算解决,即使是同程式系统。为了解决这一问题,必须采用各种水力平衡阀:手动平衡阀、自动流量

相关主题
文本预览
相关文档 最新文档