当前位置:文档之家› 现代生物技术在育种中的应用及展望

现代生物技术在育种中的应用及展望

现代生物技术在育种中的应用及展望
现代生物技术在育种中的应用及展望

现代生物技术在育种中的应用及展望。

现代生物技术也称生物工程是在分子生物学基础上建立的创建新的生物类

型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。现代

生物技术综合基因工程、分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、有机化学、无机化学、物理化学、物理学、信息学及计算机科学

等多学科技术,可用于研究生命活动的规律和提供产品为社会服务等。随着基

因组计划的成功,在系统生物学的基础上发展了合成生物学与系统生物工程学,开发生物资源,涉及农业生物技术、环境生物技术、工业生物技术、医药生物

技术与海洋生物技术,乃至空间生物技术等领域,将在21世纪开发细胞制药厂、细胞计算机、生物太阳能技术等发挥关键作用。

现代生物技术在农业育种上的应用主要有:作物组织培养技术、体细胞杂

交技术、农作物人工种子、转基因育种技术、分子标记育种技术等。农作物组

织培养技术主要用于品种培育和良种繁育,其次用于无性繁殖作物的脱毒和快

速繁育以及种质资源的保存;体细胞杂交可以创造出更有经济价值或更广泛适

应性的作物新品种;人工种子可对一些自然条件下不结实或种子昂贵的作物进

行繁殖,缩短育种年限,并可人为控制作物生长发育和抗性,防止种性退化;转基因育种是对农作物进行基因转移,使其获得新的优良品性,培育出具有抗寒、抗旱、抗盐、抗病虫害等抗逆特性及品质优良的作物新品系;分子标记辅

助育种技术是利用与目的性状基因紧密连锁的的分子标记,鉴定和筛选具有目

的性状的种质资源和育种后代,或分析和评价种质资源、亲本之间的亲缘关系

的一种方法,与传统育种依表现型进行选择相比,该项技术具有选择效率高,

结果准确等特点,特别是对隐性基因控制的性状选择更为有效。

现代生物技术在棉花育种中已经广泛应用。细胞工程中, 通过胚珠培养、

体细胞培养等技术获得了一些新种质材料;基因工程方面, 随着农杆菌介导法、

基因枪轰击法及花粉管通道法等技术的突破, 在棉花抗病虫害和及抗除草剂等

方面的育种获得成功, 相应的新品种已开始了商业化生产。我国棉花生物技术

在抗棉铃虫等方面达到世界领先水平,其他方面尚有差距。

现代生物技术中的单倍体育种技术、基因工程育种、分子标记辅助育种等

生物技术手段与常规育种技术的有机结合提高了玉米育种的效率, 开辟了玉米

育种的新途径。利用单倍体育种技术选育自交系已经成为自交系选育的重要手段、利用分子标记划分玉米杂种优势群和杂种优势模式已经得到了大家的认可

并在育种实践中加以应用, 转基因玉米已经逐步从实验室走向田间, 并将很快实

现产业化。而高成本、掌握难、重复性和通用性差等问题仍然制约着生物技术

在玉米育种中应用。

现代生物技术在育种中的应用,大大加快了育种速度,缩短了育种年限,

同时也为品种改良开辟了新的道路,是现代育种中不可或缺的技术手段。应加

大对现代生物技术的投入与研究力度,因为我国的生物技术水平,在现阶段,

还远远低于国际先进水平。如,在基因工程中,主要的技术和基因专利均被国

外掌握,而我国现有的专利少且大多数未能在研究于生产中得到广泛应用。如

何有效的利用现代生物技术将已获得的研究成果应用到实际生产与育种中,以

及对现代生物技术的更深入的基础研究是摆在我国科研工作者面前的两大课题。

随着现代生物技术的迅速发展,转基因食品(如转基因大豆油、转基因玉米、以及转基因花生等)已逐步进入每家每户的生活。采用基因工程技术不仅

能改变生物的特性,使农作物有效的适应不同环境并且防虫、防菌,同时可以

提高食品的口感、味道、营养价值、延长保质期、丰富食品的多样性。另外制

造食物、药物疫苗等,治疗人类疾病。但是人类使用这种产品,对当代、甚至

后代的是否存在一定的隐患,这些谁都无法预知。应该以法律的手段,对转基

因商品进行严密管控。同时,科研人员也应该提高危机意识,严格管理转基因

实验材料,避免照成基因污染。

现代生物技术的应用与展望

现代生物技术的应用与展望 姓名:班级:学号: 摘要:参阅大量文献资料对近年来生物技术在农业、医药业、社会科学等中的应用进展进行了综述。从改革传统农业结构,解决食品短缺问题的应用、深入基因研究,解决健康长寿问题、运用现代生物技术,解决环境污染问题等内容出发,指明了生物技术现代科学发展中的应用前景。 关键词:生物技术基因医学健康农业 Abstract: a large number of literature on recent biotechnology in agriculture, medicine and industry, social science and application were reviewed in this paper. From the reform of traditional agriculture structure, to solve food shortage problem, in-depth application of genetic research, solve the longevity and health problems, use of modern biological technology, solve the problem of environmental pollution and other content, pointed out the biological technology of modern science and application prospects. 现代生物技术也可称之为生物工程,是以重组DNA技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供商品和服务的—个综合性技术体系。其内容包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。现代生物技术的诞生以2O世纪7O年代初DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明现代生物技术对解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,是2l世纪高新技术产业的先导。可以预测,生物技术的应用与发展将导致生产体系与经济结构的飞跃变化,甚至可能引发一次新的工业革命,对人类社会的生产、生活各方面必将产生全面而深刻的影响。 1 改革传统农业结构,解决食品短缺问题 现代生物技术在农业中最突出的应用是利用转基因技术,将目的基因导入动、植物体内,对家畜、家禽及农作物进行品种改良,从而获得高产、优质、抗病虫害的转基因动植物新品种,达到充分提高资源利用效率,降低生产成本的目的。经过长期不断的努力,现代农业生物技术已取得重大突破,不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命,并将在解决目前人类所面临的粮食危机、环境恶化、资源匮乏、效益衰减等方面发挥巨大作用。 1.1 提高农产品的产量与质量农作物病虫害是造成农业产量下降的主要原因之一,因而利用转基因技术把抗病、抗虫基因导入农作物中,使之可避免或减少病虫害。近年来,抗黄杆菌的水稻、抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强与耐贮性高的番茄等转基因植物开始进入市场,提高了产量,增加了效益;根据人类的需要,还可把特定基因导入植物体,可达到改良农产品品质的目的,如高含量必需氨基酸的马铃薯,高蛋白质含量的大豆等;此外还可利用生物技术破坏水果细胞壁纤维酶,保证猕猴桃、桃、西红柿等水果成熟但不变软而提高水果的保鲜度,便于水果的运输。从1996年到2o02年,转基因农作物在全球的种植面积从170万ha扩大到5810万ha,即增加35倍,显示了现代农业生物技术强大的生命

生物技术的发展历程

生物技术的发展历程及重要意义 姓名:××※ 学院:××※ 专业:××※ 学号:××※

生物技术的发展历程及重要意义 生物技术被是一项高新技术,世界各国都很重视,它被广泛应用于医药卫生、农林牧渔、轻工、食品、化工和能源等领域,促进传统产业的技术改造和新兴产业的形成,对人类社会生活将产生深远的革命性的影响。生物技术对于提高综合国力,迎接人类所面临的诸如食品短缺、健康问题、环境问题及经济问题的挑战是至关重要的;生物技术是现实生产力,也是具有巨大经济效益的潜在生产力,它将是21 世纪高技术革命的核心内容。生物技术产业是21 世纪的支柱产业,许多国家都将生物技术确定为增长国力和经济实力的关键性技术之一。我国政府同样把生物技术列为高新技术之一并组织力量攻关。 生物技术可分为传统生物技术和现代生物技术。现代生物技术是从传统生物技术发展而来的。传统的生物技术是指旧有的制造酱、醋、酒、面包、奶酪、酸奶及其他食品的传统工艺;现代生物技术则是指20 世纪70 年代末80 年代初发展起来的,以现代生物学研究成果为基础,以基因工程为核心的新兴学科。 一、生物技术的发展历程 1、传统生物技术的产生 传统生物技术应该说从史前时代起就一直为人们所开发和利用,以造福人类。在石器时代后期,我国人民就会利用谷物造酒,这是最早的发酵技术。在公兀前221 年,周代后期,我国人民就能制作豆腐、酱和醋,并一直沿用至今。公元10 世纪,我国就有了预防天花

的活疫苗;到了明代,就已经广泛地种植痘苗以预防天花。16 世纪,我国的医生已经知道被疯狗咬伤可传播狂犬病。在西方,苏美尔人和巴比伦人在公元前6000 年就已开始啤酒发酵。埃及人则在公元前4000 年就开始制作面包。1676 年荷兰人Leeuwen Hoek(1632—1723)制成了能放大170~300 倍的显微镜并首先观察到了微生物。19 世纪60 年代法国科学家Pasteur(1822—1895)首先证实发酵是由微生物引起的,并首先建立了微生物的纯种培养技术,从而为发酵技术的发展提供了理论基础,使发酵技术纳入了科学的轨道。到了20 世纪20 年代,工业生产中开始采用大规模的纯种培养技术发酵化工原料丙酮、丁醇。20 世纪50 年代,在青霉素大规模发酵生产的带动下发酵工业和酶制剂工业大量涌现。发酵技术和酶技术被广泛应用于医药、食品、化工、制革和农产品加工等部门。20 世纪初,遗传学的建立及其应用,产生了遗传育种学,并于20 世纪60年代取得了辉煌的成就,被誉为“第一次绿色革命”。细胞学的理论被应用于生产而产生了细胞工程。在今天看来,上述诸方面的发展,还只能被视为传统的生物技术,因为它们还不具备高技术的诸要素。 2、现代生物技术的发展 现代生物技术是以20 世纪70 年代DNA 重组技术的建立为标志的。1944 年Avery 等阐明了DNA 是遗传信息的携带者。1953 年Watson 和Crick 提出了DNA 的双螺旋结构模型,阐明了DNA 的半保留复制模式,从而开辟了分子生物学研究的新纪元。由于一切生命活动都是由包括酶和非酶蛋白质行使其功能的结果,所以遗传信

现代生物技术研究进展

现代生物技术研究进展 luojuan 摘要:生物技术是21世纪最具有发展前景和活力的学科,世界各国都将生物技术视为一项高新技术,生物技术在相关领域中的应用也成为应用技术研究中的热点。生物技术又叫生物工程,是综合运用生物学、细胞生物学、微生物学、生物化学等基础科学和生化工程等原理和技术而形成的一门综合性的科学技术。 关键词:现代生物技术细胞工程酶工程发酵工程基因工程蛋白质工程研究进展 一、现代生物技术概述[1] 生物技术包括传统生物技术和现代生物技术。传统生物技术主要是自然发酵技术和自然杂交育种技术。现代生物技术是指以现代生物学研究成果为基础,以基因工程为核心的新兴学科。现代生物技术主要包括:细胞工程、酶工程、发酵工程、基因工程、蛋白质工程。 二、细胞工程研究进展[2] 细胞工程的概念及其基本操作细胞工程属于广义的遗传工程,是将一种生物细胞中携带的全套遗传信息的基因或染色体整个导入另一种生物细胞,从而改变细胞的遗传性,创造新的生物类型。它包括细胞融合、细胞重组、染色体工程、细胞器移植、原生质体诱变及细胞和组织培养技术。 近年来,在该领域的研究最引人注目的是细胞融合技术和细胞杂交,并取得一些突破性研究进展。应用细胞融合技术可以培育新型生物物种。可实现种间育种。 1975年英国科学家研制成功了淋巴细胞杂交瘤技术,由此技术获得的单克隆抗体很快应用于临床实践,被称为20世纪80年代的“生物导弹”。目前单克隆抗体技术已用于治疗诊断癌症、艾滋病等多种疑难疾病,及快熟诊断人类、动物和农作物病害等方面,成为细胞工程在医学上最重要的成就之一。 日本秋田生物技术公司和遗传资源开发利用中心联合采用细胞工程的原生质体突变,将“秋田小町”稻育成“新秋田小町”新品种。该稻试种过程中,产量大大提高,取得了明显的经济效益。我国科学家利用细胞工程的原生质体育种在世界上首创了食用菌属间原生质体杂交。这种属间杂交新品种,既有香菇的独特香味和优良品质,又有平菇的高产量、生长周期短、易栽培、抗逆性强等特性。 随着细胞工程技术的不断发展,植物细胞和组织培养这一细胞工程技术也无例外地得到发展,目前已在许多植物上,特别是在农林生产实践中得到了广泛应用。尤其在林木优良品种和无性系的快速繁殖方面进展较快。 细胞工程已成为当代社会经济重要支柱性技术之一。 三、酶工程的研究进展[3] 酶工程就是在一定的生物反应装置中,利用酶的催化功能,将相应的原料转化成有用物质的一门技术。 化学酶工程又称初级酶工程,主要由酶学与化学工程技术相互结合而形成。在开发自然酶制剂方面,大规模生产和应用的商品酶只有数十种,如水解酶、凝乳酶、果胶酶等。在食品工业中的应用主要是淀粉加工,其次是乳品加工、果汁加工、食品烘烤及啤酒发酵;在轻化工业中的应用主要包括洗涤剂制造、毛皮工业、明胶制造、胶原纤维制造、牙膏和化妆品的生产、造纸、废水废物处理和饲料加工等;在能源开发上的应用主要是利用微生物或酶工程技术从生物体中生产燃料,也可利用微生物作为石油勘探、二

蔬菜栽培学习题答案

蔬菜栽培学》练习题《蔬菜栽培学》练习题题 第一章绪论 1. 试说明蔬菜生产的意义。 ①蔬菜生产是农业生产的重要组成部分,不仅满足了人们对蔬菜的需求而且给菜农带来巨大的经 济效益,有些地区甚至成为农村一项支柱产业和新的经济增长点。 ②各种出口蔬菜、加工蔬菜、速冻蔬菜为我国创收大量外汇。 ③许多蔬菜还是家畜的优质饲料,所以蔬菜生产也推动了畜牧业的发展。 ④蔬菜还可以与大田作物、果树间作套种,提高复种指数,增加单位面积的收益。 2. 试说明蔬菜的营养价值。 ①维生素的来源;②矿物质的来源;③纤维素的来源;④维持人体内的酸碱平衡;⑤碳水化合物和蛋白质的来源;⑥挥发性物质、有机酸和色素的来源。 3. 试说明蔬菜的生产方式和栽培特点。 生产方式:自给性、商品性、专业化、季节性蔬菜生产。 栽培特点:①种类繁多,食用器官多样化。②对栽培条件要求高,需精耕细作。③绝大多数需育苗④保护地栽培。⑤采后处理。 第二章蔬菜生物学基础 1. 试述蔬菜作物的几种分类方法及其对蔬菜栽培的意义。 分类方法:植物学分类法、食用器官分类法、农业生物学分类法 意义:①植物学分类法能了解各种蔬菜的亲缘关系,在杂交育种、培育新品种、及种子繁育方面有重要意义。②食用器官分类法对掌握栽培关键技术有一定意义。③农业生物学分类法将生物学特性和栽培技术基本相似的蔬菜归为一类,综合了上述两种分类方法的优点,比较适合生产上的要求。 2. 农业生物学分类中,哪几类属于喜温性蔬菜?哪几类属于耐寒性蔬菜? 喜温性蔬菜:茄果类、瓜类、豆类、薯芋类、水生蔬菜。 耐寒性蔬菜:白菜类、甘蓝类、根菜类 3. 简述蔬菜作物的八大起源中心及其代表作物 ①中国中心:白菜、芥菜、萝卜、丝瓜、竹笋

现代生物技术与社会发展。

现代生物技术在环境保护中的应用和前景 摘要:随着人口的大量增长和经济的快速发展,自然资源的消耗量也急剧增长,在这个过程中,也产生了很大污染,使人类的生存环境遭到了威胁。针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。 关键词:现代生物技术环境保护应用前景 一.我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8 000万人和6 000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2 500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。二.现代生物技术与环境保护 现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪 80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。 1.生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2.利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,

合成生物学与生物燃料

济南大学研究生课程考查试卷 课程编号:QZ283001课程名称:信息与文献检索学时16 学分 1 学号:20172120470 姓名牛浩学科、领域生物工程 学生类别:全日制专业学位成绩:任课教师(签名) 1、考核形式(采用大作业、论文、调研报告、实验报告等): 课程论文 2、考查(内容、目的等)具体要求: 写一篇与所从事专业相关的综述性论文 字数在3000字左右 书写格式规范,论述清晰,层次分明 3、成绩评定说明(含平时成绩、考核成绩): 平时成绩主要包括考勤和平时作业,考勤共计10分,平时作业共计20分,占总成绩的30%。 期末课程论文共计70分,占总成绩的70%。 总成绩为平时成绩与课程论文成绩的加和,即100分。

合成生物学在生物燃料领域的研究 摘要:本文简要介绍了合成生物学的概念,生物燃料的研究现状、研究前景以及未来可能会遇到的一些挑战。探讨了合成生物学在生物燃料研究中的应用进展包括提高生物质原料的转化特性、开发绿色高效生物催化剂、构建微生物细胞工厂以及设计合成多种生物燃料产品。最后对合成生物学在生物燃料领域的研究做出了展望。 关键词:合成生物学;生物燃料;研究现状;前景;挑战;应用进展 1 合成生物学概述 合成生物学(synthetic biology) 是综合了科学与工程的一个崭新的生物学研究领域。它既是由分子生物学、基因组学、信息技术和工程学交叉融合而产生的一系列新的工具和方法,又通过按照人为需求( 科研和应用目标),人工合成有生命功能的生物分子( 元件、模块或器件)、系统乃至细胞,并自系统生物学采用的“自上而下”全面整合分析的研究策略之后,为生物学研究提供了一种采用“自下而上”合成策略的正向工程学方法[1]。它不同于对天然基因克隆改造的基因工程和对代谢途径模拟加工的代谢工程,而是在以基因组解析和生物分子化学合成为核心的现代生物技术基础上,以系统生物学思想和知识为指导,综合生物化学、生物物理和生物信息技术与知识,建立基于基因和基因组、蛋白质和蛋白质组的基本要素( 模块) 及其组合的工程化的资源库和技术平台,旨在设计、改造、重建或制造生物分子、生物部件、生物系统、代谢途径与发育分化过程,以及具有生命活动能力的生物部件、体系以及人造细胞和生物个体。 2 生物燃料研究现状与挑战 2.1 生物燃料的研究现状 生物燃料主要包括纤维素生物燃料(乙醇、丁醇等)、微藻生物燃料(生物柴油、航空生物燃料等),以及最近两年研究较热的新型优质生物液体燃料(高级醇、脂肪醇、脂肪烃等)和利用新技术路线合成的生物乙醇与生物柴油(蓝藻乙醇、微生物直接利用纤维素水解糖体内合成生物柴油等)等。“可持续性”是生物燃料的核

生物工程的最新进展和研究热点

当今世界,我们所处的这个时代,是科学技术飞速发展、知识信息爆炸的知识经济时代,世界各国都在相互竞争,竞争的焦点集中在科学技术上,谁的科技发达,谁的综合国力就强大。 现在世界七大高新技术分别是:现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。 其中生物技术列在首位,生物技术之所以令世界各国如此重视,是因为它是解决人类所面临的诸如食物短缺、人类健康、环境污染和资源匮乏等重大问题上有着不可比拟的优越性,还因为它与理、工、农、医等科技的发展、与伦理道德、法律等社会问题都有着密切的关系。 高新技术的重要特征之一是学科横向渗透,纵向加深,综合交错,发展迅速。所以世界各国争相投巨资发展,确定生物技术为21世纪经济和科技发展的优先领域。 基因工程 基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。 基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状。基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。 基因克隆是70年代发展起来的一项具有革命性的研究技术,可概括为∶分、切、连、转、选。 "分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA 分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。基因工程技术的两个最基本的特点是分子水平上的操作和细胞水平上的表达,而分子水平上的操作即是体外重组的过程,实际上是利用工具酶对DNA分子进行"外科手术"。DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等等。从不同的重组DNA分子获得的转化子中鉴定出含有目的基因的转化子即阳性克隆的过程就是筛选。目前发展起来的成熟筛选方法如下:(一)插入失活法 外源DNA片段插入到位于筛选标记基因(抗生素基因或β-半乳糖苷酶基因)的多克隆位点后,

蔬菜种苗培育行业概况研究

蔬菜种苗培育行业概况研究 1、行业概况及市场情况 我国是蔬菜种植和消费大国,2016年全国蔬菜播种面积约22,328.28 千公顷,产量约79,779.71 万吨,播种面积和产量均居世界第一。据FAO(联合国粮食及农业组织)统计,2016 年我国蔬菜播种面积约占世界的39.17%,产量约占世界的74.20%。我国目前已形成华南与西南热区冬春蔬菜、长江流域冬春蔬菜、黄 土高原夏秋蔬菜、云贵高原夏秋蔬菜、北部高纬度夏秋蔬菜、黄淮海与环渤海设 施蔬菜等六大优势区域,各区域优势品种不同、上市档期交替,形成良性互补的 区域发展格局。 蔬菜种苗培育行业位于整个农业产业链中游,是提高农业综合生产能力、增 加农民收入的战略性产业。经过多年的发展,我国蔬菜新品种选育、育种技术, 设施栽培技术,无公害生产技术,应用现代生物技术对蔬菜品种进行改良及其产 业化方面均得到迅猛发展,并取得了长足进步。此外,蔬菜病虫害综合防治、节 水灌溉等技术也取得明显进步。科技含量提升带来蔬菜产量大幅增长,品种日益 丰富,质量不断提高,市场体系逐步完善,总体上呈现良好的发展局面。 (1)国外发展现状

从20 世纪50 年代至今,国外发达国家竞相研究蔬菜集约化育苗技术,技术 普及率已达90%以上,生产组织和管理水平较高。无土育苗(又称营养液育苗) 技术于20 世纪80 年代在美国、英国和日本各国得到迅速发展。1992 年韩国引进工厂化育苗技术,设计标准化结构温室:等屋面钢结构玻璃温室和等屋面刚性 覆盖材料温室,开发专业化的自动播种系统、环境控制系统、可移动式苗床、嫁 接装置、催芽室、灌溉施肥系统和幼苗发育管理技术体系,蔬菜集约化商品苗覆 盖率达80%上。美国Speedling Transplanting和Green Heart Farms 公司包括花卉在内的商品苗年产量均超过10 亿株,其中蔬菜苗产量占80%以上。目前美国100%的芹菜、鲜食番茄,90%的青椒,都采用穴盘育苗移栽技术。荷兰的现 代化育苗技术作为欧洲典型代表,以大规模、专业化的集约化育苗为特点,实现 蔬菜育苗的机械化、自动化操作,境内种苗专营公司所生产的秧苗除满足本国蔬 菜栽培农场的需要外,还向欧洲其他国家大量出口。 (2)国内发展现状 蔬菜集约化育苗技术不仅能够节省能源和资源,降低育苗成本,提高种苗生 产效率及质量,还便于推广蔬菜新品种及育苗新技术,实现标准化生产,同时穴 盘育苗技术采用泥炭、蛭石等轻型基质育苗,便于长距离运输。因此在主要蔬菜 产区建立大型蔬菜集约化育苗工厂,利用育苗工厂的良好条件实现蔬菜种苗的集 约化生产,对我国蔬菜种植业起着关键性作用,是国民经济增长的新亮点和结构 战略性调整的重要内容,是增强我国蔬菜种苗生产抵御自然灾害能力,保障蔬菜

合成生物学的前景展望

合成生物学的前景展望 目录: 前言 科学定义 学科特征 发展现状 前景展望 结语 前言 当今方兴未艾的合成生物学,是一门建立在生物信息学、DNA化学合成技术、遗传学和系统生物学之上的交叉学科。近十年来,该学科在病毒全基因组合成、标准化遗传回路和最小基因组研究中取得了巨大的突破,也展现了其在生物科学应用中扮演的重要角色。本文将通过介绍与分析合成生物学的相关信息展望合成生物学的发展前景。 科学定义 目前合成生物学研究涵盖范围广泛,对其定义的表述不尽相同:合成生物学领域知名的网站(http://syntheticbiology. org)这样描述该领域的主要研究内容:“设计和构建新型生物学部件或系统以及对自然界的已有生物系统进行重新设计,并加以应用。”2010年12月,美国13位知名专家共同完成了一份名为《新的方向》的研究报告,专门探讨合成生物学问题,文中将合成生物学的研究目标定位为:“将标准化的工程技术应用于生物学,以此创造出新型或具有特定功能的生命体或生物系统,以满足无尽的需求。”合成生物学组织(Synthetic Biology Community)网站上公布的合成生物学的定义则强调合成生物学的两条技术路线:(1)新的生物零件、组件和系统的设计与建造;(2)对现有的、天然的生物系统的重新设计。 综合起来,合成生物学可被理解为基于系统生物学的遗传工程从基因片段、人工碱基DNA子、基因调控网络与信号传导路径到细胞的人工设计与合成,类似于现代集成型建筑工程,将工程学原理与方法应用于遗传工程与细胞工程等生物技术领域,合成生物学、计算生物学与化学生物学一同构成系统生物技术的方法基础。 学科特征 1.多学科交叉性: 作为一个以多学科为基础的综合性交叉研究领域,对于生物学家,合成生物学打开了一扇探索生命奥秘的大门;工程学家更关注的是该如何将实验流程和各类生物学元件进行模块化、标准化,以及如何有效地控制多个元件的相互协调;而如何将标准化的生物学模块进行数字化、定量化评价,更好地为人造“软件”进行模拟计算从而指导生物系统的构建,则是计算科学在生命科学中应用的突出体现;化学家和药物学家则更愿意将合成生物学看作多种用途的新型工具,用于高效地生产新型燃料和药物。 2.超越传统技术的革新: 合成生物学改变了过去的单基因转移技术,开创综合集成的基因链乃至整个基因蓝图设计,并实现人工生物系统的设计与制造。从分子结构图式、信号传导网络、细胞形态类型到器官组织结构的多基因系统调控研究的系统遗传学,以及纳米生物技术、生物计算、

基因工程(现代生物技术)应用前景与发展

基因工程的发展现状及前景 摘要: 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一近年来随着生物工程技术的发展,许多基因工程抗体陆续问世。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 关键字: 基因工程;基因工程抗体;前景;现状;发展 一、基因工程介绍 1、基本定义 生物学家于20世纪50年代发现了DNA的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。美国从1991年起,准备用15年时间完成人体基因组测序计划。[5] 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。除了少数RNA病毒外,几乎所有生物的基因都存在于DNA 结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination)。另外,DNA重组分子大都需在受体细胞中

现代生物技术在农业中的应用与发展

浅谈现代生物技术在农业中的应用 摘要:生物技术的投入,使得现代农业生产起到了良好的效果,增加了作物和家畜的产量和质量。本文主要介绍了生物技术在农业生产中的应用现状,通过对于现状研究,预示了生物技术在未来的农业生产中,必将会得到更加深入应用的发展趋势。 关键词:生物技术;农业;生产;应用 随着生物技术在农业中的不断应用与革新,其已经成为21世纪具有潜力的产业之一。其发展之迅速,趋势之良好,并且在极大程度上影响了传统农业技术,使得现代农业技术走向了一个新的高度。在现代农业中,优质、高产、绿色环保是其发展的重要课题。目前,世界各国已经开始将生物技术视为高新技术,这是由于其可以帮助人们解决食品短缺、环境污染和经济建设等问题,有助于国家提升自身的综合国力,增强经济实力。 然而,由于人类社会、经济的不断发展,以及为了发展而进行的过度环境开发利用等行为,其给生存环境带来了极大的污染和破坏。众所周知,地球每小时都可能有一个物种灭绝,并且我们的地球已经面临着生态失衡、资源枯竭等严重现象。这些现象给我们走可持续发展道路带来了极大的阻碍,但生物技术的出现却给人类的未来送来了一丝曙光。 一、生物技术 生物技术(biotechnology)亦可称“生物工程”或“生物工程技术”,其是指利用现代生命科学作为基础,结合其它学科的科学原理,采用最先进的技术手段,并按照预先的设计,达到改造生物体或加工生物原料的目的,从而生产出所需的特定生物产品或达到某些预定的目的。生物技术主要包括传统生物技术、发酵技术和现代生物技术。其中,现代生物技术则又是在传统生物技术上发展起来的,但其又和传统生物技术有着本质上的区别。所以,生物技术是一门新兴的、具有综合性的学科。 二、农业生产中的现代生物技术应用

现代生物制药技术现状及发展趋势探讨

现代生物制药技术现状及发展趋势探讨 通常研究人员会将各个领域的学科进行综合,对他们进行进一步的探索和深究,这样可以研制出许多新的药物,用于解决医学尚不能解决的疾病问题。因此,可以有效地延长人们的生命,使人们的生活质量提高了。另外,也可以使人们的生活环境得到改善,减少对人类的影响。研究出来的新的技术将会加快医学对药物的快速鉴定,将传统的医学技术和药物进行深入研究后发现的新的医学技术,将会非常利于制药业的发展,前景也会非常的广阔。 标签:生物制药技术;发展现状;医学技术 1 引言 与世界上一些发达国家的生物制药业相比较下,我国的生物制药工业起步还是比较晚的,发展也相对而言比较滞后。不过,我国的市场非常的庞大和完善,在这种背景的影响下,我国生物制药业也将会面临着可观的发展前景。另一方面,政府一直关注在生物制药这一领域,并给于了政策和经济上的扶持。所以,未来我国的生物制药业将会是国家经济发展的非常重要的行业。在传统的发展情形中,我国生物制药业已经取得了相当好的成绩。但是,目前正处于一个发展平稳期,所以目前的问题是我国生物制药业面领着一个非常严峻的考验,若想突破这一瓶颈,得到更加美好的发展,就应该乐观的面对这样的考验,对问题进行深度和广度的研究,并解决问题。也只有这样,我国生物制药行业才会取得更加美好的成绩。 2 生物制药的原理和技术 对于“生物制药”这一名词,或许大家会感到陌生,简单的理解,就是利用生物的活体进行生产药物的方法。有时候也可以利用转基因的动物或植物的活体来作为反应器,进而加工药物。比如利用转基因的玉米活体来作为生物反应器,生产人源抗体。但是生物制药具体指,用微生物学,医学,化学,生物学等不同学科领域所包含的原理和技术方法,来制造出能够治疗,诊断或者预防的药物产品。之所以大家对生物制药感到陌生是因为生物制药是一种新的技术,不过生物制药行业的发展非常迅速,规模也在逐渐扩大。生物制药的发展已经经历了半个世纪左右,在这几十年的发展中,生物制药技术组成是DNA重组,现在是抗体,基因工程和细胞工程,为人类的健康做出了非常大的贡献。到目前为止,生物制药依然是医学领域最高的技术水平,专家预测,未来会有非常好的发展空间。我国的生物制药技术起步相对比较晚,因此与国际的领先水平存在着一定的差距,但我国正在加大这个领域的投入,并且建立生物制药基地。以我国目前的药物生产情况来看,将近百分之五十以上的药物属于生物制药,生物制药简单的操作和高效率,经济成本低的特点将会有良好的市场发展空间。 3 生物药物的分类

现代生物技术在环境保护中的应用研究进展

现代生物技术在环境保护中的应用研究进展 摘要介绍了我国生态环境现状,阐述了现代生物技术在治理环境污染应用方面的优点及其在环境保护中的应用情况,并对其应用前景进行了展望,以期促进现代生物技术在环境保护中的应用。 关键词现代生物技术;环境保护;应用;前景 随着现代工业技术的迅速发展,我国国民经济社会总体发展速度较快,城市化进程的步伐也日益加快。在经济高速发展过程中,环境问题也随之而来。为了全面建设小康社会,保证国民健康,维护社会可持续、健康发展,必须采取有力措施进行环境保护。因此,积极利用现代生物技术、加强环境保护已经成为人民日益关注的课题。为了实现社会健康、持续发展,实现各类资源的永续利用,环保工作者的首要工作任务就是努力保护和提高环境质量。 1 我国生态环境现状 在我国过去几十年的经济快速发展中,由于片面重视经济GDP的高速发展而忽视了经济发展中的环境保护,导致目前环境状况十分严峻。近年来虽采取了大量控制措施,但环境质量下降的趋势仍在继续。我国是世界上环境污染最为严重的国家之一,由于工业“三废”污染、农用化肥和农药的污染,造成水体污染严重,无法利用。全国约300个城市工业生产和居民生活用水较为短缺,成为缺水城市,占全国600个城市中的50%;而农村这一情况更加严重,约有1亿人口和2亿头牲畜饮水困难。在广大农村,由于水体和土壤的严重污染,耕地利用效率大大降低,不仅减少了有效耕地面积,而且直接威胁居民身体健康,引发各类疾病[1]。目前的当务之急就是要尽快应用高新技术,综合治理和保护环境,从而有效控制环境污染,保持生物多样性和生态平衡。 2 现代生物技术在治理环境污染方面的优点 由于基因重组技术的发现和应用,一项以基因工程为核心的现代生物技术迅速崛起,并成为高新产业革命的重要标志之一。现代生物技术是以DNA分子技术为基础,包括微生物工程、细胞工程、酶工程、基因工程、蛋白质工程等一系列高新技术。环境生物技术是由现代生物技术与环境工程相结合的新兴交叉学科,是应用生物圈的某部分使环境得以控制,或治理预定要进入生物圈的污染物的生物技术。这一技术在解决环境问题过程中显示出了独特的功能和显著的优越性,不仅充分体现出这项技术是一个纯生态的过程,且从根本上体现了可持续发展的战略思想。在环境的保护和污染治理中,环境生物技术与传统方法相比较,具有明显优势。生物转化技术可以真正实现清洁生产的目的,其充分利用生物过程减少生产中产生的污染,很大程度上代替了传统生产中的化学过程,更有利于实现无废生产,促进了生产工艺的生态化。现代生物技术的发展,尤其是酶工程、细胞工程、基因工程等,提高了生产效率,强化了环境生物处理过程,在工农业生产中应用这些技术,可以降低成本,其高专一性等特性为环境生物技术在环境保护中的应用展示了更为广阔的前景。 3 现代生物技术在环境保护中的应用 3.1 环境监测与评价 近年来,国内外研究较多的是应用PCR技术生物芯片、生物传感器等生物高新技术进行环境监测。Niedrhauser等利用PCR技术检测了食品中的单核细胞生利斯特氏菌(易导致人类脑膜炎)。传统方法至少需10 d时间,应用PCR技

生物技术及其应用前景

?生物技术及其应用前景 ?一、酶工程与发酵工程 酶工程与发酵工程是生物技术中有着悠久历史的两门技术。近20年来,随着与生物技术相关的诸多基础理论和技术以及实验手段的发展,这两门传统的生物技术逐步走出被动、低效的状态,而发展成为主动、高效的当代生物技术,被列入到高技术领域。 (一)酶工程 酶工程就是利用酶的催化作用进行物质转化,生产人们所需产品的技术。 催化剂即指能化学变化加速而翻身不变的物质。酶是一类具有特殊催化反应能力的蛋白质,它由生物体的活细胞产生。在生物体内进行的各种化学反应,几乎都需要在酶的催化下才能顺利地完成。我们每天吃的米饭、鸡蛋、肉类等的食物都必须在胃分泌的胃蛋白酶和胰脏分泌的淀粉酶、胰蛋白酶和脂肪酶等的作用下,分解成葡萄糖、氨基酸、脂肪酸和甘油等小分子,才能透过小肠壁,被组织吸收和利用;人体生长的时候,体内又会进行各种蛋白质、脂肪等的合成反应,这些合成反应也需要在酶的催化下完成。一旦酶的正常催化作用遭到干扰破坏,轻则会使生物体表现出某些症状,重则将危及生命。比如,在人体内有一种内酪氨酸酶,当它不能行使正常作用时,人就会得白化病。在人类中有一种半乳糖血症的遗传病,发病的原因是由于患者体内缺乏将半乳糖转化为葡萄糖的酶,造成患者血液中半乳糖含量急剧升高往往在婴儿期就死亡。 酶工作技术的应用X围大致有:(1)对生物宝库中存在天然酶的开发和生产;(2)自然酶的分离纯化及鉴定技术;(3)酶的固定化技术(固定化酶和固定化细胞技术);(4)酶反应器的研制和应用;(5)与其它生物技术领域的交叉和渗透。其中固定化酶技术是酶工程的核心。 在洗衣粉中加入一些酶可大大加强其去污能力,这是把酶催化剂作为一种添加剂加入到产品中去,促进了产品与作用对象的化学反应。但是对于像用葡萄糖生产果糖行业来说,需要用酶,而酶又不能留在产品中,否则会影响产品纯度。再说,成批的反应物中,加入的酶在反应结束后,没有被消耗掉,但却失去了再被利用的机会,这显然是一种浪费。若能够将酶固定起来,不仅能使其在常温、常压下行使专一的催化功能,而且由于酶密度提高,使催化效率更高、反应更易控制。固定着的酶不会跑到溶液里,与产物混合,这样酶便可反复使用,从而使产品成本降低。因此,固定化酶技术十分重要。酶的固定方法主要有:通过非特异性物理吸附法或生物物质的特异吸附作用将酶固定到载体表面,叫作吸附法;利用化学方法将载体活化,再与酶分子上的某些基因反应,形成共价的化学键,从而使酶分子结合到载体上,这种方法叫共价键合法,是广泛采用的制备固定化酶的方法。 与固定化酶技术相配套的是酶生物反应器。一个安装有固定化酶材料的容器就是酶生物反应器,它是把反应物质变成产品的重要生产车间,葡萄糖溶液缓缓流进装有葡萄糖异构酶的生物反应器,出来的就是比原来溶液甜的多的新液体。 酶工程对医药、医疗方面贡献巨大。现在,菠萝蛋白酶、纤维素酶、淀粉酶、胃蛋白酶等十几种可以进行食物转化的酶都已进入食品和药物中,以解除许多有胃分泌功能障碍患

现代生物技术的发展与前景

在当今世界各国纷纷建立以基因为核心的知识产权保护,抢占21世纪国际生物技术制高点的新形势下,参加北京“国际周”现代农业高层论坛的专家呼吁,要密切关注现代农业生物技术领域日益显现的研究成果商品化、研究方式规模化和基因资源争夺白热化的趋势,在即将到来的生物世纪里,真正占据自己的位置。 农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应

用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。 ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。 据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。 ——基因资源争夺呈白热化。在商业利益驱使下,发达国家各主要生物技术公司对生物资源及其知识产权展开了激烈争夺,其核心就是对基因的争夺。谁掌握了基因,谁就掌握了生物技术的制高点,就掌握了未来竞争的主动权。有专家称,转基因植物技术知识产权很可能就是未来国际贸易中市场准入、贸易壁垒问题产生的主要原因。

浅谈合成生物学

浅谈合成生物学 The Basic Of Synthetic Biology 姓名: 刘志洋指导老师: 吴敏 蓝田学园工学1117班 刘志洋 3110101731

浅谈合成生物学 The Basic Of Synthetic Biology 3110101731刘志洋 [摘要]:合成生物学是从人们长期以来对生命的了解和认识发展而来的,是科学研究经历积累、酝酿和萌发后水到渠成的结果,体现了对生命科学知识从学习了解到自由运用的转变;体现了对生物系统研究从拆解与还原到拼装与整合与转变;体现了对生命的认识从敬畏和膜拜到剖析和创造的转变。本文将从合成生物学研究进展、微生物基因组的合成重构、天然产物的生物合成及合成生物学在酶的定向进化中的应用等方面进行介绍,并展望合成生物学将为生物科学研究带来的巨大变化。 [关键词]:合成生物学,基因,细胞,遗传,分子。 [Abstract] Synthetic biology is from people to life long knowledge and understanding, It is science research experience accumulation, brewing and germination of success will come after the results. Reflecting life science knowledge by learning to understand the free use of transformation. Reflecting biological systems research and reduction to the assembled from disassembled and integration and change. Reflecting life from the understanding of the fear and worship to analyze and create change. In this paper, we will talk about the research progress of synthetic biology. And looking for the great changes synthetic biology will bring us. [Key words] Synthetic Biology genes cell DNA heredity. 目前合成生物学研究涵盖范围广泛,对其定义的表述不尽相同:合成生物学领域知名的网站(http:Hsyntheticbiology.org)这样描述该领域的主要研究内容:“设计和构建新型生物学部件或系统以及对自然界的已有

相关主题
文本预览
相关文档 最新文档