当前位置:文档之家› 热电偶标定

热电偶标定

热电偶标定
热电偶标定

热电偶标定

热电偶的标定

一、实验目的

1、加深对温差电现象的理解;

2、了解热电偶测温的基本原理和方法;

3、了解热电偶定标基本方法。

二、实验仪器

铜――康铜热电偶、YJ-RZ-4A数字智能化热学综合实验仪、保温杯、数字万用表等。

三、实验原理

1、温差电效应

在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。

如果用A、B两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流

过,这种现象称为温差电效应。

图1

2、热电偶

两种不同金属串接在一起,其两端可以和仪器相连进行测温(图2)的元件称为温差电

偶,也叫热电偶。温差电偶的温差电动势与二接图

2 A 金B 金

t 0 0t t

头温度之间的关系比较复杂,但是在较小温差范围内可以近似认为温差电动势E t 与温度差)(0t t -成正比,即

)(0t t c E t -= (1) 式中t 为热端的温度,t 0

为冷端的温度,c 称为温差系数(或称温差电偶常量)单位为 ?V μ℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即

c =(k/e )ln (n A 0/n B 0)

(2)

式中k 为玻耳兹曼常量,e 为电子电量,n A 0和n B 0为两种金属单位体积内的自由电子数目。

如图3所示,温差电偶与测量仪器有两种连接方式:

(a )金属B 的两端分别和金属A 焊接,测量仪器M 插入A 线中间(或者插入B 线之间);

(b )A 、B 的一端焊接,另一端和测量仪器连接。

图3 在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A、B两种金属之间插入任何一种金属C,只要维持它和A、B的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A、B两种金属组成的温差电偶中的温差电动势一样。

温差电偶的测温范围可以从 4.2K (-268.95℃)的深低温直至2800℃的高温。必须注意,不同的温差电偶所能测量的温度范围各不相同。

3、热电偶的定标

热电偶定标的方法有两种。

(1)比较法:即用被校热电偶与一标准组分

的热电偶去测同一温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度,进行逐点校准,就可得到被校热电偶的一条校准曲线。

(2)固定点法:这是利用几种合适的纯物质在一定气压下(一般是标准大气压),将这些纯物质的沸点或熔点温度作为已知温度,测出热电偶在这些温度下对应的电动势,从而得到电动势――温度关系曲线,这就是所求的校准曲线。

本实验采用固定点法、且连接方法参照图3中的(a)对热电偶进行定标。

实验中的铜――康铜热电偶分为了“热电偶热端”和“热点偶冷端”两部分,它们都是由受热管和两股材料分别为铜和康铜的导线组成,如图4所示,其中,铜导线外部是红色绝缘层,康铜导线外部是黑色绝缘层,且两股导线在受热管中焊接在一起,但和外部的受热管绝缘,受热管的作用只是让其内部的两导线焊接端良好受热。

图4

连接热电偶时,将“热电偶热端”和“热电偶冷端”的“红”接“红”,“黑”接“黑”,以保证形成热电偶,为了测出电压,可将数字万用表

接在它们的“红”与“红”之间,或“黑”与“黑”

之间,把冷端浸入冰水共存的保温杯中,热端插入加热盘的恒温腔中,如下图5,是其中一种连接方法。

内有加热引线和温接“上隔热板 恒

红 黑 冷红 黑 热

数字插入浸入冰

反应釜热电偶标定规程

反应釜热电偶标定规程 1、适用范围 本规程适用于唐山冀东水泥外加剂有限责任公司车间反应釜热电偶的标定。 2、标定周期及标定范围 标定周期:每年标定一次;生产过程中发现热电偶与试验室标准温度计误差超过3℃时,随时标定。 标定范围:公司所有生产使用的热电偶温度计。 3、责任部门 安全生产部、研发部。 4、标定方法 分别在低温、中温、高温三个阶段,对热电偶进行标定。 5、操作规程 5.1 研发部给安全生产部开据《工作联系单》,通知生产部热电偶需要标定,注明具体标定日期。 5.2 安全生产部接到《工作联系单》后,由电工工作人员将所有温度计卸下,交与研发部分析组人员。 5.3 生产部电工人员协助研发部分析组人员进行热电偶标定。 5.4标定步骤: 5.4.1 低温标定:

生产部电工人员将需要标定的一根热电偶与温度显示器连 接好。 将油浴锅加热至30±2℃,待油浴锅温度稳定后,将经过试 验室标定的标准温度计和待标定热电偶同时放入锅内的同一位 置(远离加热管),稳定2分钟,研发部分析组人员同时记录2 个温度计的读数。 标定完毕后,生产部电工人员将温度显示器与已标定热电偶拆分, 与下一根待标定热电偶进行连接,重复上述步骤。 5.4.2中温标定: 将油浴锅加热至65±2℃,其余步骤同5.4.1。 5.4.3高温标定: 将油浴锅加热至100±2℃,其余步骤同5.4.1。 5.5 允许偏差: 低温偏差中温偏差高温偏差线性关系判定 ±2℃±2℃±2.5℃良好可用,做标识 ±2℃±2℃±2.5℃较差不可用,联系厂家进行 维修或更换备注:偏差=标准温度计的读数-热电偶显示器的读数 当某一热电偶的偏差一致(同时为正向偏差,或同时为负向偏差), 偏差≤±1℃,且线性关系良好时,需在该热电偶显示器旁注明偏差。 当某一热电偶的偏差一致(同时为正向偏差,或同时为负向偏差),

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

热电偶的制作和标定

热电偶的制作和标定 一、实验目的: 1、熟悉热电偶测温原理。 2、了解自制专用热电偶的制作方法。 3、了解热电偶的标定方法。 二、实验原理: 温差热电偶(简称热电偶)是目前接触式测温中应用最为广泛的温度传感器。它具有结构简单、制造方便、测量范围宽、精确度高、热惯性小、输出为电信号便于远传或信号转换等优点。此外,它不仅可用于测量各种流体的温度而且还可用于快速及动态温度的测量。热电偶工作原理如下: 1、温差电势:温差电势是由于导体或半导体两端温度不同而产生的一种电动势。由于导体两端温度不同,则两端电子的能量也不同。温度越高电子能量越大,能量较大的电子会向能量较小的电子处跑,这就会形成一个由高温端向低温端的静电场。静电场又阻止电子继续向低温端迁移,最后达到一动平衡状态。温差电势的方向是由低温端向高温端,数值与两端温差大小有关。 2、接触电势:当两种不同的金属导体或半导体A 和B 相互接触时,由于其内部电子密度不同,因此从导体A 向导体B 扩散的电子数,要比从导体B 向导体A 扩散的电子数多,结果导体A 失去电子而带正电,导体B 因得到电子而带负电。这样,在导体A 、B 的接触面上形成一电位差。这一电位差一旦形成就对扩散起阻止作用,最后达到某种动平衡状态。平衡后的这一电位差即称为接触电势,其数值取决于两种不同导体的性质和接触点的温度。 由上可知,热电偶具有下述特点: (1)热电偶回路热电势的大小,只与组成电偶的导体材料及两端温度有关,而与热电偶的长度、粗细无关。 (2)只有用不同性质的导体或半导体才能组成热电偶,相同材料不会产生热电势。 (3)只有当热电偶两端正温度不同,热电偶的两根材料不同时才能有热电势产生。 (4)材料确定后,热电势的大小只与热电偶的温度有关。 为简化热电偶测量系统,热电偶冷端不采用冰瓶,而将其置于室温中,室温t f 用水银温度计较准确地测得。热电偶热端则设置在管式电炉中。这时测得的热电势不能直接从分度表查取热端炉内的温度,而应该根据下式,先计算出热端温度相对于冷端温度为0℃时的热电势值E(t,0)。 )0,(),()0,(f f t E t t E t E += 式中,),(f t t E ——表示热端为t ℃,冷端为t f ℃时的热电势,即实测值;)0,(f t E 表示热端为t f ℃,冷端为0℃时该对热电偶的热电势。该值可 根据t f 从指导书附表中查得。然后用)0,(t E 从分度表中查得热端温度t 。如图表示出上述确

热电偶定标教案

大学物理实验课程教案

热电偶定标实验 热电偶在现实生活中的应用及其优势:在现代工业自动控制系统中,温度控制是经常遇到的工作,对温度的自动控制有许多种方法。在实际应用中,热电偶的重要应用是测量温度,它是把非电学量(温度)转化成电学量(电动势)来测量的一个实际例子。用热电偶测温具有许多优点,如测温范围宽(-200~2000℃)、测量灵敏度和准确度较高、结构简单不易损坏等。此外由于热电偶的热容量小,受热点也可做得很小,因而对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。热电偶在冶金、化工生产中用于高、低温的测量;在科学研究、自动控制过程中作为温度传感器,具有非常广泛的应用。在大学物理实验中,热电偶温度计的定标是一个传统实验,该实验要求学生找出热电偶的温差电动势与冷热端温差之间的关系,并给出温差电动势与冷热端温差之间的关系曲线,求出经验方程,从而完成其定标工作,使同学们了解热电偶测温度的基本原理。 实验原理 1. 温差电效应 温度是表征热力学系统冷热程度的物理量,温度的数值表示法叫温标。常用的温标有摄氏温标、华氏温标和热力学温标等。 温度会使物质的某些物理性质发生改变。一般来讲,任一物质的任一物理性质只要它随温度的改变而发生单调的、显著的变化,都可用它来标志温度,也即制作温度计。常用的温度计有水银温度计、酒精温度计和热电偶温度计等。 在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。 如果用A、B两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。 1闭合电路 2. 热电偶 两种不同金属串接在一起,其两端可以和仪器相连进行测温(2)的元件称为温差电偶,也叫热电偶。温差电偶的温差电动势与二接头温度之间的关系比较复杂,

实验六 热电偶的制作与标定

实验六热电偶的制作与标定 一. 目的 了解热电偶温度计的工作原理,学会焊接铜—康铜热电偶的方法,并学会热电偶的标定。 二. 热电偶温度计原理、焊接及标定 1. 热电偶温度计工作原理 测温用的温度计大致可以分为下列五类:膨胀式温度计(如水银温度计)、压力表式温度计(如充氮气温度计)、电阻温度计(如铂电阻温度计),热电偶温度计(如铂铑 10 —铂热电偶、镍铬—镍硅热电偶)、辐射式温度计(如光学高温计)。其中热电偶温度计由于在测温中有较高的准确度,所以在工农业生产和科研工作中都广泛地使用。 由两种不同性质金属线或合金丝 A 与 B ,连接组成一个闭合回路称之为热电偶,如图 1 所示。 A 、 B 叫做热电极。如果使两个接点 1 、 2 处于不同的温度,回路中就会产生热电势 E ,这一现象称为热电效应,热电偶就是基于这一效应来测量温度的。

在图 1 所示的热电偶的闭合回路中所产生的热电势 E AB只与热电偶的两种材料的性质和两端的温度有关,与金属丝的长度、截面大小无关。当热电偶材料一定时,则热电势 E AB就只与热电偶两端温度 t 和 t0有关,即 E AB=( t,t0)。如果参考端(又称冷端)的温度 t0保持不变,则两端之间热电势 E 12 的大小就可以用来表示测量端(又称热端)1的温度高低。通常将热电偶的冷端放在装有冰水共存的保温瓶中,使其t0恒温于0℃ 。 2. 热电偶的焊接 热电偶的测量端与参考端都是由两种金属焊接制成的。为减小传热误差和滞后,焊接点宜小,其直径应不超过两倍金属丝的直径。焊接的方法可以采用点焊、对焊,如图 2a和b所示。也可以把两个热电偶绞缠在一起再焊,称为绞状点焊,如图 2c 所示,但绞缠圈数不宜超过 2-3 圈。 a b c 图 2 热电偶的热接点 热电偶的两热电极要很好地绝缘,以防短路。如果热电偶地金属是裸线,通常都要用绝缘管套在导线上进行绝缘,聚乙烯或聚四氟乙烯都是在常温范围内采用绝缘管材料。

热电偶标定规程

热电偶标定规程

目录 1.0目的 (2) 2.0范围 (2) 3.0参考 (2) 4.0安全 (2) 5.0定义 (2) 6.0责任 (2) 7.0热电偶 (3) 7.1概述 (3) 7.1.1结构 (3) 7.1.2外套材料 (3) 7.2技术标准 (3) 7.3外观检查 (4) 7.4校验 (4) 7.4.1检查仪器与设备 (4) 7.4.2校验方法 (4) 7.4.3冷端非0℃值时,应按下式计算: (5) 7.5使用和维护 (6) 8.0附录 (6)

1.0目的 制定本规程的目的在于为本规程的最终用户提供明确的内容和步骤,确保仪表维护检修人员在执行任务时能够在没有监督或很少监督的情况下,按照赛科规定的标准,以安全有效可靠的方式履行自身的职责。 2.0范围 本规程适用于: 热电偶 3.0参考 本规程参考了以下文件: 电偶使用说明书 4.0安全 在执行规程时,你若确认出未知的HSE风险,向你的直接主管进行汇报。 为了确保检修人员以及仪表设备本体的安全,在执行相关操作之前必须了解和参考以下的安全提示: 1.禁止在爆炸性环境中打开处于带电工作状态的热电偶的接线盖 2.无论是在安装、维护或者使用的时候都要考虑到环境状况对热电偶的影响因素。 3.在有毒有害场所执行任务的人员,应事先了解相关的材料安全数据表。 5.0定义 6.0责任 本规程仅适用于具有专业知识的仪表维护人员的操作。 1.ES仪表工程师、主管和技术员应确保本规程在工作中得以贯彻和执行。 2.仪表维修人员应根据实际情况,就安全和技术上的任何疑问及时与其直接主管人进 行沟通。 3.任务完毕后把完成的签过字的规程或检修记录返回给主管用于审核及归档。

热电偶定标实验

图7-1 热电偶结构图 热电偶定标实验 一、实验目的 1.了解热电偶的工作原理; 2.学会对热电偶定标; 3.应用热电偶测温。 二、实验仪器 灵敏数字电压表,保温杯,电加热罐,温度计等 三、实验原理 早在19世纪初,人们就发现两种不同的金属组成的回路中(如图7-1所示),如果在两个接头端存在温度差,则回路中就会产生电 流。这种现象就称为温差电现象,这两种不同 金属组成的电路称为热电偶。产生电流的电动 势称为温差电动势。温差电动势的产生机制, 限于篇幅,在此不再多讲。但从实用的角度出 发,热电偶的一些特点和性质我们却是应该掌 握的: 1.一般来说,任意两种不同的金属组成的回路都可以构成一对热电偶。只要两个接头端有 温度差,回路中就有温差电动势,进而会产生温 差电流。(利用这一特点,我们就可以把非电量的温度转化为可以用仪表检测的电学量。) 2.各种不同的热电偶都有其特定的温差电动势的变化曲线。换言之,只要确定了组成热电偶的金属材料,则其温差电动势的变化规律就是一定的,与热电偶的体积、导线长短等因素无关。(由于有这一特点,实际应用时热电偶的测温探头就可以做得很小,因而探头的热容量也就很小,测温就非常灵敏。) 3.由于各种不同热电偶的温度特性不同,故不同的热电偶有其不同的适用温度范围。根据不同的测温环境,使用者可以查找有关资料,选择合适的热电偶进行测温。 4.一对热电偶所产生的温差电动势一般都很小,只有零点几至数十毫伏。须用很灵敏的检流装置才能检验出来。但若把大量的热电偶串联起来,组成温差电堆,其产生的温差电动势和温差电流就有明显的实用价值。特别是用某些半导体材料组成的热电偶,有些地方已把它用来制成热转换效率较高的温差电堆发电装置。

热电偶标定实验报告

热电偶的制作与标定试验 指导老师:徐之平 学生:代国岭 学号:102270028 专业:工程热物理

热电偶的制作与标定试验 一、实验目的 1.了解热电偶温度计的测温原理 2.学会热电偶温度计的制作与矫正方法 3.掌握电位差计的原理和使用方法 二、实验仪器 P21588型数字毫伏表、SY821型转换开关、RTS-00B制冷恒温槽、HTS-300B标准油槽、实验热电偶 三、实验原理 热电偶工作原理如图:

两种不同成份的导体A、B(称为热电偶丝材或热电极)两端接合成回路,当A、B两个接合点的温度T、T0不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: (1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; (3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 四、实验记录及处理 1.热电偶的制作 按实验要求,截取两根适当长度的电偶丝,消除两端的氧化膜,套上绝缘套管,用钢丝钳将两根偶丝的端部胶合在一起。微微加热,立即蘸取少许硼砂,再在热源上加热,使硼砂均匀地覆盖住胶合头,防止偶丝高温焊接时氧化。 交流弧焊法:将隔离变压器输出电压调至30V左右,以碳棒为一极,胶合头为一极,用绝缘良好的夹子夹住,使两极相碰,电弧产生的瞬间高温使胶合头熔焊在一起,形成光滑的焊珠。 刚焊接的热电偶存在内应力,金相结构不符合要求,使用过程中会导致温差电势不稳定,结果重显性差。精密测量用的热电偶必须进行严格的热处理,消除内应力。 2.热电偶的校正 将热电偶的两端分别插入盛有少许硅油的玻管中,然后将一支玻管(冷端)插入盛有冰水的保温瓶中,另一支玻管(热端)插入恒温水浴中。调节恒温水浴的温度,在室温至800C 之间均匀地取六个不同温度的点,用电位差计分别测出各温度点的电动势。 实验数据记录 拟合曲线如下

热电偶标定实验

热电偶标定实验 一、概述: 温差热电偶(简称热电偶)是目前温度测量中应用最广泛的温度传感元件之一,是以热电效应为基础的测温仪表。它用热电偶作为传感器,把被测的温度信号转换成电势信号,经连接导线再配以测量毫伏级电压信号的显示仪表来实现温度的测量。 热电偶测温的优点是结构简单、制作方便、价格低廉、测温范围宽、热惯性小、准确度较高、输出的温差电信号便于远距离传送、实现集中控制和自动测试。流体、固体及其表面温度均可用它来测量,所以在工业生产和科学研究、空调与燃气工程中应用广泛。 二、实验目的 1.学习使用毫伏表测定温差电动势及热电偶工作原理。 2.掌握热电偶定标曲线的绘制规则。 3.学习用热电偶设计温度计 4.学习用直线拟合方法处理实验数据。 三、实验原理 1、温差电现象。导体中存在着与热现象有关的非静电力和电动势,称为温差电动势,依其产生的机理不同而有两种具体形式。 一种称为汤姆孙电动势。金属导线两端如果温度不同,高温端的自由电子好像气体分子一样向低温端扩散,并在低温端堆积起来,从而在导线内形成电场。由电子热扩散不平衡建立的电场反过来又阻碍不平衡热扩散的进行,最终达到动态平衡,使导线两端形成一稳定的电势差。若把两种金属导线两端连接起来,并把接点置于不同温度中,使两种不同材料的金属连接成闭合回路,因两个汤姆孙电势不相等,两段导线中即形成恒定电流。回路中相应的电动势称为汤姆孙电动势。温差越大,汤姆孙电动势也越大。 另一种称为珀耳帖(J.C.A.Peltier,1785——1845)电动势。两种不同金属连接起来,由于接触面两侧金属内自由电子浓度不同,电子将从浓度大的一侧向浓度小的一侧扩散,在接触面间形成电场,从而在两种金属间形成电位差。显然,两种金属连成回路,并把接点置于相同温度中,两接触面间将建立相等而相反的电动势,因而也形不成恒定电流。只有两接点温度不同,两个珀耳帖电动势不等,才会形成电动势。而且温差越大,形成的电动势也越大。 总之,两种电动势尽管产生的机理不同,但最后在闭合回路中形成的电动势,除与材料有关外,惟一地决定于两个接点的温度差,所以统称为温差电动势。上述两种金属A、B 两端彼此焊接并将接点置于不同温度下的回路(见图1),称为温差电偶。使用时常把一个接点置于某一恒定温度,称为参考点;另一接点作为测温点。 温差电偶中形成的温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求

热电偶标定

热电偶的标定 一、实验目的 1、加深对温差电现象的理解; 2、了解热电偶测温的基本原理和方法; 3、了解热电偶定标基本方法。 二、实验仪器 铜――康铜热电偶、YJ-RZ-4A 数字智能化热学综合实验仪、保温杯、数字万用表等。 三、实验原理 1、温差电效应 在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。 如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。 图1 2、热电偶 两种不同金属串接在一起,其两端可以和仪器相连进行测温(图2)的元件称为温差电 偶,也叫热电偶。温差电偶的温差电动势与二接头温度之间的关系比较复杂,但是在较小温差范围内可以近似认为温差电动势E t 与温度差)(0t t -成正比,即 )(0t t c E t -= (1) 图 2 A 金属:铜 B 金属:康铜 t 0 0t >

式中t为热端的温度,t 为冷端的温度,c称为温差系数(或称温差电偶常量)单位为? V μ℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即 c =(k/e)ln(n A 0/n B ) (2) 式中k为玻耳兹曼常量,e为电子电量,n A 0和n B 为两种金属单位体积内的自由电子数目。 如图3所示,温差电偶与测量仪器有两种连接方式: (a)金属B的两端分别和金属A焊接,测量仪器M插入A线中间(或者插入B线之间); (b)A、B的一端焊接,另一端和测量仪器连接。 图3 在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A、B两种金属之间插入任何一种金属C,只要维持它和A、B的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A、B两种金属组成的温差电偶中的温差电动势一样。 温差电偶的测温范围可以从4.2K(-268.95℃)的深低温直至2800℃的高温。必须注意,不同的温差电偶所能测量的温度范围各不相同。 3、热电偶的定标 热电偶定标的方法有两种。 (1)比较法:即用被校热电偶与一标准组分的热电偶去测同一温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度,进行逐点校准,就可得到被校热电偶的一条校准曲线。 (2)固定点法:这是利用几种合适的纯物质在一定气压下(一般是标准大气压),将这些纯物质的沸点或熔点温度作为已知温度,测出热电偶在这些温度下对应的电动势,从而得到电动势――温度关系曲线,这就是所求的校准曲线。 本实验采用固定点法、且连接方法参照图3中的(a)对热电偶进行定标。 实验中的铜――康铜热电偶分为了“热电偶热端”和“热点偶冷端”两部分,它们都是由受热管和两股材料分别为铜和康铜的导线组成,如图4所示,其中,铜导线外部是红色绝缘层,康铜导线外部是黑色绝缘层,且两股导线在受热管中焊接在一起,但和外部的受热管绝缘,受热管的作用只是让其内部的两导线焊接端良好受热。

热电偶校验作业指导书

DTPD #3 K121—2012 天津大唐国际盘山发电有限责任公司 #3机组A级检修2012-08-20实施

目次 1 范围 (1) 2 本指导书涉及的文件、技术资料和图纸 (1) 3 安全措施 (1) 4 备品备件准备 (1) 5 现场准备及工具 (1) 6 检修工序及质量标准 (2) 7 检修记录 (5)

工业用热电偶校验作业指导书 1 范围 本作业指导书规定了大唐国际盘山发电厂工业用热电偶校验工作涉及的技术资料和图纸、安全措施、备品备件、现场准备及工具、工序及质量标准和检修记录等相关的技术标准。 本指导书适用于大唐国际盘山发电厂工业用热电偶校验工作,工业用热电偶型号:K、E等,检修地点在温度实验室内。大修的项目为对工业用热电偶进行检查、校验,并对已发现的问题进行处理。 2 本指导书涉及的文件、技术资料和图纸 □JJF1001-1998中华人民共和国国家计量技术规范《通用计量术语及定义》 □DL/T774-2004《火力发电厂热工自动化系统检修运行维护规程》 □JJF 351-1996中华人民共和国国家计量检定规程《工作用廉金属热电偶》 □热工仪表及自动装置 3 安全措施 □作业组成员了解工业用热电偶校验的要点。 □作业组成员了解该工业用热电偶的运行状态。 □清点所有专用工具齐全,检查合适,试验可靠。所用计量标准器需检定合格且在有效期内。 □参加检修的人员必须熟悉本作业指导书,并能熟记熟背本次检修的检修项目,工艺质量标准等。 □参加本检修项目的人员必需安全持证上岗,并熟记本作业指导书的安全技术措施。 □准备好检修用的备品备件。 □高温试验要防止烫伤和火灾,同时高温时炭化的石棉绳会释放出有毒气体应注意通风。 □校验过程中,对标准器及被检仪表应轻拿轻放,防止较大震动和机械损伤。 □在自动检定过程中,不得随意中止自动检定系统的正常运行。 □送检的仪表上的标记应清晰保留,以防止回装时混乱。 4 备品备件准备 □工业用热电偶 1个 □绝缘胶布 1卷 □一次性手套 1袋 □镍硅丝 1卷 □长石英管 1个 5 现场准备及工具 5.1 现场准备 □环境温度为(20±5)℃,相对湿度为不大于80%。 □工业用热电偶所处环境应无影响输出稳定的温度波动。 □经检定合格且在有效期内的计量标准器具。 5.2 专用工具 □一字改锥(5mm、8mm)各1把 □十字改锥(5mm、8mm)各1把 □剥线钳 1把 □万用表 1个 □钢卷尺 1个

2014910174811993_2014年秋学期大学物理实验讲义++温差电偶的定标和测温

温差电偶的定标和测温(讲义) 由两种不同金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电动势,这就是热电效应。这一效应于1821年被德国物理学家塞贝克Thomas Johann Seebeck(1780~1831)发现,因此又称“塞贝克效应(Seebeck effect)”。1830年,人们就为它找到了应用场所。利用热电效应,可制成温差电偶(thermocouple,即热电偶)来测量温度。 只要选用适当的金属作热电偶材料,它就可轻易测量到从-180℃到+2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。现在,通过采用铂和铂合金制作的热电偶温度计,甚至可以测量高达+2800℃的温度。此外,利用这一效应制作的温差电偶温度计还有很多优点,结构简单、制作方便,灵敏度准确度高(可达10-3℃以下),热容量小,响应快,可用于微区测温,广泛用于实时测温和监控系统。本实验的热电偶由铜和康铜构成。 【实验目的】 (1)理解温差电偶测温原理和定标方法。 (2)学会用温差电偶测量未知温度。 【实验仪器】 数字电压表、保温瓶和铜—康铜温差电偶、HW-1恒温控制加热仪。 【实验原理】 温差电偶概念 若将A、B两根不同的金属或合金丝的端点互相连接(接点焊接或熔接)成为一闭合回路,并使两接点处于不同温度,如图1所示,则由于温差电效应,回路中将产生电动势,称为温差电动势。这种闭合回路称为温差电偶或热电偶。使用温差电偶测温时,常把一个接点置于某一恒定温度,称为参考点;另一接点作为测温点。

图1 温差电偶 对于温差电动势,其产生的机理有两种,一种称为帕尔贴(J.C.A.Peltier ,1785-1845)电动势,另一种称为汤姆逊(William Thomson, 1st Baron Kelvin ,1824-1907)电动势。前者是由于不同金属(与塞贝克效应不同,帕尔贴效应不仅可以产生在两种不同金属的交界面,或者一种多相材料的不同相界间,也可以产生在非匀质导体的不同浓度梯度范围内)接触引起,由接触面两侧金属内不同浓度自由电子的扩散形成,当扩散平衡时,在两种金属间形成稳定电位差;后者是由于同一种金属两端所处温度不同导致,高温端的自由电子好像气体一样向低温端扩散,并在低温端堆积起来,从而在导线内形成电场,由电子热扩散不平衡建立的电场反过来又阻碍不平衡热扩散的进行,最终达到动态平衡,使金属两端形成一稳定的电势差。 如果要在金属构成的闭合回路中形成电动势,必须满足两个条件:一是回路由两种金属构成,二是两个接点处温度不同。讨论如下: 当闭合回路由两种金属构成,但接点处温度相同,即满足第一个条件而不满足第二个条件时,两接触面间将建立相等而相反的电动势,因而形不成恒定电流。只有两接点温度不同,两个珀耳帖电动势不等,回路中才会形成电动势。温差越大,形成的电动势也越大。 当闭合回路的两个接点处温度不同,而由一种金属构成,即满足第二个条件而不满足第一个条件时,两段导线形成的闭合回路内将建立起相等而相反的两个电势,互相抵消,因而不能形成电动势,这就要求把两种不同材料的金属连接成闭合回路,两个汤姆逊电势不相等,才不会抵消,回路中就会有电动势存在。温差越大,形成的电动势也越大。 总之,热电偶回路中产生的温差电动势是由帕尔贴电动势和汤姆逊电动势联合组成的,统称为温差电动势。 对于帕尔贴电动势,其热端和冷端的总接触电势差为: B A A B t t e k E σσln )(12-= ?

如何标定热电偶

实验一热电偶和测温系统的标定 一、实验目的 1、学习热电偶的焊接方法; 2、了解热电偶冷端补偿的重要性; 3、熟悉热电偶的特性和标定方法; 4、了解测温系统的组成和温度校准过程。 二、基本原理 图1-1为温度测试的实验装置,各部分的作用为: 图1-1 测温系统方框图 热源功率为300w,能产生高达500℃的温度; 热电偶:FU-2作标准热电偶; EA-2作被校准电偶; 冰点槽:用作热电偶的冷端处理; 数字电压仪:为热电势标准测量仪; 动圈式仪表:指示热源的温度; 定温调节 定温调节过程: 图1-2为动圈仪表的面板。当旋动“定温控制”旋钮时,红色定温指针将指示预定的温度,黑色指示指针随热源温度的上升向右移动,逐渐靠近红色指针,此时绿灯亮,表明加热电源接通。当红色指示灯亮时,表明电源切断。由于热惯性,黑色指示将继续上升,并超过红色指针指示的温度,以后温度慢慢下降,至红色指针附近,继而绿灯又亮,电源接通,……如此反复多次,当红灯和绿灯的指示时间相等且两灯指示之间和为(40±10)秒时,黑色指针基本对准红色指针,可认为热源温度已基本控制在定温点。

图1-2 动圈仪表面板 利用上述装置,可对热电偶和测温系统进行标定。 1、 热电偶的标定 热电偶使用时,是按照电偶标准分度值来确定温度的,“标定”就是对所使用的热电偶进行校验,确定误差大小。本实验用EU -2作为标准热电偶,EA-2作为被校热电偶,数字电压表作电势的标准测量仪器,动圈式仪表作定温控制作用,使两支热电偶在相同温度时,由数字电压表分别读出相应的电势值,并由分度表查得相应的温度值,然后以EU-2热电偶的温度标准,来判断热电偶EA-2的误差。 2、 以热源、热电偶EU-2和数字电压表组成标准测温系统,用以测定热源的温度.热电偶EA-2与热电偶EU-2处于同一热点,它与动圈式仪表组成被校测温系统,以EU-2输出的数字电压表读数为基准,分析被校测温系统的误差。 三、实验设备 1、位数字电压表 一个 2、XCT-131动圈式温度指示调节仪 一个 3、热源300w 一台 4、热电偶 EA-2 镍铬-铐铜 一支 EU-2 镍铬-镍铝 一支 5、冰点槽 一个 6、接线板 一个 7、自耦变压器 一台 四、测量线路和实验步骤 (一) 热电偶的焊接 将一段镍铬-铐铜热电偶的线端用砂纸砂净,拧成螺状1-2圈,按图1-3连线,用 碳棒尖去接触热电偶端点产生电弧,使二导体焊在一起,焊后应检查结点是否符合21 4

热电偶制作与标定

1 热电偶制作与标定 (实验序号03030012) 所用仪器:1.HY30D 数字电位差计;2.CS501恒温水浴,冰瓶;3.电烙铁,焊锡丝,铜-康铜导线 一、实验目的: 1.掌握热电偶的焊制方法与标定方法。 2.熟悉和掌握热电偶的测温原理和测温方法。绘制热电偶的E ~t 曲线。 二、实验原理: 1.热电偶制作分为两种方法: ①一种是利用碳棒电弧熔接法。碳棒接直流电源的正级。将热电偶丝的铜和康铜导线两端分别磨光对齐绞接在一起,然后接到直流电源负极。用热电偶接头轻轻打击碳棒即可引弧使热电偶接头熔接在一起而成。这种方法是利用高温电弧将热偶丝熔化连接在一起的。这样制作的热电偶适用于高温测量。 ②另一种制作方法是焊接法。将热电偶丝的两根导线的两端分别磨光对绞接在一起,然后用银焊或锡焊连接而成。这种方法是利用熔化焊料连接而成。银焊或锡焊的热电偶只适于低温范围(300℃以下)。 A A B A B B 绞焊法 平行焊 埋入法 2.测温原理:如图一电势E 是两端温度t,t0的函数,t0不变时,)(t f E A t △t B 恒温水浴 电位差计 冰瓶 图一 图二 3.热电偶的标定:如图二将热电偶冷端置于冰瓶中(0℃),热端置于恒温水浴中,水浴温度由标准温度计指示读出,以电位差计测量热电偶两端间电势E 0,改变水浴温度,可测得不同温度下对应的电动势,从而得出E ~t 曲线,热电偶校验系统与热电偶标定系统相同。

三、实验步骤: 1.热电偶的制作: ①将铜—康铜热偶丝两端分别用砂纸磨光、对齐、拧在一起(不超过3周)。 ②按图接线路系统后,接通电源,将调压器调到一定电压(低于36伏)。 ③将拧在一起的热电偶一端很快插入锡铂纸内,然后快速取出,会看到有火花出现。 ④检验接头,如果呈光亮圆形即为合格,然后再以同样方法焊制另一端。 ⑤重复上述步骤,每人做2~3对热电偶,做好后,断开电源。 2.热电偶的标定: ①将做好的热电偶分组编号。 ②将要标定的一组热电偶的热端置于恒温水浴内,将冷端置于冰瓶内,并将各热电偶按编号分别接在转换接线板上,按图示线路连接好电位差计。 ③检查线路无误后,启动油浴,调节到所规定的温度(从10℃开始),待稳定后,拨动转换开关,按编号的号码分别测定每支热电偶所产生的热电势,做好记录(温度由标准温度计指示,热电势由电位差计指示)。 ④改变油浴温度(间隔10℃),再测定各热电偶的热电势。如此重复调节水温,做出10种温度下各热电偶的热电势,记录整理。 ⑤断开电源,恢复实验前状态,将记录的实验数据绘制热电偶分度E~t曲线 思考题: 1.热电偶温度计测温原理是什么? 基于热电现象,不同导体A、B连在一起构成闭合电路,接点温度不同时,会产生热电效应。测量时,一端置于温度场内感受温度,称测量端,另一端置于恒温状态中,称为参考端。 2.如果实验过程中由于传热,冰瓶温度不是0℃时应如何处理数据? 在实验过程中,冰瓶(恒定)温度不是0℃时,而是某一中间温度T N ,仪表指示的热 电偶值为E AB (T,T N ),E(T N ,T )可分别从分度表中查得,二者相加得E AB (T,T )按 该电势值再查表,可得测两端温度T的大小。 3.分析实验误差和误差原因。 实验误差原因:焊接材料有残留部分,使电极测量产生偏差,水浴温度不均匀造成显示热电势不稳定。 2

实验9热电偶标定与测温

[实验目的] 1. 掌握对热电偶温度计定标的方法。 [实验仪器] DHT-2型热学实验仪,直流数字电压表,热电偶,保温杯。 [实验原理] 热电偶示意图 两种不同材料的金属A,金属B相互接触时会发生电子扩散。当电子扩散达到动态平衡时,形成稳定的电势差。理论和实验表明接触电动势的大小与相接触的两种金属的性质及接触的温度有关。则有: Uab=(kT/e)InNa/Nb 1 当上述形成闭合回路时由上式接触电势差的性质可以判定若接触处的温度分别为T和To是,则闭合电路的电动势为 E=(kT/e)InNa/Nb-=(kTo/e)InNa/Nb==(kT-To/e)InNa/Nb 2 而在实际中上式中给出的温差电动势用下式表示: E=a(t-t0)+b(t-t0)^2+^ 3 在温差不太大时上式可近似为 E=a(t-t0) 4 由上式34可知若常数和冷端温度已知,只要测得温差电动势就能得到热端温度。[实验内容] 1.连接线路 (1)将热电偶的冷端置于冰水混合物之中,确保t0=0度(测温度安置于加热器内) 2.测量待测热电偶的电动势 (1)用直线连接相邻点。

(2)在两个校正点之间的变化关系用线性内插法予以近似,从而得到出校正点外其他点的电动势和温度关系。 注意:(1)在使用电风扇时,需将支持干向上抬起,使空气形成对流。 [数据处理] 1. 求铜—康铜热电偶的温差电系数 (1)根据Ex=at,(t0=0),在定标曲线中可给出线性化后的平均直线,从而求得a.。 (2)在直线取两点a(Ea,ta),b(Eb,tb)求斜率K=(Eb-Ea)/(tb-ta) (求温差系数时,不要取原来测量的数据点,并且两点间尽可能相距远一点。) [结果分析] 无

热电偶特性及2018

热电偶的特性及其应用 一、实验简介 热电偶有着测温范围宽、灵敏度和准确度高、结构简单、不易损坏,并且可以进行动态测量和记录的许多优点,因而被应用于温度的传感、工业加热炉温的测量、金属熔点的测量、数据采集与温度控制等诸多方面。 二、实验目的 1、了解热电偶测温的基本原理和方法 2、了解热电偶定标的基本方法 3、掌握热电偶的基本规律 三、实验仪器 FB203温度传感加热装置,自组装热电偶,万用表。 四、实验原理 1821 年塞贝克(T. J. Seebeck)发 现,当构成回路的两种不同金属的两个连接 点温度不同时,回路中会有恒定电流产生, 如图1所示,这表示两种金属的接触处由于 温度差而产生了电动势,叫做温差电动势, 这种电路称为热电偶,该现象称为塞贝克效应。 热电偶的温差电动势与两接头之图1两种不同金属构成的闭合电路 间的温度关系比较复杂,可以用下式表示: E J2S B(T)S A(T) dT 11 S(T)表示金属的塞贝克系数,T2为热端的温度,T1为冷端的温度。但是在较小温

差范围内可以近似的认为温差电动势E与温度差(T2-T1)成正比,即: E C(T2 T I) 式中C称为温差系数,单位为V c-1,它表示两接点的温度相差仁C时所产生的电动势,其大小取决于组成温差电偶材料的性质,即: C= k e Ln g/n°B 式中k为玻尔兹曼常量,e为电子电量,n oA和n oB为两种金属单位体积内的自由电子数目。 对于热电偶而言,有如下两个常见定律: 1、中间导体定律 在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同, 中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。 应用:依据中间导体定律,在热电偶实际测温应用中,常采用热端焊接、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。 2、中间温度定律 热电偶回路两接点(温度为T、 T o)间的热电势,等于热电偶在温度为 T、T n时的热电势与在温度为 T n、T0时的热电势的代数和,如图2所示。T n称中间温度。图2中间定律连线示意图 应用:由于热电偶E-T之间通常呈非线性关系,当冷端温度不为0摄氏度时,不能利用已知回路实际热电势E(T,T o)直接查表求取热端温度值;也不能利用已知回路实际热电势 E(T,T o)直接查表求取的温度值,再加上冷端温度确定热端被测温度值,需按中间温度定律

热电偶标定

热电偶标定

热电偶的标定 一、实验目的 1、加深对温差电现象的理解; 2、了解热电偶测温的基本原理和方法; 3、了解热电偶定标基本方法。 二、实验仪器 铜――康铜热电偶、YJ-RZ-4A数字智能化热学综合实验仪、保温杯、数字万用表等。 三、实验原理 1、温差电效应 在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。 如果用A、B两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流

过,这种现象称为温差电效应。 图1 2、热电偶 两种不同金属串接在一起,其两端可以和仪器相连进行测温(图2)的元件称为温差电 偶,也叫热电偶。温差电偶的温差电动势与二接图 2 A 金B 金 t 0 0t t

头温度之间的关系比较复杂,但是在较小温差范围内可以近似认为温差电动势E t 与温度差)(0t t -成正比,即 )(0t t c E t -= (1) 式中t 为热端的温度,t 0 为冷端的温度,c 称为温差系数(或称温差电偶常量)单位为 ?V μ℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即 c =(k/e )ln (n A 0/n B 0) (2) 式中k 为玻耳兹曼常量,e 为电子电量,n A 0和n B 0为两种金属单位体积内的自由电子数目。 如图3所示,温差电偶与测量仪器有两种连接方式: (a )金属B 的两端分别和金属A 焊接,测量仪器M 插入A 线中间(或者插入B 线之间); (b )A 、B 的一端焊接,另一端和测量仪器连接。

JJF1637规范修订解读

JJF1637-2017规范修订解读 一、修订背景 在JJF1637-2017廉金属热电偶校准规范修订之前,廉金属热电偶(以下简称“热电偶”)的检测依据是JJG351-1996工作用廉金属热电偶检定规程。 为什么工作用廉金属热电偶检定规程要修订为JJF1637-2017廉金属热电偶校准规范? 1、2010 年后,我国颁布实施了GB/T 16701-2010《贵金属、廉金属热电偶丝热电动势测量方法》、GB/T30429-2013《工业热电偶》等国家标准,在相关内容上发生了变化。 2、1997 年我国颁布实施的“规程”中,已有一些内容不适合现今的热电偶检测工作。其中恒温设备(管式炉)在满载检测时,炉内均匀温场的温差,实际上达不到国家标准和原“检定规程”的要求,无法解决管式炉温场带来的影响,亟须提高热电偶整套装置的测量能力。 3、长期使用的热电偶由于热电极晶格发生变化,引起均匀性的改变。那么原JJG351-1996工作用廉金属热电偶检定规程对新制的和使用中的热电偶用同一个允差判定原则,来判定合 格与否是不完全合理的。 4、检测时,热电偶插入管式炉的深度约300m m,与现场使用时插入测温区深度不一致。 5、随着科技的发展,很多现场使用计算机软件程序或智能温控仪,对经过检测的热电偶不 定级别进行修正后,仍在现场使用。基于上述原因,我院申请将JJG351-1996工作用廉金属 热电偶检定规程修订为JJF1637-2017廉金属热电偶校准规范。 二、修订过程 根据国家质检总局质检办量函[2014]79 号文件, 受全国温度计量技术委员会委托, 由辽宁省计量科学研究院负责起草, 国防科技工业第一计量测试研究中心等参加起草, 经过调研、试

热电偶温度计的制作与校正

热电偶温度计的制作与校正 1.了解热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.掌握电位差计的原理和使用方法 1. 热电偶原理 将两种不同材质的金属导线连接成闭合回路,如果两接点的温度不同,由于金属的热电 效应,在回路中就会产生一个与温差有关的电动势,称为温差电势。在回路中串接一毫伏表, 就能粗略地测出温差电势值。如下图: 温差电势的大小只与两个接点的温差有关,与导线的长短粗细和导线本身的温度分布无 关。这样一对导线的组合就称热电偶温度计。简称热电偶。 实验表明,在一定温度范围,温差电势E与两接点的温度T , T存在着函数关系E=F(T, 00 T), 如果一个接点T(通常指冷端)的温度保持不变,则温差电势就只与另一个接点T(通0 常指热端)的温度有关,即E=F(T) ,当测得温差电势后,即可求出另一个接点(热端)的

温度。 为了增加温差电势,提高测量精度,可将几个热电偶串联成热电堆,如下图:热电偶示意图热电堆示意图 2、热电偶的标定 将热电偶做为温度计,必须先将热电偶的温差电势与温度值T之间的关系进行标定。 1 一般不用内插式计算,而是用实验方法,用表格或T-E(或E-T)特性曲线形式表示。标定 1方法,一般采用:?固定点法,即测量已知沸点或熔点温度的标准物质在沸点或熔点时的温 2差电势值。 ?标准热电偶法,将待标热电偶与标准热电偶一起置于恒温介质中,逐点改变 恒温介质的温度,待热电偶处于热平衡状态下测出每一点的温差电势。热电偶的T-E特性曲线如下图: 3、热电偶的分类 热电偶的种类繁多,各有其优缺点。可根据不同的用途选择不同型号的热电偶。目前我

相关主题
文本预览
相关文档 最新文档