当前位置:文档之家› MMC排队系统模型

MMC排队系统模型

MMC排队系统模型
MMC排队系统模型

M/M/C排队模型及其应用

摘要:将随机服务系统中M/M/C排队模型应用到理发服务行业中。通过对某理发店进行调查,以10min为一个调查单位调查顾客到达数,统计了72个调查单位的数据,又随机调查了113名顾客服务时间,得到了单位时间内到达的顾客数n和为每位顾客服务的时间t,然后利用 2拟合检验,得到单位时间的顾客到达舒服从泊松分布,服务时间服从负指数分布,从而建立起M/M/C等待制排队模型,通过计算和分析M/M/C排队模型的主要指标,得到理发店宜招聘的最佳理发师数目。

排队论主要对由于受随机因素的影响而出现排队系统进行研究,它广泛应用于通信、交通与运输、生产与服务、公共服务事业以及管理运筹等一切服务系统。在具体应用方面,把排队理论直接应用到实际生活方面也有不少的文献。另外,排队论和其他学科知识结合起来也有不少应用。

我们可以从现实生活中去的数据资料,基于排队系统基本知识和M/M/C排队模型基本理论和统计学有关知识,通过分析研究,得出一些结论,为实际问题的解决提供参考资料,从而拓宽了该模型的应用领域,并对其他模型的系统应用也有一定的启示作用。

1 M/M/C排队模型

定义

若顾客的到达间隔服从参数为λ的负指数分布,到达的人数服从泊松分布,每位顾客的服务时间服从参数为μ的负指数分布,且顾客的到达时间与服务时间独立,系统有C个服务台,称这样的排队模型为M/M/C排队模型。

M/M/C排队模型也可以对应分为标准的M/M/C模型、系统容量有限的M/M/C模型和顾客源有限的M/M/C模型3种。

假定顾客到达服从参数为λ的泊松分布,每个顾客所需的服务时间服从参数为μ的指数分布,顾客到达后若有空闲的服务台就按到达的先后顺序接受服务,若所有的服务台均被占用时,顾客则排成一队等候。令N(t)=i表示时刻t系统中恰有i位顾客,系统的状态集合为{0,1,2,…}。可证{ N(t),t>0}为生灭过程,而且有:

.....

2C 1,C n C ...,21n n {....

,21n n n

,μ,,μ,,,++=====μ

λλ 由此可见,服务台增加了,服务效率提高了。

定理1

队长N (t )平稳分布。令...,21n t }n t N {P t p lim

p p n

t n

n

),(,)()(=?=?∞

→t 则可求得系统的平稳分布为,当1≤n <C 时,

]

1

1

)

1(!!

[!--=--

+

==

C

C n C c

C n n

C

n n n

p

p C

p

ρ

ρ

ρ

ρ

定理2

系统的主要指标:

服务系统中平均排队长度:∑∞

=+--=

-=C i c i

q C C C i p

p

L )

2

1

()!1()

(ρρ

顾客在系统中的平均等待时间:p C L w C q

q

22

)

()()!1(λμμλμλ--=

=

顾客在系统中的平均逗留时间:μ

μμλμμλ

1

)!1(1

)

()(

2

2

+-=

+=-C p w w C q

s

系统内的顾客平均人数:

ρρλρ

+--=

=+p

w L C C c s s 0

2

1

)

()!1(

系统满员的概率:p

C C n P c

!

)(ρ

=

=

2 M/M/C 排队模型在理发服务行业中的应用

在理发行业中,到理发店中去洗头、剪发、烫发、染发的人可看作是需要接受服务的顾客,理发店中的设备或理发师傅可看成服务台,顾客到达理发店是随机的,师傅为顾客服务的时间也是随机的,这就构成了排队系统。理发店要多赚钱与很多因素有关,而理发店自身的配置是否合理就是一个很重要的因素,现举

例探讨如何使用排队理论知识优化理发店的服务台的配置。

2.1 调查收集数据

某理发店拥有3名理发师傅,在服务中,采用单队多服务台形式,为每位顾客服务时间是随机的,假定服务时间的分布平稳,利用排队理论知识评价和优化该理发店的配置。

调查内容是单位时间内到达的顾客数n和为每位顾客服务的时间t。记录整理见表1。

表1 顾客到达情况的相关数据

服务时间为从未顾客开始服务起到顾客付款离去时止,随机调查113名。顾客服务时间记录整理见表2。

表2 为顾客服务时间的相关数据

2.2 分布拟合检验

2.2.1 单位时间内到达的顾客数服从分布的拟合检验

为了检验单位时间内顾客到达人数是否服从泊松分布,根据表1的数据,利

用χ2

拟合检验,具体计算见表3。

表3

χ

2

拟合检验顾客到达人数是否服从泊松分布

2.2.2 服务时间服从分布的检验

为了检验服务时间是否服从负指数分布,根据表2的数据,用χ2

拟合检验,结果见表4。

表4 χ2

拟合检验服务时间是否服从负指数分布

2.3 系统主要指标

实际生活中,理发行业一般不会是独家经营,所以顾客不会在一家理发店等待很久,但随理发店来说,市容需等待的,因此由以上的检验知道,该理发店形成M/M/C 等待制FCFS 排队模型,应用前面定理1和定理2有λ=0.0958人/min ,μ=0.0523人/min ,C=3,318.81==μ

λ

ρ 服务强度106.60523

.003958.00C C =?===

ρμλρ,

系统空闲概率

401.10)

1(!!

[]

1

1

=-

+

=--=∑

C

C n c

C n n

p

ρ

ρ

ρ

等待理发的平均顾客数776.50()!1()

()

2

1

=--=

-=∑∞

=+C

i c i

q C C C i p

p

L ρρ

店中平均逗留顾客数094.42()!1(0

2

1

)

=+--=

=+ρρλρ

p

w L C C c s s

顾客平均等待时间/min 279.06)!1(0

22

)

()(

=-=

=-p C L w C q

q

λμμλμλ

顾客平均逗留时间/min 50.1251

)!1(1

)

()(2

2

=+-=

+=-μ

μμλμμλ

C p w w C q

s

店中满员概率435.10!

)(0

==

=p

C C n P c

ρ

顾客到达必须等待的概率5119.0!)(0

n ==>-p

c

C

n C C n P ρ

3 结论

根据上述计算结果可知,该理发店2位师傅平均忙着的概率约为61%,都闲着的概率约为14%,顾客平均等待时间约为6min ,在店中平均逗留时间为25min ,大约有51%的顾客到达后需要等待,说明理发店比较忙碌。随着师傅数量的增加,店中等待人数、顾客等待的时间满员和需要等到的概率明显降低。所以,要想有好的效益,理发电影多聘请师傅来降低顾客的等待时间和到达需要等到的概率,但同时,服务强度也跟着降低,师傅空闲的时间增多,如果用费用模型来优化,顾客逗留费用不好估计,因此根据愿望模型,利用系统的运行特征来确定某个参数的最优值。从上可看出,如果店中有4个服务台时,各项指标都比较理想,等待1min 左右,空闲概率为15%,顾客、师傅、老板都能够接受,因此,该理发店应聘用4名师傅较好。

排队系统仿真matlab实验报告

M/M/1排队系统实验报告 一、实验目的 本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。 二、实验原理 根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。 1、 顾客到达模式 设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概 率 服从Poisson 分布,即e t k k k t t p λλ-=!)()(,?????????=,2,1,0k ,其中λ>0为一常数,表示了 平均到达率或Poisson 呼叫流的强度。 2、 服务模式 设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥ 3、 服务规则 先进先服务的规则(FIFO ) 4、 理论分析结果 在该M/M/1系统中,设 λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρ μλ=-。 三、实验内容 M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。 四、采用的语言 MatLab 语言 源代码: clear; clc;

%M/M/1排队系统仿真 SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda; Mu=0.9; %服务率Mu; t_Arrive=zeros(1,SimTotal); t_Leave=zeros(1,SimTotal); ArriveNum=zeros(1,SimTotal); LeaveNum=zeros(1,SimTotal); Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间 t_Arrive(1)=Interval_Arrive(1);%顾客到达时间 ArriveNum(1)=1; for i=2:SimTotal t_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i); ArriveNum(i)=i; end t_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1; for i=2:SimTotal if t_Leave(i-1)

MMC排队系统模型

M/M/C排队模型及其应用 摘要:将随机服务系统中M/M/C排队模型应用到理发服务行业中。通过对某理发店进行调查,以10min为一个调查单位调查顾客到达数,统计了72个调查单位的数据,又随机调查了113名顾客服务时间,得到了单位时间内到达的顾客数n和为每位顾客服务的时间t,然后利用 2拟合检验,得到单位时间的顾客到达舒服从泊松分布,服务时间服从负指数分布,从而建立起M/M/C 等待制排队模型,通过计算和分析M/M/C排队模型的主要指标,得到理发店宜招聘的最佳理发师数目。 排队论主要对由于受随机因素的影响而出现排队系统进行研究,它广泛应用于通信、交通与运输、生产与服务、公共服务事业以及管理运筹等一切服务系统。在具体应用方面,把排队理论直接应用到实际生活方面也有不少的文献。另外,排队论和其他学科知识结合起来也有不少应用。 我们可以从现实生活中去的数据资料,基于排队系统基本知识和M/M/C排队模型基本理论和统计学有关知识,通过分析研究,得出一些结论,为实际问题的解决提供参考资料,从而拓宽了该模型的应用领域,并对其他模型的系统应用也有一定的启示作用。 1 M/M/C排队模型 定义

若顾客的到达间隔服从参数为λ的负指数分布,到达的人数服从泊松分布,每位顾客的服务时间服从参数为μ的负指数分布,且顾客的到达时间与服务时间独立,系统有C 个服务台,称这样的排队模型为M/M/C 排队模型。 M/M/C 排队模型也可以对应分为标准的M/M/C 模型、系统容量有限的M/M/C 模型和顾客源有限的M/M/C 模型3种。 假定顾客到达服从参数为λ的泊松分布,每个顾客所需的服务时间服从参数为μ的指数分布,顾客到达后若有空闲的服务台就按到达的先后顺序接受服务,若所有的服务台均被占用时,顾客则排成一队等候。令N (t )=i 表示时刻t 系统中恰有i 位顾客,系统的状态集合为{0,1,2,…}。可证{N (t ),t>0}为生灭过程,而且有: 由此可见,服务台增加了,服务效率提高了。 定理1 队长N (t )平稳分布。令 ...,21n t }n t N {P t p lim p p n t n n , ),(,)()(=?=?∞ →t 则可求得系统的平稳分布为,当1≤n <C 时, ]1 1 ) 1(!! [!--=-- + == ∑ C C n C c C n n C n n n p p C p ρ ρ ρ ρ , 定理2 系统的主要指标:

M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析 摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。 关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解 1M/M/C/∞排队系统 1.1排队论的概念及排队系统的组成 上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。 任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。③服务机构描述服务台数目及服务规律。服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。 1.2M/M/C/∞排队模型 ①排队系统模型的表示。目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。他用3个字母组成的符号A/B/C表示排队系统。为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。 ②排队系统的衡量指标。—所有服务设施空闲的概率;—系统中的顾客总数;—队列中的顾客总数;—顾客在系统中的停留时间;—顾客在队列中的等待时间。 ③M/M/C/∞排队模型。排队系统模型大体上可以分为简单排队系统,特殊排队系统,休假排队系统及可修排队系统。纵观所有排队系统的模型,无非是系统的三个组成部分分别为不同情况时,进行的排列组合,并由此导致排队系统的数量指标的计算公式不一致。无论是何种排队系统,其研究实质都是如何平衡等待时间

单服务台排队系统建模与仿真研究报告

物流系统建模与仿真 单服务台排队系统仿真研究报告 ——选大学A区门口中国银行分行某一服务窗口为单服务台排队系统研究对象一、系统基本背景 社会的进步越来越快,人们的生活节奏也随之越来越快。在科技的发展,新技术的普及下, 我国的银行业以计算机和信息技术、互联网技术为前提, 通过大量资金和科技的投入, 不断地开发出新产品和新业务。另外有网上银行、支付宝等新业务的出现, 大大提高了工作效率。然而现代的金融服务并不是都可以靠刷卡来解决, 许多技术还不完善, 这些新技术也并不适合所有顾客群,去银行办理业务的顾客仍然经常性地出现排队现象。顾客等待时间过长, 造成顾客满意度下降, 矛盾较为突出, 因此本报告试利用单服务台排队论的方法, 定性定量地对具有排队等候现象的银行服务系统进行统计调查与分析研究,希望能帮助改进银行工作效率, 优化系统的运营。 本报告研究对象为中国银行大学处分行某一服务窗口,数据取自银行唯一非现金业务柜台。研究对象的选取虽然不是最典型的,但是综合考虑了研究地域围和小组成员作业时间有限,另有其他方案由于各种原因无法进行,故选择离学校

较近的有代表性的中国银行中的服务窗口作为最终方案。 中国银行简介:中国银行是中国历史最为悠久的银行之一,在大家对银行的概念中有着一定地位。中国银行主营传统商业银行业务,包括公司金融业务、个人金融业务和金融市场业务。公司业务以信贷产品为基础,致力于为客户提供个性化、创新的金融服务和融资、财务解决方案。个人金融业务主要针对个人客户的金融需求,提供包括储蓄存款、消费信贷和银行卡在的服务。作为中国金融行业的百年品牌,中国银行在稳健经营的同时,积极进取,不断创新,创造了国银行业的许多第一,在国际结算、外汇资金和贸易融资等领域得到业界和客户的广泛认可和赞誉。 二、系统描述 该银行工作时间为上午8:30至下午16:30(周一至周日),另周末不办理对公业务,属于每天8小时工作制。系统调查对象为银行唯一非现金业务柜台,可知到达的顾客中,需要办理非现金业务的顾客在正常现金业务柜台忙碌的情况下可以选择该服务台。在队列中,等待服务的顾客和服务台构成了一个排队系统。由于银行前台出纳员逐个接待顾客,当顾客较多的时候就会出现排队等待的现象。其中,顾客的到达是随机的,每两个先后到达的顾客的到达间隔时间是不确定的。 本排队系统用顾客的数目、到达模式、服务模式、系统容量和排队规则来描述。 为探求此排队系统的规律, 首先需确定顾客流在一定时间到达的概率分布

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

多服务台排队系统的仿真

实验3--- 多服务台排队系统的仿真 姓名:学号: 一、目标任务 已知一个系统有N 个服务员,能力相等,服务时间服从指数分布。顾客的到达时间间隔服从指数分布。用Monte-Carlo 仿真,分别求按下列方案的总体平均排队时间: ①M|M|N 。 ②N 个单通道系统并列,按1/N 概率分裂到达流。 ③N 个单通道并列,挑选最短的队。 要求: ①给出程序设计的过程。 ②如果采用固定的N,则要求N>2。 ③至少取p二和p二两种强度运行程序。 ④对结果进行分析。 二、编程语言 Matlab 三、关键代码

N = 3; % 服务员人数 r = 6; % 顾客到达流强度 u = 20; % 服务员服务强度 T = 1000000; % 仿真运行时间 avg_wait_time = []; % 平均等待时间 for i=1:100 % 模拟排队函数 server_time = [, , ]; % 用来保存服务员下一空闲时间 time = 0; % 绝对时钟,初始为 0 client_num = 0; % 顾客总数,初始为 0 CRTime = 0; % 顾客到达时间间隔 ServeTime = 0; % 顾客服务时间 server_id = 0 ; % 当前进入排队窗口的服务员编号 total_wait_time = 0;% 系统中到达顾客的总等待时间 while 1 按 1..N 的顺序循环排入服务

员窗口 if server_id ==0 server_id = N; end if server_time(1, server_id) <= time % 如果当前 server_id 号 服务员空闲, 则直接接收服务 server_time(1, server_id) = time + ServeTime; % 服务员下 一空闲时间为当 前绝对时钟加上当前服务时间 else % 否则所有服务员都在忙碌,顾客要排队等候 total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客排队等候时间为当前服务员下一空闲时间减去绝对时 钟 server_time(1, server_id) = server_time(1, server_id) + ServeTime; end end avg_wait_time = [avg_wait_time, total_wait_time/client_num]; end % 计算平均等待时间 mean_avg_wait_time = mean(avg_wait_time); CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔 time = time + CRTime; % 更新系统的绝对时钟 if time > T break; end client_num = client_num + 1; % 顾客数加 1 ServeTime = exprnd(1/u); % 按指数分布产生顾客服务间隔 server_id = mod(client_num, N); %

单服务排队系统MAAB仿真程序

单服务台系统MATLAB仿真 学号:15 姓名:缪晨 一、引言 排队是日常生活中经常遇到的现象。通常 ,当人、物体或是信息的到达速率大于完成服务的速率时 ,即出现排队现象。排队越长 ,意味着浪费的时间越多 ,系统的效率也越低。在日常生活中 ,经常遇到排队现象 ,如开车上班、在超市等待结账、工厂中等待加工的工件以及待修的机器等。总之 ,排队现象是随处可见的。排队理论是运作管理中最重要的领域之一 ,它是计划、工作设计、存货控制及其他一些问题的基础。Matlab是 MathWorks公司开发的科学计算软件 ,它以其强大的计算和绘图功能、大量稳定可靠的算法库、简洁高效的编程语言以及庞大的用户群成为数学计算工具方面的标准 ,几乎所有的工程计算领域 ,Matlab都有相应的软件工具箱。选用 Matlab软件正是基于 Matlab的诸多优点。 二、排队模型 三.仿真算法原理 (1)顾客信息初始化 根据到达率λ和服务率μ来确定每个顾客的到达时间间隔和服务时间间隔。服务间隔时间可以用负指数分布函数exprnd()来生成。由于泊松过程的时间间隔也服从负指数分布, 故亦可由此函数生成顾客到达时间间隔。需要注意的是exprnd()的输入参数不是到达率λ和服务率μ而是平均到达时间间隔 1/λ和平均服务时间1/μ。

根据到达时间间隔 ,确定每个顾客的到达时刻. 学习过C 语言的人习惯于使用FOR循环来实现数值的累加, 但FOR循环会引起运算复杂度的增加而在MATLAB 仿真环境中, 提供了一个方便的函数cumsum() 来实现累加功能读者可以直接引用对当前顾客进行初始化。第1 个到达系统的顾客不需要等待就可以直接接受服务其离开时刻等于到达时刻与服务时间之和。 (2)进队出队仿真 在当前顾客到达时刻,根据系统内已有的顾客数来确定是否接纳该顾客。若接纳则根据前一顾客的离开时刻来确定当前顾客的等待时间、离开时间和标志位;若拒绝,则标志位置为0. 流程图如下: 四、程序实现 单服务台服务,服务参数M/M/1,λ=μ=,排队规则为FIFO,以分为单位,仿真时间240分钟。 仿真程序代码如下 %总仿真时间 Total_time = 240; %到达率与服务率

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

排队系统仿真 - 副本

食堂排队系统仿真 专业班级: 20121171 姓名: 学号: 年月日

一、实验名称 食堂排队系统仿真实验 二、实验目的 学习Flexsim仿真软件的基本用法并建立一个简单的食堂排队模型;学习根据临时实体类型来定义临时实体的流程路径;学习统计数据的收集、分析与比较。 三、实验内容 根据数据调查统计,得到顾客到达的时间间隔服从指数分布exponential(0,*,*)。顾客随机的均匀到达。 有*个打饭窗口为顾客提供服务,顾客将首先到空闲可用的打饭窗口接受服务。 顾客接受服务的时间服从(*,*)的**分布。顾客接受完服务后离开系统。以上时间单位皆为分钟。 对上述系统进行建模,仿真*小时的运行状况,收集各打饭窗口的利用率、顾客的平均等待时间等数据,提出服务设施的改进建议,使得顾客的平均等待时间不超过**分钟。 四、仪器设备 计算机、Flexsim仿真软件 五、实验步骤 1.添加控件 首先flexsim仿真软件,软件,*个发生器,*个暂存区,*个处理器,*个吸收器,并连接各个实体控件。如图

图 2. 设置发生器的参数 <1>到达时间间隔设置 <2>发生触发器离开出发设置 3、设置处理器的参数 定义发生器Processor1、Processor2(根据上面设定的发生器个数)为顾客提供服务,并设置其参数 处理时间设置 临时实体流设置 4、模拟仿真模型 先打开实验控制器按钮,设置系统仿真时间***分钟(根据上面的设置),再编译,然后

运行。 5、统计数据 图(生成报告的图)6.实验结论 平均排队时间**,平均排队人数**,最大排队时间**,最大排队人数**,(之后分析自己的模型,排队是否过长,处理时间是否过长) 六、方案改进 增加*个的处理器(即增加服务窗口),连接控件。(等)

计算机模拟---排队系统仿真研究

计算机模拟--- 医院排队系统仿真研究与分析 专业:交通工程 年级:2009级 姓名:颜奋帆 学号:20092953

摘要 本文通过研究排队系统的构成,来到过程,服务时间,服务窗口,服务类型等方面,评价排队服务系统性能的主要指标。在对排队系统进行分析后,得到结构图与主要流程图。通过医院排队系统仿真研究与分析,得到排队系统的一般运行规律,并提出合理的意见与建议。 Abstract By analyzing different aspects like queuing system, processing, service time, service windows and service type, this paper introduced a way to evaluate the main indicators of the queuing system. After detailed research, structure chart and main flow chart is then worked out. The study of queuing system in hospitals highlights general rules for queuing system, as well as reasonable comments and suggestions related to it.

医院排队系统仿真研究与分析 一.研究背景与意义 排队论已经广泛应用于各种管理系统。比如仓库供应、企业生产、物资分配与流通、交通运输、计算机作业及生活服务。这些系统都可以作为排队服务系统进行处理。在系统仿真应用中,又以排队系统的离散型仿真最为普遍。在某种程度上说,管理系统仿真正是在排队系统的离散型仿真的基础上逐渐发展起来的。 医院就医排队是一种经常遇见的非常熟悉的现象。它每天以这样或那样的形式出现在我们面前。例如,患者到医院就医,患者到药房配药、患者到输液室输液等,往往需要排队等待接受某种服务。这里,护士台、收费窗口、输液护士台及其服务人员都是服务机构或服务设备。 以上排队都是有形的,还有些排队是无形的。由于患者到达的随机性,所以排队现象是不可避免的。 如果医院增添服务人员和设备,就要增加投资或发生空闲浪费;如果减少服务设备,排队等待时间太长,对患者和社会都会带来不良影响。因此,医院管理人员要考虑如何在这两者之间取得平衡,以便提高服务质量,降低服务费用。 在排队论中,患者和提供各种形式服务的服务机构组成一个排队系统,称为随机服务系统。排队系统模型已广泛应用于各种管理系统。如手术管理、输液管理、医疗服务、医技业务、分诊服务,等等。 二.排队服务系统问题的提出 2.1 医院排队系统的组成 排队系统的基本结构由四个部分构成:来到过程(输入)、服务时间、服务窗口和排队规则。 1、来到过程(输入)是指不同类型的患者按照各种规律来到医院。 2、服务时间是指患者接收服务的时间规律。 3、服务窗口则表明可开放多少服务窗口来接纳患者。 4、排队规则确定到达的患者按照某种一定的次序接受服务。 5、排队列数,有单列的和多列的。 6、队列容量,分为有限的和无限的。 2.2 来到过程 常见的来到过程有定长输入、泊松(Poisson)输入、埃尔朗(A. K. Erlang)输入等,其中泊松输入在排队系统中的应用最为广泛. 所谓泊松输入即满足以下4个条件的输入: ①平稳性:在某一时间区间内到达的患者数的概率只与这段时间的长度和患者数有关; ②无后效性:不相交的时间区间内到达的患者数是相互独立的; ③普通性:在同时间点上就诊或手术最多到达1个患者, 不存在同时到达2个以上患者的情况; ④有限性:在有限的时间区间内只能到达有限个患者, 不可能有无限个患

实验2 单服务台单队列排队系统仿真

实验2排队系统仿真 一、学习目的 1.了解仿真的特点 2.学习如何建构模型 3.熟悉eM-Plant基本的对象和操作 4.掌握排队系统的特点与仿真的实现方法 二、问题描述 该银行服务窗口为每个到达的顾客服务的时间是随机的,表2.4是顾客服务时间纪录的统计结果 表2.4 每个顾客服务时间的概率分布 对于上述这样一个单服务待排队系统,仿真分析30天,分析该系统中顾客的到

达、等待和被服务情况,以及银行工作人员的服务和空闲情况。 三、系统建模 3.1 仿真目标 通过对银行排队系统的仿真,研究银行系统的服务水平和改善银行服务水平的方法,为银行提高顾客满意度,优化顾客服务流程服务。 3.2.系统建模 3.2.1 系统调研 1. 系统结构: 银行服务大厅的布局, 涉及的服务设备 2. 系统的工艺参数: 到达-取号-等待-服务-离开 3. 系统的动态参数: 顾客的到达时间间隔, 工作人员的服务时间 4. 逻辑参数: 排队规则, 先到先服务 5. 系统的状态参数: 排队队列是否为空, 如果不为空队长是多少, 服务台是否为空 6. 系统的输入输出变量:输入变量确定其分布和特征值,顾客的到达时间间隔的概率分布表和每个顾客被服务时间的概率分布. 输出变量根据仿真目标设定. 包括队列的平均队长、最大队长、仿真结束时队长、总服务人员、每个顾客的平均服务时间、顾客平均排队等待服务时间、业务员利用率等。 3.2.2系统假设 1.取号机前无排队,取号时间为0 2.顾客排队符合先进先出的排队规则 3.一个服务台一次只能对一个顾客服务 4.所有顾客只有一种单一服务 5.仿真时间为1个工作日(8小时) 6.等候区的长度为无限长 3.2.3系统建模 系统模型: 3.2.4 仿真模型 1.实体:银行系统中的实体是人(主动体)

MMN排队系统建模与仿真

. 《系统仿真与matlab》综合试题....................... 错误!未定义书签。 M/M/N 排队系统的模拟仿真 (1) 摘要 (1) 1. 问题分析 (3) 2. 模型假设 (4) 3. 符号说明 (5) 4. 模型准备 (5) 4.1 排队系统的组成和特征 (5) 4.1.1输入过程 (6) 4.1.2排队规则 (6) 4.1.3服务过程 (7) 4.1.4排队系统的主要指标 (7) 4.2输入过程与服务时间的分布 (8) 4.2.1负指数分布 (8) 4.2.2泊松分布 (8) 4.3生灭过程 (9) 5. 标准M/M/N模型 (11) 5.1多服务台模型准备 (11) 5.2多服务台模型建立 (12) 5.2.1服务利用率 (12) 5.2.2平均排队长 (13) 5.2.3平均队长 (13)

5.2.4平均等待时间 (14) 6. 程序设计 (14) 6.1动画流程图 (14) 6.2 M/M/N流程图 (15) 7. 程序运行实例介绍 (16) 7.1动画实例讲解 (16) 7.2M/M/N排队系统实例讲解 (18) 8. 程序实现难点和模型评价 (21) 8.1程序实现难点 (21) 8.2模型评价 (21) 9. 参考文献 (21) 10. 附录 (22) 10.1动画实现的核心程序 (22) 10.2 M/M/N模型计算主要程序 (32) M/M/N 排队系统的模拟仿真 摘要

排队是在日常生活中经常遇到的事,由于顾客到达和服务时间的随机性,使得排队不可避免。因此,本文建立标准的M/M/N模型,并运用Matlab软件,对M/M/N排队系统就行了仿真,从而更好地深入研究排队问题。 问题一,基于顾客到达时间服从泊松分布和服务时间服从负指数分布,建立了标准的M/M/N模型。运用Matlab软件编程,通过输入服务台数量、泊松分布参数以及负指数分布参数,求解出平均队长、服务利用率、平均等待时间以及平均排队长等重要指标。然后,分析了输入参数与输出结果之间的关系。得出当服务台数增加时,几个参数都会变小的结论。 问题二,为了更加清晰地反映出实际排队过程。本文通过运用Matlab软件编程,制作了M/M/1排队过程的动画仿真,通过输入泊松分布参数以及负指数分布参数来模拟不同情况下的排队过程。通过仿真动画,可以看到明显的等待和排队过程。 问题三,为了清晰地展示程序执行的效果以及程序功能的使用方法。本文特意制作了程序运行指南,并做了程序运行实例分析。通过详细地介绍,使读者能更好地理解M/M/N模型以及如何使用该仿真程序。 最后,对建立的M/M/N模型做了评价,并提出了一些改进的思路。同时,指

单服务排队系统MAAB仿真程序

单服务台系统MATLAB仿真 一、引言 排队是日常生活中经常遇到的现象。通常,当人、物体或是信息的到达速率大于完成服务的速率时,即出现排队现象。排队越长,意味着浪费的时间越多,系统的效率也越低。在日常生活中,经常遇到排队现象,如开车上班、在超市等待结账、工厂中等待加工的工件以及待修的机器等。总之,排队现象是随处可见的。排队理论是运作管理中最重要的领域之一,它是计划、工作设计、存货控制及其他一些问题的基础。Matlab是MathWorks公司开发的科学计算软件,它以其强大的计算和绘图功能、大量稳定可靠的算法库、简洁高效的编程语言以及庞大的用户群成为数学计算工具方面的标准,几乎所有的工程计算领域,Matlab都有相应的软件工具箱。选用Matlab软件正是基于Matlab的诸多优点。 二、排队模型 三.仿真算法原理 (1)顾客信息初始化 根据到达率λ和服务率μ来确定每个顾客的到达时间间隔和服务时间间隔。服务间隔时间可以用负指数分布函数exprnd()来生成。由于泊松过程的时间间隔也服从负指数分布, 故亦可由此函数生成顾客到达时间间隔。需要注意的是exprnd()的输入参数不是到达率λ和服务率μ而是平均到达时间间隔1/λ和平均服务时间1/μ。 根据到达时间间隔 ,确定每个顾客的到达时刻. 学习过 C 语言的人习惯于使用 FOR循环来实现数值的累加, 但FOR循环会引起运算复杂度的增加而在MATLAB 仿真环境中, 提供了一个方便的函数cumsum() 来实现累加功能读者可以直接引用 对当前顾客进行初始化。第1 个到达系统的顾客不需要等待就可以直接接受服务其离开时刻等于到达时刻与服务时间之和。 (2)进队出队仿真 在当前顾客到达时刻,根据系统内已有的顾客数来确定是否接纳该顾客。若接纳则根据前一顾客的离开时刻来确定当前顾客的等待时间、离开时间和标志位;若拒绝,则标志位置为0. 流程图如下: 四、程序实现 单服务台服务,服务参数M/M/1,λ=μ=0.1,排队规则为FIFO,以分为单位,仿真时间240分钟。 仿真程序代码如下 %总仿真时间 Total_time = 240; %到达率与服务率 lambda = 0.1; mu =0.1; %平均到达时间与平均服务时间 arr_mean = 1/lambda; ser_mean = 1/mu; %可能到达的最大顾客数(round:四舍五入求整数)

多服务台排队系统的仿真设计

实验3---多服务台排队系统的仿真 :学号: 一、目标任务 已知一个系统有N个服务员,能力相等,服务时间服从指数分布。顾客的到达时间间隔服从指数分布。用Monte-Carlo仿真,分别求按下列方案的总体平均排队时间: ① M|M|N。 ② N个单通道系统并列,按1/N概率分裂到达流。 ③ N个单通道并列,挑选最短的队。 要求: ①给出程序设计的过程。 ②如果采用固定的N,则要求N>2。 ③至少取ρ=0.3和ρ=0.7两种强度运行程序。 ④对结果进行分析。 二、编程语言 Matlab 三、关键代码 方案一: N = 3; % 服务员人数 r = 6; % 顾客到达流强度 u = 20; % 服务员服务强度 T = 1000000; % 仿真运行时间 avg_wait_time = []; % 平均等待时间 for i=1:100 % 模拟排队函数 server_time = [0.0, 0.0, 0.0]; % 用来保存服务员下一空闲时间 time = 0; % 绝对时钟,初始为0 client_num = 0; % 顾客总数,初始为0 CRTime = 0; % 顾客到达时间间隔 ServeTime = 0; % 顾客服务时间 server_id = 0; % 当前进入排队窗口的服务员编号 total_wait_time = 0;% 系统中到达顾客的总等待时间 while 1 CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔 time = time + CRTime; % 更新系统的绝对时钟

if time > T break; end client_num = client_num + 1; % 顾客数加1 ServeTime = exprnd(1/u); % 按指数分布产生顾客服务间隔 server_id = mod(client_num, N); % 按1..N的顺序循环排入服务员窗口 if server_id ==0 server_id = N; end if server_time(1, server_id) <= time % 如果当前server_id号服务员空闲,则直接接收服务 server_time(1, server_id) = time + ServeTime; % 服务员下一空闲时间为当前绝对时钟加上当前服务时间 else % 否则所有服务员都在忙碌,顾客要排队等候 total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客排队等候时间为当前服务员下一空闲时间减去绝对时钟 server_time(1, server_id) = server_time(1, server_id) + ServeTime; end end avg_wait_time = [avg_wait_time, total_wait_time/client_num]; end % 计算平均等待时间 mean_avg_wait_time = mean(avg_wait_time); fprintf('ρ=%2.1f平均等待时间 %6.5f\n', r/u, mean_avg_wait_time); % 打印平均等待时间 % 绘制每次仿真的平均等待时间和总体平均等待时间线状图 x = 1:100; %plot(x, avg_wait_time, x, mean_avg_wait_time); scatter(x, avg_wait_time, '.'); 方案二: N = 3; % 服务员人数 r = 6; % 顾客到达流强度 u = 20; % 服务员服务强度 T = 1000; % 仿真运行时间 avg_wait_time = []; % 平均等待时间

(完整版)单服务排队系统MATLAB仿真程序

%总仿真时间 Total_time = 10; %队列最大长度 N = 20; %到达率与服务率 lambda = 10; mu = 6; %平均到达时间与平均服务时间 arr_mean = 1/lambda; ser_mean = 1/mu; %可能到达的最大顾客数(round:四舍五入求整数) arr_num = round(Total_time*lambda*2); %顾客事件表初始化 events = []; %按负指数分布产生各顾客达到时间间隔 events(1,:) = exprnd(arr_mean,1,arr_num); %各顾客的到达时刻等于时间间隔的累积和 events(1,:) = cumsum(events(1,:)); %按负指数分布产生各顾客服务时间 events(2,:) = exprnd(ser_mean,1,arr_num); %计算仿真顾客个数,即到达时刻在仿真时间内的顾客数len_sim = sum(events(1,:)<= Total_time); %***************************************** % 计算第1 个顾客的信息 %***************************************** %第1 个顾客进入系统后直接接受服务,无需等待 events(3,1) = 0; %其离开时刻等于其到达时刻与服务时间之和 events(4,1) = events(1,1)+events(2,1); %其肯定被系统接纳,此时系统内共有1 个顾客,故标志位%置1 events(5,1) = 1; %其进入系统后,系统内已有成员序号为1 member = [1]; %***************************************** % 计算第i 个顾客的信息 %***************************************** for i = 2:arr_num %如果第i 个顾客的到达时间超过了仿真时间,则跳出循环if events(1,i)>Total_time break; %如果第i 个顾客的到达时间未超过仿真时间,则计算在其%到达时刻系统中已有的顾客个数 else number = sum(events(4,member) > events(1,i));

MMN排队系统建模与仿真

《系统仿真与matlab》综合试题...................... 错误!未定义书签。 M/M/N 排队系统的模拟仿真 (1) 摘要 (1) 1. 问题分析 (2) 2. 模型假设 (2) 3. 符号说明 (3) 4. 模型准备 (3) 4.1 排队系统的组成和特征 (3) 4.1.1输入过程 (4) 4.1.2排队规则 (4) 4.1.3服务过程 (4) 4.1.4排队系统的主要指标 (5) 4.2输入过程与服务时间的分布 (5) 4.2.1负指数分布 (5) 4.2.2泊松分布 (5) 4.3生灭过程 (6) 5. 标准M/M/N模型 (8) 5.1多服务台模型准备 (8) 5.2多服务台模型建立 (9) 5.2.1服务利用率 (9) 5.2.2平均排队长 (9) 5.2.3平均队长 (10) 5.2.4平均等待时间 (10) 6. 程序设计 (11) 6.1动画流程图 (11) 6.2 M/M/N流程图 (12) 7. 程序运行实例介绍 (13) 7.1动画实例讲解 (13) 7.2M/M/N排队系统实例讲解 (14) 8. 程序实现难点和模型评价 (17) 8.1程序实现难点 (17) 8.2模型评价 (17) 9. 参考文献 (17) 10. 附录 (17) 10.1动画实现的核心程序 (17) 10.2 M/M/N模型计算主要程序 (22)

M/M/N 排队系统的模拟仿真 摘要 排队是在日常生活中经常遇到的事,由于顾客到达和服务时间的随机性,使得排队不可避免。因此,本文建立标准的M/M/N模型,并运用Matlab软件,对M/M/N排队系统就行了仿真,从而更好地深入研究排队问题。 问题一,基于顾客到达时间服从泊松分布和服务时间服从负指数分布,建立了标准的M/M/N模型。运用Matlab软件编程,通过输入服务台数量、泊松分布参数以及负指数分布参数,求解出平均队长、服务利用率、平均等待时间以及平均排队长等重要指标。然后,分析了输入参数与输出结果之间的关系。得出当服务台数增加时,几个参数都会变小的结论。 问题二,为了更加清晰地反映出实际排队过程。本文通过运用Matlab软件编程,制作了M/M/1排队过程的动画仿真,通过输入泊松分布参数以及负指数分布参数来模拟不同情况下的排队过程。通过仿真动画,可以看到明显的等待和排队过程。 问题三,为了清晰地展示程序执行的效果以及程序功能的使用方法。本文特意制作了程序运行指南,并做了程序运行实例分析。通过详细地介绍,使读者能更好地理解M/M/N模型以及如何使用该仿真程序。 最后,对建立的M/M/N模型做了评价,并提出了一些改进的思路。同时,指出了程序实现的难点等问题。 关键词:M/M/N排队系统泊松分布负指数分布动画模拟仿真

相关主题
文本预览
相关文档 最新文档