当前位置:文档之家› 基于CRUISE的动力传动系统建模与仿真分析

基于CRUISE的动力传动系统建模与仿真分析

基于CRUISE的动力传动系统建模与仿真分析
基于CRUISE的动力传动系统建模与仿真分析

 2005年11月重庆大学学报(自然科学版)Nov.2005 第28卷第11期Journal of Chongqing University(N tur l Science Editi on)Vol.28 No.11

文章编号:1000-582X(2005)11-0008-04

基于CRU I SE的动力传动系统建模与仿真分析3

刘振军,赵海峰,秦大同

(重庆大学机械传动国家重点实验室,重庆 400030)

摘 要:在车辆动力传动系统设计及匹配研究中,系统的建模是一个非常复杂的过程,耗时较长,给研究工作带来诸多不便.利用专业软件进行建模与仿真可大大提高研究效率.在分析CRU I SE仿真软件功能特点基础上,进行了手动变速传动系统建模仿真分析.应用该软件建立的车辆动力传动系统模型具有方便、简单、容易调试、直观性强等特点,不仅可以节省大量时间,而且便于用户分析和研究仿真结果以及修正参数,从而快速完成系统的设计.

关键词:CRU I SE;车辆传动系;仿真

中图分类号:T H132.32文献标识码:A

汽车动力传动系统设计的首要任务是传动系统各部件之间以及与发动机之间的匹配,以保证汽车能在不同条件下正常行驶,并具有良好的动力性和燃油经济性.动力传动系统动态模型的建立是车辆设计、匹配及性能研究的基础,但传动系统建模复杂,调试过程时间较长,给研究工作带来了很大的不便.采用专业软件对其进行建模及仿真研究不仅可以节省大量的时间,使建模过程简单化,而且程序运行可靠、调试方便、结果准确,利于分析研究[1-3].

AVL公司开发的CRU I SE是研究车辆动力性、燃油经济性、排放性能及制动性能等的高级仿真分析软件,它包含了车辆的基本模块和控制模块,用户可利用模型生成器建立所需的车辆系统模型,并在此基础上进行仿真分析,利用仿真结果优化传动系的参数,从而快速完成系统的设计.

1 CRU I SE软件功能与特点

CRU I SE是一种非常灵活的车辆仿真分析软件,可对任意结构形式的车辆传动系统进行建模与仿真,用于车辆开发过程中的动力系统、传动系统的匹配,整车性能预测和仿真计算.可进行发动机、变速器、轮胎的选型及匹配优化;还可以用于混合动力汽车、电动汽车的动力传动系统及控制系统的开发和优化.

CRU I SE具有以下特点:

1)灵活的模块化理念可进行各种车辆和动力总成配置的分析,能够自由地在所提供的模块的基础上建立系统模型;

2)智能化的驾驶员模型可根据人体反应真实地再现车辆的行为;

3)发动机的冷启动模型考虑了高摩擦和热力学效应;

4)弹性扭转轴单元可用于传动系统的低频振动特性研究;

5)黑盒子功能可使用户自定义模块和控制算法;

6)提供了流体动力学软件Fl o w master、K UL I及MAT ALAB/SI M UL I N K的接口;

7)考虑了转向时车轮和车辆受力;

8)有分析CVT的专用模型.

CRU I SE提供了一种图形化的交互环境,只需用鼠标拖动的方法从模型库中拖出相应的元件,便能迅速地建立系统框图,根据研究的需要添加相应的控制模块,并正确连接数据总线,便可很快得到系统模型.用户能方便地修改动力传动系的配置,所以用它来对动力传动系统建模将是一件非常轻松的事情.

2 基于CRU I SE的车辆动力传动系统仿真模型的建立

基础,

而来的[4-5].图1为手动变速车辆传动系统结构简图.

3收稿日期:2005-06-20

基金项目:国家自然科学基金项目(50475067);重庆市科委资助项目(8718,2005AB6020)

作者简介:刘振军(1958-),男,宁夏固原人,重庆大学副教授,博士,主要从事车辆传动方向的研究.

现利用CRU I SE 软件构建其仿真模型

.

图1 车辆传动系统结构简图

图2为所建立的基于CRU I SE 软件的手动变速车

辆系统模型.

该模型主要由以下模块组成:Vehicle 、En 2gines 、

Clutch 、Gear Box 、Single Rati o 、D ifferential 、W heel 、B rake 、ASC 、Cockp it 等.总线连接[6]

.:

图2 基于CRU I SE 软件的M T 车辆模型

2.1 整车模块

整车模块是传动系模型的主要部件之一,该模块

包含车辆的基本数据.每个模型中只有一个整车模块.整车模块数学模型包含:

1)整车质量:

m v,act =m v (z v,l oad )

空载时:z v,load =0,则m v (0)=m v,m in ;

满载时:z v,load =2,则m v (2)=m v,m ax ;半载时:z v,load =1,

则m v (1)=(m v,m in +m v,max )/2

式中:m v,m in 为车辆的净重[kg ];m v,max 为车辆的总重量[kg ];z v,l oad 为载荷状态.

2)阻力

这里的阻力包括空气阻力F w 和坡道阻力F a .

空气阻力:F w =-0.5c w ?A v ?ρ?v 2

rel

v rel =v +v air

式中:c w 为阻力系数;A v 为迎风面积[m 2

];v rel 为车

辆相对风的速度[m /s ];v air 为风速[m /s ];v 为车速

[m /s ];ρ为空气密度[kg/m 3

].

坡道阻力:F a =m v,act ?g ?sin

α式中:α为路面坡度[rad ].阻力和:F =F w +F a +(k trac +k push )?m v,act ?g 式中:k trac ,k push 分别为相对牵引力和推力系数.2.2 发动机模块

油密度、热值等.

数学模型为:

P e =M ?φB =P e ?N ?

π/V ?φ 式中:P e 为全负荷特性的功率[W ];φ为发动机

转速[rad /s ];M 为全负荷特性的转矩[Nm ];B 为全负荷特性的平均有效压力[Pa ];N 为冲程数;V 为发动机排量[L ].

绝对油耗b:是发动机转速φ和平均有效压力P 的函数.

由CRU I SE 软件得出的发动机全负荷特性即外特性如图3所示;起动曲线如图4所示;万有特性如图5所示:

图3 发动机外特性曲线

图4 发动机起动曲线

图5 万有特性图

2.3 离合器模块

离合器模块中可选的离合器类型有干式摩擦离合器、液压式离合器和粘液耦合离合器.本方案选择干式

摩擦离合器.

离合器模块的数学模型为:1)平均有效半径r :

r =

M c,max

N ?

μ?F c 9

第28卷第11期 刘振军,等: 基于CRU I SE 的动力传动系统建模与仿真分析

式中:M c,max 为离合器传递的最大扭矩[Nm ];N 为

摩擦面数;μ为滑动摩擦系数,等于0.8

μ1;μ1为粘性摩擦系数;F c 为压紧力[N ].

2)实际摩擦系数μact :μact =μ+(μ1-μ

)?e |φrel |?C c

μ1-μφrel =φin -φout

式中:φrel 为离合器相对角速度;φin 为离合器输入角速度;φout 为离合器输出角速度;C c 为摩擦梯度.

3)实际压紧力F c,act :

实际压紧力是离合器释放行程的函数,取决于离合器踏板踩下程度.

4)

传递的扭矩M c :

M c =|M in -M out |=-μact ?r ?F c,act ?N 当主、从动部分有相对滑动时,满足下列条件:

[|M in -M out |≥

|M c |]∨[φrel >0]∨[S c,act >0.8]

当主、从动部分接合时满足下列条件:

[|M in -M out |<

|M c |]∧[φrel <0.01]∧[S c,act >0.8]

式中:S c,act 为实际的离合器释放行程;M in 为输入转矩;M out 为输出转矩.2.4 变速器模块

变速器模块包含不同排档的变速箱,用户可以根据需要定义档位数,对于每一档位需要定义速比、转动惯量和力矩损失.

变速器模块数学模型为:1)实际传动比i act :

i act =i (N act )

其中:N act 为变速器的当前档位.

2)输出角速度φout 和角加速度 φout :

φout =φin i act

; φout =

φi in

式中:φin 为输入轴角速度[rad /s ]; φin 为输入轴角加速度[rad /s 2

].

3)转动惯量:

变速器输入部分转动惯量θin =θin (N ac );变速器输出部分转动惯量θout =θout (N ac );

4)转矩损失M loss :

不考虑转矩损失时:M loss =0;变速器传动效率

ηG =1

.考虑转矩损失:损失的名义转矩M loss,nor m 利用转矩损失图进行线性插值来计算.M loss,nor m =M l oss ,M loss 与输入轴的角速度、转矩及当前档位有关.此时变速器的效率为:

ηG =1-M loss,nor m /M in

式中:M in 为输入转矩.

2.5 车轮/轮胎模块

车轮/轮胎的数学模型为:

1)径向力F L :

F L =μr oad ?

μtire ?c s ?c f ?F s c F =1-(F act -F s,nor m )?c s,F /F s,nor m

式中:μroad 为道路摩擦系数;μtire 为轮胎摩擦系数;c s 为滑动校正系数;c f 为轮胎载荷校正系数;F s 为轮胎载荷[N ];F act 为实际轮胎载荷[N ];F s,nor m 为标准轮胎载荷[N ];c s,F 为标准轮胎载荷校正系数.

2)滚动阻力F f :

F f =c f ?F s

式中:c f 为与车速有关的滚动阻力系数.

3 仿真分析

应用图2建立的系统模型对某一车辆的动力性、经济性和排放进行仿真分析.其中汽车整备质量为

1690kg,轮胎半径为310mm,发动机排量为2478c m 3

,最高转速为6000r pm .

根据整车动力性要求和目标循环工况下的经济性和排放要求设计汽车动力装置参数:

发动机功率的选择:

P e =1ηT Gf 3600u a max +C D A 76140

u 3a max 汽车比功率:

P =1000P e m =fg 3.6ηT u a max +C D A 76.14m ηT u 3

a max

传动系档数与各档传动比的选择:

汽车传动系各档传动比按偏置等比级数的方法来分配.即

i g 1i g 2

i g 2i g 3

……≥

i gn -1i gn

1档传动比还要符合以下条件:

F e ,max =T e max i g 1i 0ηT

r

≤F Φ

设计变速器各档速比依次为2.70,1.70,1.09,

0.86,0.70,主减速器速比为3.0,传动系的传动效率

取0.95,迎风面积为1.98m 2

,道路阻力系数为

0.018[2]

.

对于动力性,CRU I SE 软件的计算任务中包括最高车速、爬坡性能、全油门加速、最大牵引力和制动/滑行/反拖性能.图6、7为仿真结果.

获得的理论最高车速为217.34km /h,实际最高车速为215.82km /h,最大牵引力为5275.73N ,最大爬坡度为33.69%,最大加速度从1档到5档依次为

3.17m /s 2、1.88m /s 2、0.98m /s 2、0.66m /s 2

0.43m /s 2

.100km 加速时间为10.95s .

01重庆大学学报(自然科学版) 2005年

图6 

动力性能仿真结果

图7 原地起步连续换档加速过程仿真结果

对于经济性,CRU I SE 软件可完成给定循环工况

和巡航工况的仿真,按图8所示的UDC 循环工况及巡航工况仿真结果见图9、10.

图8 UDC 循环工况图

图9 UDC 循环油耗图

图10 巡航仿真结果

仿真结果显示:巡航时油耗为6.78L /100k m.UDC

循环全程行驶1014.59m,100k m 燃油消耗量为8.66L,排放中NO X 为1.27g,C O 为5.16g,HC 为1.09g .

以上结果均能满足原车型的技术要求.可见,通过CRU I SE 仿真,可以便捷地得到各部件的特性曲线和运行结果,具有很强的直观性,为后续的设计和研究工作奠定了基础.

4 结 论

1)进行了基于CRU I SE 软件的手动变速车辆传

动系统的建模与仿真分析,以某一车辆为实例仿真,结

果达到了较为满意的效果.

2)利用CRU I SE 可构建传动系统模型,研究车辆的动力性、经济性和排放.通过对整车建模与仿真,能在产品开发的早期预测车辆的性能,给车辆研究工作带来了很大的帮助.

3)用CRU I SE 软件对各种结构形式的车辆传动系仿真,不仅大大缩短了建模时间,使建模过程简单化,而且仿真结果直观易读,便于用户分析研究.参考文献:

[1] 陈家瑞.车辆自动变速理论与设计[M ].北京:机械工业

出版社,1995.

[2] 余志生.汽车理论[M ].北京:机械工业出版社,1996.[3] 李智永,张才三.面向对象的车辆动力传动系统仿真研究[J ].

车辆与传动技术,2003,24(2):35-39.

[4] E I C DHOFF B M ,E VANS J R,M I N N I S A J.A re V ie w of

Modeling M ethods f or Rail w ay Vehicle Sus pensi on Compo 2

nents [J ].Vehicle Syste m Dyna m ics,1995,(24):

469-496.

[5] 杨世文,郑慕侨,闫清东,等.履带车辆动力传动系仿真

研究[J ].车辆与传动技术.2003,24(2):1-5.

[6] MUNNS .A Computer Si m ulati on of Power Train Components

with Methodol ogies f or Generalized Syste m Modeling [D ].M.S .Thesis of the University of W isconsin at M adis on,US A,1996.

[7] 孙东明,项昌乐.面向对象建模在车辆动力传动系统中

的应用[J ].车辆与传动技术,2003,24(4):25-28.

(下转第23页)

1

1第28卷第11期 刘振军,等: 基于CRU I SE 的动力传动系统建模与仿真分析

Appli cati on Research on

Vehi cle Handli n g St ability

Usi n g Si m ul ati ve Analysis

RAN Zhe n 2ya ,PAN G D i,ZHAO S hu 2e n,HAN Zhao 2yun

(College ofMechanical Engineering,Chongqing University,Chongqing 400030,China )

Abstract:A multi 2body si m ulati on app r oxi m ate model of a vehicle using ADAMS s oft w are is established,and a fr ont 2rear sus pensi on syste m ,a steering syste m ,the tires and all connect ors are studied .Vehicle handling stability under dif 2ferent tests is si m ulated .The result is credible and valid,the para meter of vehicle model is a mended expediently .This si m ulati on can hel p design p r oducts and reduce a devel opment cycle .

Key words:multi 2body kine matics;vehicle kine matics;handling stability;si m ulati on syste m

(编辑 张小强)

(上接第11页)

Si m ul ati on and Analysis of Vehi cle Powertra i n Based on CRUI SE

L I U Zhe n 2j un,ZHAO Ha i 2fe ng,Q I N D a 2t o ng

(State Key Laborat ory of Mechanical Trans m issi on,Chongqing University,Chongqing 400030,China )

Abstract:Power train modeling brings a great deal of inconvenience t o the research of vehicle f or its comp licati on and l ong peri od .Modeling and si m ulating with p r ofessi onal s oft w are can increase efficiency obvi ously .By intr oducing the functi ons and characteristics of CRU I SE,a si m ulati on model of manual trans m issi on is built .This s oft w are is not only convenient,si m p le and universal,but als o direct 2vie wing and easy t o debugging .W ith this s oft w are,a large a mount of ti m e is saved and si m ulati on results and modify para meters are analyzed expediently;therefore,syste m design can be a 2chieved fleetly .

Key words:CRU I SE;powertrain;si m ulate

(编辑 成孝义)

3

2第28卷第11期 冉振亚,等: PRO /E 、ADAMS 软件在汽车操纵稳定性中的应用

系统动力学模型部分集

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

第二章:动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学与运动学问题的简便形式。 随着多体动力学的诞生与发展,机械系统运动学与动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N、Orlandeo与,研制的ADAMS软件,能够简单分析二维与三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学与动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna(1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990)、随着计算机硬件与数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学与有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统与多体计

动态系统建模与仿真

摘要:经过半个多世纪的发展,仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性学科。本文对建模与仿真技术发展趋势作了比较全面的分析。仿真建模方法更加丰富,更加需要仿真建模具有互操作性和可重用性,仿真建模与可信度评估成为仿真建模发展的重要支柱;仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域更加丰富,向复杂系统领域发展,并将更将贴近人们的生活。 经过半个多世纪的发展,仿真技术已经成为人类社会发展进步具有重要影响的一门综合性学科。仿真技术的领域不在局限于某些尖端学科技术研究领域,而成为一项被众多学科领域广泛采用的通用型技术。半个世纪以来,仿真救赎一方面始终是建模技术、计算技术和其他信息技术最先的应用者,另一方面是对计算技术和网络技术等的发展不断提出新的挑战。 在我国建模与仿真方法是随着应用需求的发展不断的进步,近十年来仿真技术发展是沿着以应用需求牵引建模与仿真系统开发、以建模与仿真系统带动建模与仿真技术突破、以建模与仿真技术促进建模与仿真系统发展、将建模与仿真系统又服务于应用良性循环的道路向前发展。 仿真技术研究人员一方面不断地扩展仿真应用领域,另一方面,其他领域研究的丰富成果与不断促使仿真技术人员从新的角度、新的高度、新的广度认识建模与仿真。在近半个世纪的积累和近十年的快速发展的基础上,建模与仿真技术已经成为以相似原理、模型理论、系统技术、信息技术以及仿真应用领域的有关专业技术为基础,以计算机系统、与应用相关的物理效应设备及仿真器为工具,利用模型对已有的或设想的系统进行研究、分析、实验与运行的一门综合性技术。 仿真建模的发展 仿真是基于建模的活动,模型建立、实现、验证、应用是仿真过程不变的主题。随着时代的发展,仿真模型包含的内容大大扩展,建模方法日益多样,模型交互性和重要性变的越来越重要,模型的校核与验证的成功为仿真中必要步骤。 -----------------------------------系统仿真学报杨明张冰王子才哈尔滨工业大学,哈尔滨150001 基本概念 系统:按照某些规律结合起来,互相作用、互相依存的所有实体的集合或总和。模型:从特定应用角度,表达对象系统特征与特性的形式。仿真:用物理模型或数学模型代替实际系统进行实验和研究。 对象系统:仿真、分析与研究的对象。仿真系统:实施仿真的系统。 仿真分类:

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAMS软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统和多体

系统建模与仿真仿真作业结果

Simulink仿真 根据以上的分析论证,将已求得的个函数参数带入动态结构图中,初步得到图3动态结构图。 图3 根据理论得到的各参数设计后可得到理论设计条件下输出转速曲线图4。 图4 可以清楚地看出,输出转速有很大的超调最大可达84.1%,调整时长为2.65s 之久,这是我们所不能接受的。

速度调节器的设计参数与实际调试结果相差比较大,使系统对负载扰动引起的动态速降(升)缺乏有效的抑制能力,存在起动和制动过程中超调量大,突加(减)负载时,动态速降(升)大等缺点。 所以,我们对ACR和ASR的参数进行整定,特别是速度控制器的参数。我们就对其作出了适当的调整,将速度控制器的传递函数改成,将电流调节器的传递函数改为。当然,这是需要时间和经验的。 校正后的动态结构图如图5所示 图5 校正后的输出转速曲线如图6所示 图六

电流环跟随性能仿真实验 如上文所述:电流环的作用就是保持电枢电流在动态过程中不超过允许值,在突加控制作用时不希望有超调,或者超调量越小越好。这就需要我们对电流环的跟随性能加以分析。将电流环从系统中分离出来(将电枢电压对电流环影响看成是扰动)。电流环模型如图7所示: 图7 通过如下命令可以得到电流环的bode图和nyquist图以及电流环的单位阶跃响应。 [num,den]=linmod('current_loop') sys=tf(num,den) figure(1) margin(sys) [mag,phase,w]=bode(sys); [gm,pm,wcg,wcp]=margin(mag,phase,w) Figure(2) Nyquist(sys) Figure(3) Step(sys) 我们还可以得到以下的数据: gm = 4.2925 pm =47.7281 wcg =345.3056 cp =164.6317 剪切频率ωc=164.6317rad/s;相角相对裕度δ=47.7281°;-∏穿越频率ω g=345.3056rad/s 幅值相对裕度Lh=20lg(4.2925)=12.65dB

初中数学建模案例

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

数学核心素养之数学建模教学案例

数学核心素养之数学建模教学案例 1引言:新修订的高中数学课程提出,数学核心素养是数学课程目标的集中体现,是具有数学基本特征、适应个人终身发展和社会发展需要的必备品格与关键能力。高中数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。 其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。 在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。 特级教师张思明提出“我们通过数学建模的教与学要为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、自主解决问题的机会。近年来,数学建模应用题的数量和分值在高考中逐步增加,可见在命题中已经在转变传统的数学学科体系观念,旨在引导学生关心社会、关心未来,实现高考命题改革与中学教育、教学观念改革的结合。 2.中学数学模型的教学 2.1中学数学中常见的数学模型分类: (1)与函数的最值相关问题。工程中的用料最省、利润最大,列出所求量的函数解析式,利用代数工具解函数最大值。 (2)线性回归直线、非线性回归直线;如中学生身高和体重的关系,红铃虫产卵数与温度的关系。 (3)与周期有关的三角函数模型建立。电路信号,音频震动,潮水涨落周期。 (4)线性规划问题。关于求解含有多个约束条件的,目标函数的最有解问题。 (5)抽样统计调查类,独立性假设检验。 2.2数学建模的课堂陷入几个误区。 (1)数学建模课堂,教师陷入了对数学建模理论的讲解,而数学建模的基本步骤是什么,介绍集中常见的数学建模工具,里面有大量的数学公式推到,学生对数学建模的思想领会很少。

系统建模与仿真作业

病菌传染人数动态变化模型的仿真 专业:机械电子工程 姓名:王勇(10S030039) 日期:2010年11月8日

摘要 本文利用已知的模型,运用MATLAB中Simulink工具箱对模型进行的准确的描述,然后进行仿真分析。 Simulink的每个子模型库包含有相应的功能模块,用户也可以定制和创建用户自已的模块,模型化图形输入是Simulink提供了一些按功能分类的基本的系统模块,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型,进而进行仿真与分析。 通过分析对传染情况有了准确的了解,利于对传染情况的控制。 关键字:建模,MATLAB/Simulink,分析

Abstract This paper using the known model, using MATLAB Simulink toolbox of model of accurate description, then the simulation analysis. Each submode Simulink this repository contains a corresponding function module, users can also customize and create user own module, modeling graph input is Simulink provides some according to the basic function classification system module, through to these basic modules calls, and then connect them up can form required system model, and then, a simulation and analysis. Through the analysis of infectious diseases have accurate understanding, benefit of infection status of control. Keywords:Modeling,MATLAB/Simulink,Analysis

小学数学建模案例

小学数学建模案例 相遇问题。①创设问题情境,激发学生的求知欲。先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。接着可以问同学们看到了什么。学生的回答会有很多,如:他们在中间碰到了;两个人面对面在走;两个人背对背在走……此时就可以引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。例如:甲乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即返回,第二次在距A地60千米处相遇。求A、B两地间的路程。②抽象概括,建立模型,导入学习课题。此题可以将整个过程用线段图来形象地描述,这就是这个相遇问题建立的数学模型。③研究模型,形成数学知识。 总结出一般规律之后可以举个例子让学生做,看看学生是否已经掌握,是否会应用这个规律来解决实际问题。如:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,它们在距离甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客

上船下船,然后返航。这两艘在距离乙岸4OO米处又重新相遇。问:该河的宽度是多少?可以请两位同学到黑板上来做,其他同学做在作业本上,然后讲解,并充分肯定学生的表现,增强学生的学习积极性。案例二:小学高年级数学教学时会遇到“牛吃草问题”,牛吃草问题又称消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。 由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断变化。例:牧场上一片青草,每天牧草都匀速生长,这片草地可供l0头牛吃20天,或者可以供l5头牛吃10天,问:可供25头牛吃几天?分析:这类题目难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新长出来的草两部分。牧场上原有的草是不变的,新长出来的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面就要设法计算出原有的草量和每天新长出的草这两个不变的量。

复合电源电动汽车动力系统建模与仿真_盘朝奉

第37卷第2期 2012年4月 广西大学学报:自然科学版Journal of Guangxi University :Nat Sci Ed Vol.37No.2Apr.2012 收稿日期:2011- 12-15;修订日期:2012-02-16基金项目:国家自然科学基金资助项目(51105178);国家863节能与新能源汽车重大项目(2011AA11A216);江苏省 自然科学基金面上研究项目(BK2011489);江苏高校优势学科建设工程资助项目 通讯联系人:盘朝奉(1979-),男,广西田林人,江苏大学讲师,博士;E- mail :chfpan@ujs.edu.cn 。文章编号:1001-7445(2012)02-0284-07复合电源电动汽车动力系统建模与仿真 盘朝奉1,何志刚1,张德望2,周孔亢 1(1.江苏大学汽车与交通工程学院,江苏镇江212013; 2.江苏大学电气信息工程学院,江苏镇江212013) 摘要:由于蓄电池的功率密度低、能量密度低,以蓄电池作为单一电源的纯电动汽车,动力性和续驶里程因此 受到极大的限制。本文将超级电容引入到电动汽车的储能系统中, 构建超级电容—蓄电池复合电源系统,利用超级电容高功率密度特性弥补蓄电池的不足。分析了在典型工况下的车辆需求功率对应的电流变化曲线,并根据储能系统的状态划分为单独驱动、共同驱动、预充电和再生制动共四种工作模式,在MATLAB /Simulink 环境下建立了纯电动汽车动力系统的仿真模型,包括蓄电池模块、超级电容模块、功率分配模块和驱动模块,根据市区循环工况进行了仿真测试,结果表明采用超级电容—蓄电池储能系统能发挥其高能量密度和高功 率密度特性, 从而提高车辆的动力性能,使能量利用率提高了近17%。关键词:复合电源;能量管理;超级电容;市区工况 中图分类号:U463.23文献标识码:A Modeling and simulation of electric vehicle power system with multiplex power supply PAN Chao-feng 1,HE Zhi-gang 1,ZHANG De-wang 2,ZHOU Kong-kang 1 (1.School of Automobile and Traffic Engineering ,Jiangsu University ,Zhenjiang 212013,China ; 2.School of Electrical and Information Engineering ,Jiangsu University ,Zhenjiang 212013,China ) Abstract :Since storage battery has low power density and low energy density ,the accelerating performance and drive range of electric vehicle driven only by battery is extremely limited.In this study ,ultra capacitor was applied to the energy storage system in battery electric vehicle to form a multiples energy supply system of ultra capacitor and battery to make use of high power density char- acteristics of ultra capacitor to overcome the battery deficiency.The vehicle current curves corre- sponding to power demand under typical conditions were analyzed ,and working conditions were di- vided into four modes according to the strate of energy storage system ,including modes of battery separately driving ,jointly driving ,ultra capacitor pre- charged and regenerative braking.The model of battery electric vehicle was established with simulation environment of MATLAB /Simulink ,inclu- ding battery module ,ultra capacitor module ,power allocation module and driving module ,and sim- ulation test was conducted according to the power demands under urban driving cycles.The results show that ultra capacitor and battery energy storage system can bring the most of its high energy den- sity and high power density into function ,vehicle accelerating performance is improved ,energy effi-

相关主题
文本预览
相关文档 最新文档