当前位置:文档之家› 光学测量技术及仪器

光学测量技术及仪器

光学测量技术及仪器
光学测量技术及仪器

光学测量技术及仪器

阿贝折射仪

旋光仪

分光光度计

分光光度计的构造原理

72型分光光度计

752型分光光度计

光与物质相互作用可以产生各种光学现象(如光的折射、反射、散射、透射、吸收、旋光以及物质受激辐射等),通过分析研究这些光学现象,可以提供原子、分子及晶体结构等方面的大量信息。所以,不论在物质的成分分析、结构测定及光化学反应等方面,都离不开光学测量。下面介绍物理化学实验中常用的几种光学测量仪器。

一、阿贝折射仪

折射率是物质的重要物理常数之一,许多纯物质都具有一定的折射率,如果其中含有杂质则折射率将发生变化,出现偏差,杂质越多,偏差越大。因此通过折射率的测定,可以测定物质的浓度。

1.阿贝折射仪的构造原理

阿贝折射仪的外形图如图Ⅱ-5-1所示。

当一束单色光从介质Ⅰ进入介质Ⅱ(两种介质的密度不同)时,光线在通过界面时改变了方向,这一现象称为光的折射,如图Ⅱ-5-2所示。

图Ⅱ-5-1 阿贝折射仪外形图

1.测量望远镜;

2.消散手柄;

3.恒温水入口;

4.温度计;

5.测量棱镜;

6.铰链;

7.辅助棱镜;

8.加液槽;

9.反射镜;10.读数望远镜;11.转轴;12.刻度盘罩;13.闭合旋钮;14.底座。

图Ⅱ-5-2光的折射

光的折射现象遵从折射定律:

式中α为入射角,β为折射角,n

Ⅰ、nⅡ为交界面两侧两种介质的折射率;n

Ⅰ,

为介质Ⅱ对介质Ⅰ的相对折射率。

若介质Ⅰ为真空,因规定n=1.0000,故n

ⅠⅡ=n

为绝对折射率。但介质

Ⅰ通常为空气,空气的绝对折射率为1.00029,这样得到的各物质的折射率称为常用折射率,也称作对空气的相对折射率。同一物质两种折射率之间的关系为:

绝对折射率=常用折射率×1.00029

根据式(5.1)可知,当光线从一种折射率小的介质Ⅰ射入折射率大的介质Ⅱ时(nⅠβ)。当入射角增大时,折射角也增大,设当入射角α=90°时,折射角为β0,我们将此折射角称为临界角。因此,当在两种介质的界面上以不同角度射入光线时(入射角α从0°~90°),光线经过折射率大的介质后,其折射角β≤β0。其结果是大于临界角的部分无光线通过,成为暗区;小于临界角的部分有光线通过,成为亮区。临界角成为明暗分界线的位置,如图Ⅱ-5-2所示。

图Ⅱ-5-3阿贝折射仪光学系统示意图

1.反射镜;

2.辅助棱镜;

3.测量棱镜;

4.消色散棱镜;

5.物镜;

6.分划板;7、8.目镜;9.分划板;10.物镜;11.转向棱镜;12.照明度盘;13.毛玻璃;14.小反光镜。

根据(5.1)式可得:

(5.2)

因此在固定一种介质时,临界折射角β0的大小与被测物质的折射率是简单的函数关系,阿贝折射仪就是根据这个原理而设计的。

2.阿贝折射仪的结构

阿贝折射仪的光学示意图如图Ⅱ-5-3所示,它的主要部分是由两个折射率为1.75的玻璃直角棱镜所构成,上部为测量棱镜,是光学平面镜,下部为辅助棱镜。其斜面是粗糙的毛玻璃,两者之间约有0.1mm~0.15mm厚度空隙,用于装待测液体,并使液体展开成一薄层。当从反射镜反射来的入射光进入辅助棱镜至粗糙表面时,产生漫散射,以各种角度透过待测液体,而从各个方向进入测量棱镜而发生折射。其折射角都落在临界角β0之内,因为棱镜的折射率大于待测液体的折射率,因此入射角从0°~90°的光线都通过测量棱镜发生折射。具有临界角β0的光线从测量棱镜出来反射到目镜上,此时若将目镜十字线调节到适当位置,则会看到目镜上呈半明半暗状态。折

射光都应落在临界角β0内,成为亮区,其它部分为暗区,构成了明暗分界线。

根据式(5.2)可知,只要已知棱镜的折光率n棱,通过测定待测液体的临界角β0,就能求得待测液体的折射率n液。实际上测定β0值很不方便,当折射光从棱镜出来进入空气又产生折射,折射角为β0′。n液与β0′之间的关系为:

(5.3)

=1.75。测出β’0即可求出n液。因为在设计折射仪时已将β’0式中r为常数;n

值,故从折射仪的标尺上可直接读出液体的折射率。

换算成n

在实际测量折射率时,我们使用的入射光不是单色光,而是使用由多种单色光组成的普通白光,因不同波长的光的折射率不同而产生色散,在目镜中看到一条彩色的光带,而没有清晰的明暗分界线,为此,在阿贝折射仪中安置了一套消色散棱镜(又叫补偿棱镜)。通过调节消色散棱镜,使测量棱镜出来的色散光线消失,明暗分界线清晰,此时测得的液体的折射率相当于用单色光钠光D线(5890*!)所测得的折射率n D。

3.阿贝折射仪的使用方法

(1)仪器安装:将阿贝折射仪安放在光亮处,但应避免阳光的直接照射,以免液体试样受热迅速蒸发。用超级恒温槽将恒温水通入棱镜夹套内,检查棱镜上温度计的读数是否符合要求(一般选用(20.0±0.1)℃或(25.0±0.1)℃)

(2)加样:旋开测量棱镜和辅助棱镜的闭合旋钮,使辅助棱镜的磨砂斜面处于水平位置,若棱镜表面不清洁,可滴加少量丙酮,用擦镜纸顺单一方向轻擦镜面(不可来回擦)。待镜面洗净干燥后,用滴管滴加数滴试样于辅助棱镜的毛镜面上,迅速合上辅助棱镜,旋紧闭合旋钮。若液体易挥发,动作要迅速,或先将两棱镜闭合,然后用滴管从加液孔中注入试样(注意切勿将滴管折断在孔内)。

(3)调光:转动镜筒使之垂直,调节反射镜使入射光进入棱镜,同时调节目镜的焦距,使目镜中十字线清晰明亮。调节消色散补偿器使目镜中彩色光带消失。再调节读数螺旋,使明暗的界面恰好同十字线交叉处重合。

(4)读数:从读数望远镜中读出刻度盘上的折射率数值。常用的阿贝折射仪可读至小数点后的第四位,为了使读数准确,一般应将试样重复测量三次,每次相差不能超过0.0002,然后取平均值。

4.阿贝折射仪的使用注意事项

阿贝折射仪是一种精密的光学仪器,使用时应注意以下几点:

(1)使用时要注意保护棱镜,清洗时只能用擦镜纸而不能用滤纸等。加试样时不能将滴管口触及镜面。对于酸碱等腐蚀性液体不得使用阿贝折射仪。

(2)每次测定时,试样不可加得太多,一般只需加2~3滴即可。

(3)要注意保持仪器清洁,保护刻度盘。每次实验完毕,要在镜面上加几滴丙酮,并用擦镜纸擦干。最后用两层擦镜纸夹在两棱镜镜面之间,以免镜面损坏。

(4)读数时,有时在目镜中观察不到清晰的明暗分界线,而是畸形的,这是由于棱镜间未充满液体;若出现弧形光环,则可能是由于光线未经过棱镜而直接照射到聚光透镜上。

(5)若待测试样折射率不在1.3~1.7范围内,则阿贝折射仪不能测定,也看不到明暗分界线。

5.阿贝折射仪的校正和保养

阿贝折射仪的刻度盘的标尺零点有时会发生移动,须加以校正。校正的方法一般是用已知折射率的标准液体,常用纯水。通过仪器测定纯水的折光率,读取数值,如同该条件下纯水的标准折光率不符,调整刻度盘上的数值,直至相符为止。也可用仪器出厂时配备的折光玻璃来校正,具体方法一般在仪器说明书中有详细介绍。

阿贝折射仪使用完毕后,要注意保养。应清洁仪器,如果光学零件表面有灰尘,可用高级鹿皮或脱脂棉轻擦后,再用洗耳球吹去。如有油污,可用脱脂棉蘸少许汽油轻擦后再用乙醚擦干净。用毕后将仪器放入有干燥剂的箱内,放置于干燥、空气流通的室内,防止仪器受潮。搬动仪器时应避免强烈振动和撞击,防止光学零件损伤而影响精度。

二、旋光仪

1.旋光现象和旋光度

一般光源发出的光,其光波在垂直于传播方向的一切方向上振动,这种光称为自然光,或称非偏振光;而只在一个方向上有振动的光称为平面偏振光。当一束平面偏振光通过某些物质时,其振动方向会发生改变,此时光的振动面旋转一定的角度,这种现象称为物质的旋光现象,这种物质称为旋光物质。旋光物质使偏振光振动面旋转的角度称为旋光度。尼柯尔(Nicol)棱镜就是利用旋光物质的旋光性而设计的。

2.旋光仪的构造原理和结构

旋光仪的主要元件是两块尼柯尔棱镜。尼柯尔棱镜是由两块方解石直角棱镜沿斜面用加拿大树脂粘合而成,如图Ⅱ-5-4所示。

图Ⅱ-5-4 尼柯尔棱镜

当一束单色光照射到尼柯尔棱镜时,分解为两束相互垂直的平面偏振光,一束折射率为1.658的寻常光,一束折射率为1.486的非寻常光,这两束光线到达加拿大树脂粘合面时,折射率大的寻常光(加拿大树脂的折射率为1.550)被全反射到底面上的墨色涂层被吸收,而折射率小的非寻常光则通过棱镜,这样就获得了一束单一的平面偏振光。用于产生平面偏振光的棱镜称为起偏镜,如让起偏镜产生的偏振光照射到另一个透射面与起偏镜透射面平行的尼柯尔棱镜,则这束平面偏振光也能通过第二个棱镜,如果第二个棱镜的透射面与起偏镜的透射面垂直,则由起偏镜出来的偏振光完全不能通过第二个棱镜。如果第二个棱镜的透射面与起偏镜的透射面之间的夹角θ在0°~90°之间,则光线部分通过第二个棱镜,此第二个棱镜称为检偏镜。通过调节检偏镜,能使透过的光线强度在最强和零之间变化。如果在起偏镜与检偏镜之间放有旋光性物质,则由于物质的旋光作用,使来自起偏镜的光的偏振面改变了某一角度,只有检偏镜也旋转同样的角度,才能补偿旋光线改变的角度,使透过的光的强度与原来相同。旋光仪就是根据这种原理设计的。如图Ⅱ-5-5所示。

图Ⅱ-5-5 旋光仪构造示意图

1.目镜;

2.检偏棱镜;

3.圆形标尺;

4.样品管;

5.窗口;

6.半暗角器件;

7.起偏棱镜;

8.半暗角调节;

9.灯。

通过检偏镜用肉眼判断偏振光通过旋光物质前后的强度是否相同是十

分困难的,这样会产生较大的误差,为此设计了一种在视野中分出三分视界的装置,原理是:在起偏镜后放置一块狭长的石英片,由起偏镜透过来的偏振光通过石英片时,由于石英片的旋光性,使偏振旋转了一个角度Φ,通过镜前观察,光的振动方向如图Ⅱ-5-6所示。

图Ⅱ-5-6 三分视野示意图

A是通过起偏镜的偏振光的振动方向,A′是又通过石英片旋转一个角度后的振动方向,此两偏振方向的夹角Φ称为半暗角(Φ=2°~3°),如果旋转检偏镜使透射光的偏振面与A′平行时,在视野中将观察到:中间狭长部分较明亮,而两旁较暗,这是由于两旁的偏振光不经过石英片,如图Ⅱ-5-6(b)所示。如果检偏镜的偏振面与起偏镜的偏振面平行(即在A的方向时),在视野中将是:中间狭长部分较暗而两旁较亮,如图Ⅱ-5-6(a)。当检偏镜的偏振面处于

时,两旁直接来自起偏镜的光偏振面被检偏镜旋转了,而中间被石英

片转过角度Φ的偏振面对被检偏镜旋转角度,这样中间和两边的光偏振

面都被旋转了,故视野呈微暗状态,且三分视野内的暗度是相同的,如

图Ⅱ-5-6(c),将这一位置作为仪器的零点,在每次测定时,调节检偏镜使三分视界的暗度相同,然后读数。

3.影响旋光度的因素

(1)溶剂的影响

旋光物质的旋光度主要取决于物质本身的结构。另外,还与光线透过物质的厚度,测量时所用光的波长和温度有关。如果被测物质是溶液,影响因素还包括物质的浓度,溶剂也有一定的影响。因此旋光物质的旋光度,在不同的条件下,测定结果通常不一样。因此一般用比旋光度作为量度物质旋光能力的标准,其定义式为:

式中D表示光源,通常为钠光D线,t为实验温度,α为旋光度,L为液层

厚度,单位为厘米,C为被测物质的浓度(以每毫升溶液中含有样品的克数

表示),在测定比旋光度值时,应说明使用什么溶剂,如不说明一般指水为溶剂。

(2)温度的影响

温度升高会使旋光管膨胀而长度加长,从而导致待测液体的密度降低。另外,温度变化还会使待测物质分子间发生缔合或离解,使旋光度发生改变。通常温度对旋光度的影响,可用下式表示:

式中t为测定时的温度,Z为温度系数。

不同物质的温度系数不同,一般在-(0.01~0.04)℃-1之间。为此在实验测定时必须恒温,旋光管上装有恒温夹套,与超级恒温槽连接。

(3)浓度和旋光管长度对比旋光度的影响

在一定的实验条件下,常将旋光物质的旋光度与浓度视为成正比,因为将比旋光度作为常数。而旋光度和溶液浓度之间并不是严格地呈线性关系,因此严格讲比旋光度并非常数,在精密的测定中比旋光度和浓度间的关系可用下面的三个方程之一表示:

式中q为溶液的百分浓度;A,B,C为常数,可以通过不同浓度的几次测量来确定。

旋光度与旋光管的长度成正比。旋光管通常有10cm、20cm、22cm三种规格。经常使用的有10cm长度的。但对旋光能力较弱或者较稀的溶液,为提高准确度,降低读数的相对误差,需用20cm或22cm长度的旋光管。

4.旋光仪的使用方法

首先打开钠光灯,稍等几分钟,待光源稳定后,从目镜中观察视野,如不清楚可调节目镜焦距。

选用合适的样品管并洗净,充满蒸馏水(应无气泡),放入旋光仪的样品管槽中,调节检偏镜的角度使三分视野消失,读出刻度盘上的刻度并将此角度作为旋光仪的零点。

零点确定后,将样品管中蒸馏水换为待测溶液,按同样方法测定,此时刻度盘上的读数与零点时读数之差即为该样品的旋光度。

5.使用注意事项

旋光仪在使用时,需通电预热几分钟,但钠光灯使用时间不宜过长。

旋光仪是比较精密的光学仪器,使用时,仪器金属部分切忌沾污酸碱,防止腐蚀。光学镜片部分不能与硬物接触,以免损坏镜片。不能随便拆卸仪器,以免影响精度。

6.自动指示旋光仪结构及测试原理

目前国内生产的旋光仪,其三分视野检测、检偏镜角度的调整,采用光电检测器。通过电子放大及机械反馈系统自动进行,最后数字显示。该旋光仪具有体积小、灵敏度高、读数方便、减少人为的观察三分视野明暗度相同时产生的误差,对弱旋光性物质同样适应。

WZZ型自动数字显示旋光仪,其结构原理如图Ⅱ-5-7所示。

图Ⅱ-5-7 WZZ型自动数字显示旋光仪结构原理图

该仪器用20W钠光灯为光源,并通过可控硅自动触发恒流电源点燃,光线通过聚光镜、小孔光柱和物镜后形成一束平行光,然后经过起偏镜后产生平行偏振光,这束偏振光经过有法拉弟效应的磁旋线圈时,其振动面产生50Hz的一定角度的往复振动,该偏振光线通过检偏镜透射到光电倍增管上,产生交变的光电讯号。当检偏镜的透光面与偏振光的振动面正交时,即为仪器的光学零点,此时出现平衡指示。而当偏振光通过一定旋光度的测试样品时,偏振光的振动面转过一个角度α,此时光电讯号就能驱动工作频率为50Hz的伺服电机,并通过蜗轮杆带动检偏镜转动α角而使仪器回到光学零点,此时读数盘上的示值即为所测物质的旋光度。

三、分光光度计

1.吸收光谱原理

物质中分子内部的运动可分为电子的运动、分子内原子的振动和分子自身的转动,因此具有电子能级、振动能级和转动能级。

当分子被光照射时,将吸收能量引起能级跃迁,即从基态能级跃迁到激发态能级。而三种能级跃迁所需能量是不同的,需用不同波长的电磁波去激发。电子能级跃迁所需的能量较大,一般在1eV~20eV,吸收光谱主要处于紫外及可见光区,这种光谱称为紫外及可见光谱。如果用红外线(能量为

1eV~0.025eV)照射分子,此能量不足以引起电子能级的跃迁,而只能引发振动能级和转动能级的跃迁,得到的光谱为红外光谱。若以能量更低的远红外线(0.025eV~0.003eV)照射分子,只能引起转动能级的跃迁,这种光谱称为远红外光谱。由于物质结构不同对上述各能级跃迁所需能量都不一样,因此对光的吸收也就不一样,各种物质都有各自的吸收光带,因而就可以对不同物质进行鉴定分析,这是光度法进行定性分析的基础。

根据朗伯—比耳定律:当入射光波长、溶质、溶剂以及溶液的温度一定时,溶液的光密度和溶液层厚度及溶液的浓度成正比,若液层的厚度一定,则溶液的光密度只与溶液的浓度有关,

式中,c为溶液浓度,E为某一单色波长下的光密度(又称吸光度),I0为入射

光强度,I为透射光强度,T为透光率,ε为摩尔消光系数,l为液层厚度。

在待测物质的厚度l一定时,吸光度与被测物质的浓度成正比,这就是光度法定量分析的依据。

2.分光光度计的构造原理

将一束复合光通过分光系统,将其分成一系列波长的单色光,任意选取某一波长的光,根据被测物质对光的吸收强弱进行物质的测定分析,这种方法称为分光光度法,分光光度法所使用的仪器称为分光光度计。

分光光度计种类和型号较多,实验室常用的有72型、721型、752型等。各种型号的分光光度计的基本结构都相同,由如下五部分组成:①光源(钨灯、卤钨灯、氢弧灯、氘灯、汞灯、氙灯、激光光源);②单色器(滤光片、棱镜、

光栅、全息栅);③样品吸收池;④检测系统(光电池、光电管、光电信增管);

⑤信号指示系统(检流计、微安表、数字电压表、示波器、微处理机显像管)。

光源→单色器→样品吸收池→检测系统→信号指示系统

在基本构件中,单色器是仪器关键部件。其作用是将来自光源的混合光分解为单色光,并提供所需波长的光。单色器是由入口与出口狭缝、色散元件和准直镜等组成,其中色散元件是关键性元件,主要有棱镜和光栅两类。

(1)棱镜单色器

光线通过一个顶角为θ的棱镜,从AC方向射向棱镜,如图Ⅱ-5-8所示,在C点发生折射。光线经过折射后在棱镜中沿CD方向到达棱镜的另一个界面上,在D点又一次发生折射,最后光在空气中DB方向行进。这样光线经过此棱镜后,传播方向从AA′变为BB′,两方向的夹角δ称为偏向角。偏向角与棱镜的顶角θ、棱镜材料的折射率以及入射角i有关。如果平行的入

射光由λ1,λ2,λ3三色光组成,且λ1<λ2<λ3,通过棱镜后,就分成三束不同方向的光,且偏向角不同。波长越短、偏向角越大,如图Ⅱ-5-9所示δ1>δ2>δ3,这即为棱镜的分光作用,又称光的色散,棱镜分光器就是根据此原理设计的。

棱镜是分光的主要元件之一,一般是三角柱体。由于其构成材料不同,透光范围也就不同,比如,用玻璃棱镜可得到可见光谱,用石英棱镜可得到可见及紫外光谱,用溴化钾(或氯化钠)棱镜可得到红外光谱等。棱镜单色器示意图如图Ⅱ-5-10所示。

(2)光栅单色器

单色器还可以用光栅作为色散元件,反射光栅是由磨平的金属表面上刻划许多平行的、等距离的槽构成。辐射由每一刻槽反射,反射光束之间的干涉造成色散。

图Ⅱ-5-8棱镜的折射图II-5-9不同波长的光在棱镜中的色散

图Ⅱ-5-10棱镜单色器示意图

1.入射狭缝;

2.准直透镜;

3.色散元件;

4.聚焦透镜;

5.焦面;

6.出射狭缝。

(3)几种类型的分光光度计简介

①72型分光光度计

a.构造原理及结构

72型分光光度计是可见光分光光度计,波长范围为420nm~700nm,它由三大部分组成:磁饱和稳压器、光源、单色光器和测光机构、微电计。其光学系统如图Ⅱ-5-11所示。

72型分光光度计的基本依据是朗伯—比耳定律,它是根据相对测量原理工作的,即先选定某一溶剂作为标准溶液,设定其透光率为100%,被测试样的透光率是相对于标准溶液而言的,即让单色光分别通过被测试样和标准溶液,二者能量的比值就是在一定波长下对于被测试样的透光率。如图所示,白色光源经入射狭缝、反射镜和透光镜后,变成平行光进入棱镜,色散后的单色光经镀铝的反射镜反射后,再经过透镜并聚光于出射狭缝上,狭缝宽度为0.32nm。反射镜和棱镜组装在一可旋转的转盘上并由波长调节器的凸轮所带动,转动波长调节器便可以在出光狭缝后面选择到任一波长的单色光。单色光透过样品吸收池后由一光量调节器调节为适度的光通量,最后被光电电池吸收,转换成电流后由微电计指示,从刻度标尺上直接读出透光率的值。

图Ⅱ-5-11 72型分光光度计光路图

1.稳压电源;

2.钨丝灯;

3.入射狭缝;

4.反射镜;

5.透镜;

6.玻璃棱镜;

7.波长凸轮;

8.反射镜;

9.透镜;10.波长

读数盘;11.出射狭缝;12.吸收池架;13.光量调节;14.硒光电池;15.检流计。

b.使用方法

①在仪器通电前,先检查供电电源与仪器所需电压是否相符,然后再接通电源。

②把单色光器的光路闸门拔到“黑”光位置,打开微电计开关,指示光点即出现在标尺上,用零位调节器把光点准确调到透光率标尺“0”位上。

③打开稳压器及单色光器的电源开关,把光路闸门拔到红点位置,按顺时针方向调节光量调节器,使微电计的指示光点达到标尺右边上限附近,10min后,等硒光电池趋于稳定后开始使用仪器。

④打开比色皿暗箱盖取出比色皿架,将四只比色皿中的一只装入标准溶液或蒸馏水,其余三只装待测溶液,为便于测量,将标准溶液放入比色皿架的第一格内,然后将比色皿架放入暗箱内固定好,盖好暗箱盖。

⑤将光路闸门重新拔到“黑”点,校正微电计至“0”位,再打开光路闸门,使光路通过标准溶液,用波长调节器调节所需波长,转动光量调节器把光点调到透光率为“100”的读数上。

⑥然后将比色皿拉杆拉出一格,使第二个比色皿的待测溶液进入光路中,此时微电计标尺上的读数即为溶液中溶质的透光率。然后再测定另外两个待测溶液。

c.注意事项

1)仪器应放置在清洁、干燥、无尘、无腐蚀气体和不太亮的室内,工作台应牢固稳定。

2)在测定溶液的色度不太强的情况下,尽量采用较低的电源电压(5.5V)以便延长光源灯泡的寿命。

3)仪器连续使用时间不应超过两小时,如要长时间使用,中间应间歇后再用。

4)测定结束后,应依次关闭光路闸门、光源、稳压器及检流计电源,取出比色皿洗净,用镜头纸擦干,放于比色皿盒内。

5)注意单色仪的防潮,及时检查硅胶是否受潮,若变红色应及时更换。

6)搬动仪器时,检流计+、-极必须接上短路片,以免损坏。

②721型分光光度计

721型分光光度计也是可见光分光光度计,是72型分光光度计的改进型,适用波长范围368nm~800nm,主要用作物质定量分析。721与72型的主要区别在于:

1)所有部件组装为一体,使仪器更紧凑,使用更方便。

2)适用波长范围更宽。

3)装备了电子放大装置,使读数更精确。

内部构造和光路系统如下(图Ⅱ-5-12,图Ⅱ-5-13):

图Ⅱ-5-12 721型分光光度计内部结构图

1.光源;

2.单色光器;

3.比色皿槽;

4.光量调节器;

5.光电管暗盒部件;

6.微安表;

7.稳压电源。

图Ⅱ-5-13 721型分光光度计电路和系统示意图

1.光源灯;

2.透镜;

3.棱镜;

4.准直镜;5、13.保护玻璃;6.狭缝;7.反射镜;8.光栏;9.聚光透镜;10.比色皿;11.

光门;12.光电管。

③752型分光光度计

752型分光光度计为紫外光栅分光光度计,测定波长200nm~800nm。

a.结构原理

752型分光光度计由光源室、单色器、样品室、光电管暗盒、电子系统及数字显示器等部件组成,仪器的工作原理如图Ⅱ-5-14所示。仪器内部光路系统如图Ⅱ-5-15所示。从钨灯或氢灯发出的连续辐射经滤色片选择聚光镜聚光后投向单色器进狭缝,此狭缝正好位于聚光镜及单色器内准直镜的焦平面上,因此进入单色器的复合光通过平面反射镜反射及准直镜变成平行光射向色散光栅。光栅将入射的复合光通过衍射作用形成按照一定顺序均匀排列的连续单色光谱,此时单色光谱重新返回到准直镜,然后通过聚光原理成像在出射狭缝上。出射狭缝选出指定带宽的单色光通过聚光镜落在试样室被测样品中心,样品吸收后透射的光经光门射向光电管阴极面。根据光电效应原理,会产生一股微弱的光电流。此光电流经电流放大器放大,送到数字显示器,测出透光率或吸光度,或通过对数放大器实现对数转换,显示出被测样品的浓度C值。

图Ⅱ-5-14 752型分光光度计结构原理图

图Ⅱ-5-15 752型分光光度计光学系统图

1.钨灯;

2.滤色片;

3.氢灯;

4.聚光镜;

5.进狭缝;

6.保护玻璃;

7.反射镜;

8.准直镜;

9.光栅;10.保护玻璃;11.出狭缝;12.聚光镜;13.样品;14.光门;15.光电管。

b.使用方法

752型分光光度计的外部面板如图Ⅱ-5-16所示。

1)将灵敏度旋钮调到“1”档(放大倍数最小)。

2)打开电源开关,钨灯点亮,预热30min即可测定。若需用紫外光则打开“氢灯”开关,再按氢灯触发按钮,氢灯点亮,预热30min后使用。

3)将选择开关置于“T”。

4)打开试样室盖,调节0%旋钮,使数字显示为“0.000”。

5)调节波长旋钮,选择所需测的波长。

6)将装有参比溶液和被测溶液的比色皿放入比色皿架中。

7)盖上样品室盖,使光路通过参比溶液比色皿,调节透光率旋钮,使数字显示为100.0%(T)。如果显示不到100.0%(T),可适当增加灵敏度的档数。然后将被测溶液置于光路中,数字显示值即为被测溶液的透光率。

8)若不需测透光率,仪器显示100.0%(T)后,将选择开关调至“A”,调节吸光度旋钮,使数字显示为“000.0”。再将被测溶液置于光路后,数字显示值即为溶液的吸光度。

9)若将选择开关调至“C”,将已知标定浓度的溶液置于光路,调节浓度旋钮使数字显示为标定值,再将被测溶液置于光路,则可显示出相应的浓度值。

图Ⅱ-5-16 752型分光光度计面板图

1.数字显示器;

2.吸光度调零旋钮;

3.选择开关;

4.浓度旋钮;

5.光源室;

6.电源

室;7.氢灯电源开关;8.氢灯触发按钮;9.波长手轮;10.波长刻度窗;11.试样架拉手;12.100%T旋

钮;13.0%T旋钮;14.灵敏度旋钮;15.干燥器。

c.注意事项

1)测定波长在360nm以上时,可用玻璃比色皿;波长在360nm以下时,要用石英比色皿。比色皿外部要用吸水纸吸干,不能用手触摸光面的表面。

2)仪器配套的比色皿不能与其它仪器的比色皿单个调换。如需增补,应经校正后方可使用。

3)开关样品室盖时,应小心操作,防止损坏光门开关。

4)不测量时,应使样品室盖处于开启状态,否则会使光电管疲劳,数字显示不稳定。

5)当光线波长调整幅度较大时,需稍等数分钟才能工作。因光电管受光后,需有一段响应时间。

6)仪器要保持干燥、清洁。

光学测量复习题

1.光学测量:对光学材料、零件及系统的参数和性能的测量。 2.直接测量:无需对被测的量与其他的实测的量进行函数关系的辅助计算,而直接得到被测值的测量。 3.间接测量:直接测量的量与被测的量之间有已知的函数关系,从而得到该被测量的测量。 4.测量误差原因:(测量装置误差)(环境误差)(方法误差)(人员误差)。 5.测量误差按其特点和性质,可分为(系统误差)、(偶然误差)和(粗大误差)。 6.精度:反应测量结果与真实值接近程度的量。 7.精度分为:①正确度:由系统误差引起的测量值与真值的偏离程度②由偶然误差引起......③由系统误差和偶然误差引起的...... 8.偶然误差的评价:(标准偏差)(极限误差)。 9.正态分布特征:(单峰性)(对称性)(有界性)(抵偿性)。 10.确定权的大小的方法:(根据测量次数确定)(由标准偏差确定)。 11.对准(横向对准)是指在垂直于瞄准轴方向上,使目标和比较标记重合或置中的过程,又称横向对准。 12.调焦(纵向对准)指目标和比较标记瞄准轴方向重合或置中的过程。 13..对准误差:对准残留的误差。 14.调焦误差:调焦残留的误差。 15.常用调焦方式:(清晰度法)、(消视差法)。 16.清晰度法:以目标象和比较标志同样清晰为准,其调焦误差由几何景深和物理景深决定。 17.消视差法:以眼睛垂直于瞄准轴摆动时看不出目标象和比较标志有相对错动为准,调焦误差受对准误差影响。 18.平行光管:是光学测量中最常用的部件,发出平行光,用来模拟无限远目标,主要由(望远物镜)和(安置在物镜焦平面上的分划板)构成。 19.调校平行光管的目的:是使分划板的分划面位于物镜焦平面上。调校方法:(远物法)、(可调前置镜法)、(自准直法)、(五棱镜法)和(三管法)。 20.自准直仪:(自准直望远镜)(自准直显微镜)。 21.自准直目镜是一种带分划板和分划板照明装置的目镜。一般不能单独使用,应与望远镜物镜配合构成自准直望远镜;与显微镜物镜配合构成自准直显微镜。它们统称自准直仪。 22.常用自准直目镜:(高斯目镜)、(阿贝目镜)、(双分划板式自准直目镜)。 23.剪切干涉法常见的平板式横向剪切干涉仪,它是以干涉条纹成无限宽,即干涉场中呈均匀一片作为判别光束准直性基准的。 24.双楔板剪切干涉法的原理? 解:假设楔板的棱边平行于x轴(棱边呈水平状态),并倾斜至于光路中。一离焦板的光波Kd(x2+y2)经楔板前,后面反射,则反射波沿x方向被横波向剪切。干涉条纹是一组与x轴倾斜的直线簇,在重叠区域形成的条纹可表示为(nkβ)y+(KDs)x=mπ 25.V棱镜法的检测原理:当单色平行光垂直的入射到V棱镜的ED面时,若被检玻璃折射率n与V棱镜折射率n0完全相同,则出射光不发生任何偏折的射出;若n与n0不等,则出射光相对入射光有一偏折角θ,若测出θ,就可计算出折射率。 26.V棱镜折光仪:主要用于平行光管、对准望远系统、读数显微镜系统和标准V块组成。 27.V棱镜折光仪的使用方法:平行光管分划板的刻线是在水平透光宽缝中间刻一细长线。由平行光管射出的单色平行光束经V棱镜和待检试样后,产生偏折角θ,转动望远镜对准平行光管的刻线象。当望远镜对准时,带动度盘转动。有读数显微镜读得角θ,其整数部分由度盘读出,小数部分由测微目镜读出。 28.最小偏向角法的测量原理:单色平行光沿MP方向射出,入射光与出射光的夹角δ为偏

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

《常见的光学仪器》知识点归纳

北师大版物理《第六章常见的光学仪器》知识点归纳 一、透镜及其实例 1:透镜:至少有一个面是球面的一部分的透明玻璃元件(要求会辨认) 凸透镜:中间厚、边缘薄的透镜,如:远视镜片,照相机的镜头、投影仪的镜头、放大镜等等; 凹透镜:中间薄、边缘厚的透镜,如:近视镜片; 2、基本概念: 主光轴:过透镜两个球面球心的直线,用CC/表示; 光心:通常情况下位于透镜的几何中心;用“O”表示。 焦点:平行于凸透镜主光轴的光线经凸透镜后会聚于主光轴上一点,这点叫焦点;用“F”表示。焦距:焦点到光心的距离(通常由于透镜较厚,焦点到透镜的距离约等于焦距)焦距用“f”表示。注意:凸透镜和凹透镜都各有两个焦点,凸透镜的焦点是实焦点,凹透镜的焦点是虚焦点; 3、三条特殊光线(要求会画) 4、粗略测量凸透镜焦距的方法:使凸透镜正对太阳光(太阳光是平行光,使太阳光平行于凸透镜的主光轴),下面放一张白纸,调节凸透镜到白纸的距离,直到白纸上光斑最小、最亮为止,然后用刻度尺量出凸透镜到白纸上光斑中心的距离就是凸透镜的焦距。 5、辨别凸透镜和凹透镜的方法: 结构角度:用手摸透镜,中间厚、边缘薄的是凸透镜;中间薄、边缘厚的是凹透镜; 对光的作用角度:让透镜正对太阳光,移动透镜,在纸上能的到较小、较亮光斑的为凸透镜,否则为凹透镜; 成像的角度:用透镜看字,能让字放大的是凸透镜,字缩小的是凹透镜; 6、照相机:镜头是凸透镜;物体到透镜的距离(物距)大于二倍焦距,成的是倒立、缩小的实像;投影仪:投影仪的镜头是凸透镜,作用是成倒立、放大的实像;投影仪的平面镜的作用是改变光的传播方向;物体到透镜的距离(物距)小于二倍焦距,大于一倍焦距,成的是倒立、放大的实像;放大镜:放大镜是凸透镜;放大镜到物体的距离(物距)小于一倍焦距,成的是放大、正立的虚像;注:要让物体更大,放大镜要靠近物体。 二:探究凸透镜的成像规律: 1:器材:凸透镜、光屏、蜡烛、光具座(带刻度尺)、火柴 2:注意事项:蜡烛的焰心、透镜的光心、光屏的中心在同一水平面上;又叫“三心等高”,目的是为了烛焰所成的像在光屏的中央。 3: 4:能够画出物体处在不同区间所成像的光路图。(作业本画过) 注意:实像是由实际光线会聚而成,在光屏上可呈现,可用眼睛直接看,所有光线必过像点;虚像不能在光屏上呈现,但能用眼睛看,由光线的反向延长线会聚而成;

互换性与技术测量实验报告

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;千分尺校正棒。 三、实验原理 1量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量千分尺校正棒。 (二)实验步骤 1 用千分表测量千分尺校正棒 2 据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4~5 块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部

研合在一起。 4正常情况下,在研合过程中,手指能感到研合力,两量块不必用力就能贴附在一起。如研合立力不大,可在推进研合时稍加一些力使其研合。推合时用力要适当,不得使用强力特别在使用小尺寸的量块时更应该注意,以免使量块扭弯和变形。 5如果量块的研合性不好,以致研合有困难时,可以将任意一量块的测量面上滴一点汽油,使量块测量面上沾有一层油膜,来加强它的黏结力,但不可使用汗手擦拭量块测量面,量块使用完毕后应立即用煤油清洗。 6量块研合的顺序是:先将小尺寸量块研合,再将研合好的量块与中等尺寸量块研合,最后与大尺寸量块研合。 7. 记录数据; 六思考题 量块按“等”测量与按“级”测量哪个精度比较高?

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

光学膜厚测量仪

Filmetrics光学膜厚测量仪 产品名称: Filmetrics光学膜厚测量仪 产品型号: F20、F30、F40、F50、F70、F10-RT、PARTS 产品展商: 岱美有限公司 简单介绍 美国Filmetrics光学膜厚测量仪,测量膜层厚度从1nm到3.5mm。利用反射干涉的原理进行无损测量,可测量薄膜厚度及光学常数。测量精度达到埃级的分辩率,测量迅速,操作简单,界面友好,是目前市场上最具性价比的膜厚测量仪设备。设备光谱测量范围从近红外到紫外线,波长范围从200nm到1700nm可选。凡是光滑的,透明或半透明的和所有半导体膜层都可以测量。 Filmetrics光学膜厚测量仪的详细介绍 其可测量薄膜厚度在1nm到1mm之间,测量精度高达1埃,测量稳定性高达0.7埃,测量时间只需一到二秒, 并有手动及自动机型可选。可应用领域包括:生物医学(Biomedical), 液晶显示(Displays), 硬涂层(Hard coats), 金属膜(Metal), 眼镜涂层(Ophthalmic) , 聚对二甲笨(Parylene), 电路板(PCBs&PWBs), 多孔硅(Porous Silicon), 光阻材料(Thick Resist),半导体材料(Semiconductors) , 太阳光伏(Solar photovolt aics), 真空镀层(Vacuum Coatings), 圈筒检查(Web inspection applications)等。 通过Filmetrics膜厚测量仪最新反射式光谱测量技术,最多4层透明薄膜厚度、n、k值及粗糙度能在数秒钟测得。其应用广泛,例如: 半导体工业: 光阻、氧化物、氮化物。 LCD工业: 间距(cell gaps),ito电极、polyimide 保护膜。 光电镀膜应用: 硬化镀膜、抗反射镀膜、过滤片。 极易操作、快速、准确、机身轻巧及价格便宜为其主要优点,Filmetrics提供以下型号以供选择: F20 : 这简单入门型号有三种不同波长选择(由220nm紫外线区至1700nm近红外线区)为任意携带型,可以实现反射、膜厚、n、k值测量。 F30:这型号可安装在任何真空镀膜机腔体外的窗口。可实时监控长晶速度、实时提供膜厚、n、k值。并可切定某一波长或固定测量时间间距。更可加装至三个探头,同时测量三个样品,具紫外线区或标准波长可供选择。

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

光学基本测量仪器

光学基本测量仪器 1 望远镜 1.1 结构 望远镜是用来观察远距离目标的一种助视光学仪器,其结构如图1所示。物镜L l是一块消色差复合正透镜,镶嵌在套筒M1的前端,M1套在镜筒N上,可前后移动。目镜L2通常由两块凸透镜组成,装在目镜筒M2的两端,靠近物镜的透镜称接场镜,靠近眼睛的称接目镜,M2可套入镜筒N并可前后移动。实验用测量望远镜在镜筒N内靠近物镜的一侧还装有十字准线K。 图1 望远镜的结构特点是两分立系统的光学间隔为零,即物镜的后焦平面和目镜的前焦平面重合。这样远处物体经物镜在其后焦平面上成一倒立缩小的实像,此像作为目镜的物再经目镜成一视角放大的虚像为眼睛接受。 1.2 调节方法 1.调节目镜即改变L2和K之间的距离,使得能清晰地看到十字准线像。 2.物镜调焦即改变L l和K之间的距离,使得能清晰地同时看到准线和观察物的像,且无视差。产生视差的原因,是观察物通过物镜所成的像与准线不在同一平面上,当左右或上下稍微改变视线方向时,可看到两个像之间有相对位移,这时称之为有视差。 2 读数显微镜 2.1 结构 和普通观察显微镜不同,测量用显微镜的物镜应在严格而准确的横向放大率下工作。为此,在预先确定放大率的物镜像平面处安置一块分划板,并与物镜固结为一个整体。为使各种视度眼睛的人都能使用,测量用显微镜的目镜必须可以进行视度调节。 读数显微镜由测微螺旋和测量用显微镜组成,可直接用来精密测量微小物体的长度、孔距、直径等。根据不同的测量要求,读数显微镜的量程、分度值和视角放大率等有不同的规格。常用的JCD-Ⅱ读数显微镜结构如图2所示。

图2 JCD-II型读数显微镜 1—目镜 2—调焦旋钮 3—方轴 4—接头轴 5—测微手轮 6—标尺 7—镜筒支架 8—物镜 9—旋手 10—弹簧压片 11—载物台 12—底座 图中1是目镜及显微镜镜筒。旋转测微手轮5,可使镜筒支架带动镜筒沿导轨移动。显微镜用调焦旋钮2调焦。测微装置分度值为0.01mm,其读数方法与螺旋测微计相同。测量架方轴可插入接头轴4的十字孔中,并可前后移动。接头轴可在底座内旋转、升降,并用旋手9固定。 2.2 调节方法 1)将被测物体置于载物台面玻璃上,用弹簧压片压紧,使其处于镜筒下方。 2)调节目镜,至看清十字分划板。 3)转动调焦旋钮调节物镜,使被测物体清晰可见,并消除与分划板的视差。调整被测量物,使其被测部分的横向和显微镜移动方向平行。 4)转动测微手轮,使十字分划板纵丝对准待测长度的起点,记下此时读数A,沿同一方向转动测微手轮,使分划板纵丝恰好止于待测长度的终点,记下读数B,则所测长度 A 。 L=B 2.3 注意事项 1)转动调焦旋钮时,注意应避免使显微镜与被测物相接触。正确的作法是首先使物镜接近被测物,然后调节镜筒缓慢上移。 2)测量过程中,测微手轮只能向一个方向转动,中途不能逆转,以免引入螺距误差。 3 测微目镜 3.1 结构

《互换性与技术测量》实验指导书(三个实验,前两个必做,最后一个演示和选做)

实验一直线度误差的测量 一、实验目的 掌握按“节距法”测量直线度误差的方法。 二、测量原理及数据处理 对于很小表面的直线度误差的测量常按“节距法”,应是将被测平面分为若干段,用小角度度量仪(水平仪、自准直仪)测出各段对水平线的倾斜角度,然后通过计算或图解来求得轮廓线的直线度误差。本实验用合像水平仪。 具体测量方法如下: 将被测表面全长分为n段,每段长l=L/N应是桥板的跨距。将桥板置于第一段,桥板的两支承点放在分段点处,并把水平仪放在桥板上,使两者相对固定(用橡皮泥粘住)记下读数a1(单位为格)。然后将桥板沿放测表面移动,逐段测量下去,直至最后一段(第n段)。如图1每次移l,并要使支承点首尾相接,记下每段读数(单位为格)a1、a2、……a n。最后按下列步骤(见例)列表计算出各测量点对两端点连线的直线度偏差Δh i,并取最大负偏差的绝对值之和作为所求之直线度误差。 [例]设有一机床导轨,长2米(L=2000mm),采用桥板跨距l=250mm,用分度值c=0.02mm/m的水平仪,按节距法测得各点的读数a i(格)如表1。 表1

也可用作图法求出直线度误差,如图2。 作图法是在坐标纸上,以导轨长度为微坐标,各点读数累积为纵坐标,将测量得到的各点读数累积后标在坐标上,并将这些坐标点连成折线,以两端点连线作为评定基准,取最大正偏差与最大负偏差的绝对值之和,再换算为线值(μ),即为所求之直线度误差。 测量导轨直线度误差时,数据处理的根据,可由下图看出:(图3) A i — 导轨实际轮廓上的被测量点(i =0、1、2、……、n ); a i — 各段上水平仪的读数(格); Y i — 前后两测量点(i -1,i )的高度差; h i — 各测点(A i )到水平线(通过首点A 0)的距离(μ),显然 1 'i n i i h y == ∑

自动光学检测仪

用在多层板的内外层或高密度双面板表面质量的检查。但是在其它方面的应用也比较多,特别是对高密度互连结构(HDI)微通孔和表面的检查。而且还应用在IC封装和装配中的印制板的检查。AOI很有效地应用诸多方面,为提高印制板的表面质量,发挥了重要的作用。 一.底片的检查 自动光学系统的设计是根据底片检查工艺特性,采用透射的模式即将需要检查的底片放置在玻璃桌台上,而不采用抽真空台面,而是通过玻璃桌面的下的光束透过玻璃进行对底片的扫描来检查底片相应位置上的缺陷。使用这种方法对底片进行表面质量的检查,为更加清晰的将印制板表面缺陷呈现出来,对该系统的放大装置作了很大的改进,达到了既是印制板表面的很小的缺陷都能检查出来。当在印制板生产过程中使用该系统时,就能将印制板面的5μm和5μm以下的缺陷检查出来,并且能够适当的区别错误的真假,就是采用高级的识别系统大大的减少故障缺陷的发生。 在反射模式将白色的纸放置在光具(底片)之下,介于光具透明和不透明范围之间,以提高其对比度。经过交替的变换达到或接近所使用的标准的AOI系统。这种方法不是通用的的,更多的倾向是由于微小的划伤,才会出现假的缺陷报告。另外,容易产生错误的是由于光具表面银粒子无光泽,再通过AOI的反射模式,特别是焦点不是在光具银乳胶膜上,就很容易出现假的读出。而表面无光泽的粒子致使真空度下降。这些粒子是甲基丙烯酸树脂,直径大约7微米,它能够使光发出散光。 如果AOI是开始并记录应该发现的缺陷,唯一的其缺陷的尺寸应比10微米要大,这样用它来检查就能解决所存在的质量问题,而且还有可能解决对精细导线(S/L=30/50微米)的检查。对于有阻抗要求的导线宽度公差控制不会比±5-10微米变化更大是可能的。而AOI的灵敏度不会记录这样的线宽变化。检查光具(即底片)通常应该在清洁的、黄光室内进行,不建议到AOI作业区进行检查,应此区域清洁度不够。因此,实际上AOI机不是检查内层或外层的光具膜的机器。. AOI实际上也可以检验玻璃底版的图像质量,即玻璃上镀铬膜。这些底版通常制作和检验是通过转包公司再送交PWB制造厂的。典型的要求就是底版上的缺陷的尺寸在5微米或更大些。许多使用玻璃底版的用户也使用检查玻璃的工具进行检查,以延长使用的寿命。但使用玻璃底版也很贵。 玻璃底版至少要曝光百次以上,最典型的次数为200-500次,就必须使用AOI对玻璃底版图像进行质量检查,还可以通过曝光试验,如底版的图像好就可以接着使用,或者进行修整。 二.覆盖有光敏抗蚀剂的板在进行显影前的潜像质量的检查 这一步最基本的想法就是在湿处理前,对板的图像与孔对准度进行检查,及早发现如有质量缺陷就很容

互换性与技术测量实验指导书.

互换性实验指导书 机械工程学院

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;被测件。 三、实验原理 量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量被测零件尺寸高度。 (二)实验步骤 1.用游标卡尺测量被测件 2.据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3.量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部研合在一起。

4.将研合后的量块与被测件同时放到测量平板上,在测量平板上移动指示表的测量架,使指示表的测头与量块上工作表面相接触,转动指示表的刻度盘,调整指示表示值零位。 5.抬起指示表测头,将被测件放在指示表测头下,取下量块,记录下指示表的读数。 6.量块的尺寸与指示表的读数之和就是被测件的尺寸。 7. 记录数据; 五、思考题 量块按“等”测量与按“级”测量哪个精度比较高?

实验二常用量具的使用 一、实验目的 1、正确掌握千分尺、内径百分表、游标卡尺的正确使用方法; 2、掌握对测量数据的处理方法; 3、对比不同量具之间测量精度的区别。 二、实验仪器设备 外径千分尺;内径百分表;游标卡尺;轴承等。 三、实验原理 分度值的大小反映仪器的精密程度。一般来说,分度值越小,仪器越精密,仪器本身的“允许误差”(尺寸偏差)相应也越小。学习使用这些仪器,要注意掌握它们的构造特点、规格性能、读数原理、使用方法以及维护知识等,并注意要以后的实验中恰当地选择使用。 四、实验内容及实验步骤 (一)实验内容 1、熟悉仪器的结构原理及操作使用方法。 2、用外径千分尺、内径百分表、游标卡尺测量轴承内、外径。 3、对所测数据进行误差处理,得出最终测量结果。 (二)实验步骤 1、用游标卡尺测量轴承外径的同一部位5次(等精度测量),将测量值记入下表中,并完成后面的计算: ⑴平均值:将5次测量值相加后除以5,作为该测量点的实际值。 ⑵变化量:测量值中的最大值与最小值之差。 入上表中,并完成后面的计算: ⑴平均值:将5次测量值相加后除以5,作为该测量点的实际值。 ⑵变化量:测量值中的最大值与最小值之差。 ⑶测量结果:按规范的测量结果表达式写出测量结果。 3、内径百分表测量步骤: (1)内径百分表在每次使用前,首先要用标准环规、夹持的量块或外径千分尺对零,环规、夹持的量块和外径千分尺的尺寸与被测工件的基本尺寸相等。 (2)内径百分表在对零时,用手拿着隔热手柄,使测头进入测量面内,摆动直管,测头在X方向和Y方向(仅在量块夹中使用)上下摆动。观察百分表的示

仪器分析与光学知识

仪器分析与光学知识 德信诚培训教材 序言 教材全文注重仪器分析的基本方法、基本理论、基本仪器和基本应用的教学。主要内容包括对IEC62321测试方法中所提到的几种测试仪器的基本原理、测试方法的基本原理、优缺点,测试仪器的基本组成部分以及仪器分析基本情况进行阐述。 本教材旨在为对仪器分析知识感兴趣,对目前ROHS规定以及IEC62321所采用的几种有害物质的测试方法有一定了解,存在一些疑问,同时愿意对以上疑问进行学习了解的读者编写。由于编者的水帄有限,教材缺点和错误在所难免,诚恳希望各位读者批评指正。 第一部分绪论 第一节仪器分析简介 一、仪器分析和化学分析 分析化学是化学测量和表征的科学。所谓化学测量,是指获取指定体系中有关物质的质、量和机构等各种信息,而表征则是精确地描述其成分、含量、价态、状态、结构和分布等特

征。获取信息和进行表征的方法多种多样,可以分为仪器分析和化学分析两类。 化学分析是以物质化学反应为基础的分析方法。仪器分析是以物质的物理化学性质(光、电、热)为基础的分析方法,这类方法一般需要使用比较复杂的仪器。 从本质上讲,化学分析和仪器分析并没有严格的界线。化学分析测量的信号,如定性分析中物质的颜色、状态,以及定量分析中物质的质量、体积等都是物质的物理性质;而仪器分析的方法也需要用到许多化学反应,如光度分析中的显色反应,极谱分析中的电化学反应以及大多数仪器分析方法中的试样处理及分离过程中各种化学反应等。但是,二者也具有一些明显的差异。 (1)仪器分析法有较强的检测能力,可以方便的用于痕量组分(<0.01%)的测定;化学分析法的检测能力较差,只能用于常量组分(>1%)及微量组分(0.01%~1%)的分析。 (2)仪器分析方法的取样量一般较少,可用于微量分析(0.1~1.0mg或0.01~1ml)和超微量分析(<0.1mg或<0.01ml)。化学分析取样量较大,只能用于常量分析(>0.1g或>10ml)和半微量分析(0.01~0.1g或1~10ml)。 (3)仪器分析法有很高的分析效率,化学分析法的效率较低。 (4)仪器分析具有更广泛的用途。仪器分析不但可用于成分分析,还可进行价态,状态及结构分析,无损分析,表面、微区分析,在线分析和活体分析。而化学分析法一般只能用于离线的成分分析。 (5)仪器分析法的准确度一般不如化学分析法。化学分析的相对误差小于0.2%,而仪器分析的相对误差通常为1%~5%,有的甚至大于10%。然而,组成的含量不同,对分析的准确度要求不同,大多数仪器分析法的准确度虽达不到常量分析的要求,但对于化学分析无法进行的痕量分析和超痕量分析仍能满足对准确率的要求。 (6)仪器分析的仪器设备一般比较复杂,价格比较昂贵;而化学分析使用的仪器一般都比

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

互换性与测量技术实验指导书(2016-2017-1-32)课件

《互换性与技术测量实验》实验指导书 (2016-2017-1) 互换性与技术测量教研组编 机械工程学院 2016年08月 班级: 学号: 姓名:

目录 实验一长度测量 (3) 实验二表面粗糙度测量 (9) 实验三齿轮齿圈径向跳动的测量 (13)

实验一长度测量 一、实验目的 1.了解和掌握杠杆千分尺、和立式数显光学计的测量原理、主要结构及使用方法。 2.应用上述仪器检验光滑极限量规。 3.巩固尺寸公差的概念,学会由测得数据判断零件合格性的方法。 二、仪器结构及工作原理 1.杠杆千分尺 杠杆千分尺相当于外径千分尺与杠杆式卡规组合而成,其外形如图1-1(a)所示。它的工作原理与杠杆式卡规及千分尺相同。可以用作相对测量,也可以作绝对测量。杠杆式卡规的工作原理如图1-1(b)所示。 (a)(b) 图1-1杠杆式卡规的工作原理图 当测量杆1移动时,使杠杆2转动,在杠杆的另一端装有扇形齿轮,可使小齿轮3和装牢在小齿轮轴的指针4转动,在刻度盘5上便可读出示值。为了消除传动中的空程,装有游丝6。测量力由弹簧8产生。为了防止测量面磨损和测量方便,装有退让器9。 杠杆千分尺刻度值有0.001毫米和0.002毫米两种(现在使用的是前者),表盘的示值范围±0.02毫米,测量力是500-800克,测力变化不大于100克。 2.立式数显光学计 立式光学计又称光学比较仪,集光电、机电于一体,是我国最先进的数显式光学仪器。直接测量可以达到10毫米。测量结果可以根据需要选择工、英制在显示屏上显示,也可以在任意位置置零。当被测工件大于10毫米时,在测量前用量块(或标准件)对准零位,被测尺寸与量块尺寸的差值在屏幕上读得。 立式数显光学计对五等量块和一级精度的量块,球形和圆柱形工件得直径和不圆度,线型、板型、金属及非金属薄膜的厚度和平行度进行高精度测量。 仪器基本度量指标:

光学瓦斯检测仪的正确使用方法

瓦斯检测程序及操作 (一)入井前的准备工作 1. 佩戴好瓦斯检查工特种作业人员操作证。 2、对携带的光学瓦斯检测仪的药品、气路及气密性、条纹进行检查,确认其性能良好。 ⑴对药品效能进行检查。吸收管内的干燥剂用氯化钙或变色硅胶。变色硅胶为蓝色颗粒状,直径2~3mm为宜,极易吸收水分而逐渐变为粉红色。吸湿变色后就应更换。但吸湿变色后的硅胶经过干燥处理后可以复用。 吸收二氧化碳的是钠石灰又名碱石灰,仪器使用的是含有变色指示剂的粉红色颗粒,吸收后变为淡黄色。药品颗粒粒度以3~5mm为宜。 ⑵对一起进行气密性检查。先检查吸气球是否漏气。检查方法是:一只手捏扁吸气球压出球内气体,另一只手压住球上的橡皮管,如球不膨胀还原,就证明不漏气,否则可以从气球是否损坏、活塞芯子是否清洁等方面来找原因。然后对仪器的气样通道进行检查。其检查方法与检查吸气球一样,只是把压住吸气球上的橡皮管改为堵住仪器的进气口,如漏气应对各连接部分分别检查,找出原因进行检修。 ⑶检查干涉条纹是否清晰。按下按钮由目镜观察,旋转保护玻璃座调整视度直到数字最清晰,再看干涉条纹是否清晰。如不清晰,可将光源灯泡盖打开,用调整灯泡的位置来改善。 ⑷用新鲜空气清洗气室。仪器在使用前必须在测定地区气温相差不超过10℃的新鲜空气中清洗气室,这是因为:第一,不同温度的气体的折射率是不同的,因此当对零和测定地点的温度差别太大时,会引起测量误差,第二,这种仪器对温度的变化是比较敏感的,温度变化会引起对好零的条纹移动(现场称为“跑正” 或“跑负”)。清洗气室一般在井底车场进行。清洗的方法是挤压五六次吸气球,让新鲜空气流经吸收管后进入气室。 ⑸干涉条纹的“0”位调定。清洗气室后在同一地点随即进行“0”位调定。其方法是:先按下微调按钮(上按钮),转动测微手轮,使刻度盘的“0”位与指标线重合,然后按下粗调按钮(下按钮),转动粗动手轮,从目镜中观察,把干涉条纹的两条黑线中的任意一条对准分划板上的零线,并记住所对的这条黑线,旋上护盖。此后护盖不得再旋动,以免“0”位变动。另外在旋护盖时不要拧的过紧,容易压迫仪器本体,使本体组件变形而造成“0”位移动。 上好护盖后要再看一下干涉条纹中对零的黑线是否移动,若移动需要重新调零。 二.瓦斯测定 一手将连接瓦斯入口的胶管按二氧化碳吸收剂管用探仗伸向测点(距离巷道顶板200mm以下处)手压气球10次以上,待测气体入气室,然后收回探仗,打开目镜护盖。观察光谱黑线在分划板上的移动位置,同时调整测微手轮,使光谱黑线在分划板上移到靠近的整数位置上。再观测测微刻度盘上指示的读数,将分划板

(教学)互换性与技术测量实验

实验一 外螺纹中径的测量 一、实验目的 熟悉测量外螺纹中径的原理和方法。 二、 实验内容 1. 用螺纹千分尺测量外螺纹中径。 2. 用三针测量外螺纹中径。 三、测量原理及计量器具说明 1. 用螺纹千分尺测量外螺纹中径 图1为螺纹千分尺的外形图。它的构造与外径千分尺基本相同,只是在测量砧和测量头上装有特殊的测量头1和2,用它来直接测量外螺纹的中径。螺纹千分尺的分度值为0.01毫M 。测量前,用尺寸样板3来调整零位。每对测量头只能测量一定螺距范围内的螺纹,使用时根据被测螺纹的螺距大小,按螺纹千分尺附表来选择,测量时由螺纹千分尺直接读出螺纹中径的实际尺寸。 图 1 2. 用三针测量外螺纹中径 图2为用三针测量外螺纹中径的原理图,这是一种间接测量螺纹中径的方法。测量时,将三根精度很高、直径相同的量针放在被测螺纹的牙凹中,用测量外尺寸的计量器具如千分尺、机械比较仪、光较仪、测长仪等测量出尺寸M 。再根据被测螺纹的螺距p 、牙形半角 2 α 和量针直径m d ,计算出螺纹中径2d 。由图2可知: )(222CD AD M AC M d --=-= 而 2sin 22 αm m d d BD AB AD +=+== ????? ? ??+2sin 112αm d

4 2α Pctg CD = 将AD 和CD 值代入上式,得: 22 2sin 1 12ααctg P d M d m +????? ? ? ?+ -= 对于公制螺纹,0 60=α,则 P d M d 866.032+-= 图 2 为了减少螺纹牙形半角偏差对测量结果的影响,应选择 合适的量针直径,该量针与螺纹牙形的切点恰好位于螺纹中径处。此时所选择的量针直径m d 为最佳量针直径。由图3可知: 2 cos 2α P d m = 对于公制螺纹,0 60=α,则 P d m 577.0= 在实际工作中,如果成套的三针中没有所需的最佳量针直径时,可选择与最佳量针直径相近的三针来测量。 量针的精度分成0级和1级两种:0级用于测量中径公差为4—8μm 的螺纹塞规;1级用于测量中径公差大于8μm 的螺纹塞规或螺纹工件。 测量M 值所用的计量器具的种类很多,通常根据工件的精度要求来选择。本实验采用杠千分尺来测量(见图4)。杠杆千分尺的测量范围有0—25,25—50,50—75,75—100mm 图 3 图 4 四种,分度值为0.002mm 。它有一个活动量砧1,其移动量由指示表7读出。测量前将尺体5装在尺座上,然后校对千分尺的零位,使刻度套筒管3、微分筒4和指示表7的示值都分别对准零位。测量时,当被测螺纹放入或退出两个量砧之间时,必须按下右侧的按钮8 使量

测控技术与仪器专业知识体系

简述测控技术与仪器专业知识体系 测控技术与仪器专业是研究信息的获取和处理,以及对相关要素进行控制的理论与技术;以物理为基础的学科,电子、光学、精密机械、计算机、电力及自动控制技术等多学科互相渗透而形成的一门高新技术密集型综合学科。 大一学习基础的数理知识和计算机、机械的基础知识。大二在数学知识体系的支撑下学习物理,特别是力学、光学和电学的相关课程。大三在前两年理论学习的基础上进一步走进测控技术与仪器学科,开始接触更多专业课程。拥有前面物理知识的基础下,对测试技术、测试理论、测试方法的学习使知识融会贯通变得触手可及。大四将完善所学的专业知识并完成从学习到实践、从知识输入到知识输出的转变完成毕业设计。 核心专业课都是建立在前两年对基础知识的学习上的。比如《精密测试原理》就是建立在对统计学、电学、光学、力学等知识掌握的基础的。《概率论与数理统计》中的大数定律为误差评定提供理论基础;《电路基础》知识为压电传感器所使用的电桥等电路结构提供基础;《工程光学》的干涉衍射现象为迈克尔逊干涉仪及其相应光学测量提供理论基础;《工程力》学力和力臂等知识也解释了陀螺仪进动性问题。这样的例子还有很多。 专业选修课更是融合了众多专业课知识连接实际和书本知识的课程。以《数字信号处理器》这门课为例,有别于之前提到的以物理知识为基础的课程,这门课以计算机和一定信号处理知识为基础。需要有C++语言的编写能力,还需要进过《微机原理》的学习,熟悉单片机的基本结构和寄存器使用方法,加之《数字信号处理》中对《信号与系统》的进阶学习,懂得FFT快速算法的特点;模拟信号数字信号的相互转换理论知识。 最初的基础课程学习中或许会感到要学的内容如此繁重庞杂。当进一步了解学科设置和课程安排的内在严谨的逻辑就会发现每部分的学习都是必要和重要的。只有每一步都有坚实的脚印才能为日后的学习提供基础,达到融会贯通。

IOLMaster光学生物测量仪

眼视光特检技术十二 2007-06-1508:52A.M. 第十二章IOLMaster光学生物测量仪 光学干涉生物测量的原理和概念,眼轴长度、角膜曲率测量、前房深度测量、角膜直径测定和人工晶状体度数计算的操作方法,资料分析和临床应用,晶状体常数优化等技术,操作注意事项。 第一节概述 一、光学生物测量的原理 激光干涉生物测量是基于部分干涉测量的原理,采用半导体激光发出的一束具有短的干涉长度(160μm)的红外光线(波长780nm),并将其分成两束,使之具有相干性;同时,两束光分别经过不同的光学路径后,都照射到眼球,而且都经过角膜和视网膜反射回来。干涉测量仪的一端对准被测量的眼球,另一端装有光学感受器,当两束光相遇时,如果这两束光线路径距离的差异小于干涉长度,光学感受器即能测出干涉信号,根据干涉仪内的反射镜的位置测出的距离就是角膜到视网膜的光学路径(图12-1)。 图12-1利用IOLMaster进行光学生物测量 图中,眼球轴长即是角膜前表面到视网膜色素上皮层的光学路径距离。光学测量曲线显示光学感受器接收到与眼底位置相关的干涉信号曲线。最强的峰值可以认?是视网膜色素上皮层;最强峰值旁对称的次级峰是半导体激光的??。 二、IOLMaster光学生物测量仪 IOLMaster(图12-2)是一种?计算人工晶状体度数进行眼球轴长测量而设计的仪器,它将角膜曲率、角膜直径(white-to-white,白到白角膜直径(white-to-white,白到白)图12-2IOLMaster光学生物测量仪、前房深度、眼球轴长的测量集中于一体,同时还提供足量资料用于眼轴监测,前房型IOL植入术术前检查。 IOLMaster眼球轴长的测量沿着视轴的方向,获得从角膜前表面到视网膜色素上皮层的光学路径距离。它是一种非接触性的测量方法,因探头无需接触角膜,故角膜无需表麻、不会造成角膜上皮损伤和感染;因不需要使用浸入法超声测量所用的罩杯,故患者易接受;能自动判断眼别,方便测量且无眼别错误。检测时患者采取坐位,操作过程与其它生物学测量相似。 该仪器的测量范围:角膜曲率从5mm~10mm(角膜前表面半径),前房深度1杄5mm~6杄5mm,眼球轴长14mm~40mm,根据显示幕所设定的缩放比例,测量结果精确度可达到±0杄02mm。内置软件提供计算人工晶状体度数的公式包括:SRKⅡ、SRK/T、HolladayI、HofferQ以及Haigis五种,可根据不同眼轴进行选择。同时它提供20种不同类型人工晶状体的资料。 第二节操作技术 一、准备测量

高精度光学测量微位移技术综述

word格式文档 高精度光学测量微位移技术综述 *** (******大学光电**学院,重庆400065) 摘要 微位移测量技术在科学与工业技术领域应用广泛。光学测量微位移技术与传统测量方法相比,具有灵敏度高、抗电磁干扰能力强、耐腐蚀、防爆、结构简单、体积小、重量轻等优点。本文介绍了几种高精度光学测量微位移的方法,从激光三角法、激光干涉法、光栅尺法、光纤光栅法、X射线干涉法和F-P干涉法几个类别对各种微位移测量原理和仪器进行了系统的分析和比较,并对各种方法的特点进行了归纳,对光学微位移测量方法的发展趋势进行了概括。 关键词:微位移测量,高精度,光学测量,发展趋势 1 引言 随着科学技术的发展,微小位移的检测手段已发展到多种,测量准确度也不断提高。目前,高分辨力微位移测量技术主要分为包含电学、显微镜等测量方法的非光学测量技术和以激光干涉测量为代表的光学测量技术两大类。电学测量技术又包括电阻法、电容和电感法以及电涡流法等,其中,电容和电感法发展迅速,较为常用。目前,三端电容传感器可测出5×10-5μm的微位移,最大稳定性为每天漂移几个皮米[1]。而显微镜测量技术种类较多,主要有高性能透射电子显微镜、扫描电子显微镜、扫描探针显微镜(包括扫描隧道显微镜和原子力显微镜)等二十多个品种[2]。按光学原理不同,光学测量技术可分为激光三角测量[3]、光杠杆法[1,4]、光栅尺测量法[5]、光纤位移测量法[5]和激光干涉法等,测量分辨力在 专业资料整理

几十皮米到几纳米之间。此外,利用X射线衍射效应进行位移测量的X射线干涉技术近年来备受关注,其最大特点是以晶格结构中的原子间距作为溯源标准,可实现皮米量级的高分辨力,避免了光学干涉仪的各种非线性误差[6]。现将主要的具有纳米量级及以上分辨力的微位移测量技术概括如表1所示。 纵观位移测量技术的发展历程,如果说扫描探针技术为高分辨力位移测量领域带来了革命性变革,那么近几十年来激光技术的发展则将该领域带入了一个崭新的时代。由表1可见,目前电容传感器和SPM的测量分辨力也很高,但它们的共同缺陷是当溯源至国际标准长度单位时,必须借助激光干涉仪等方法进行标定和校准。根据1983年第17次度量大会对“米”的新定义,激光干涉法对几何量值溯源有着天然优越性,同时具有非接触测量、分辨力高、测量速度快等优势。本文将对目前主要的光学微位移测量技术介绍和比较分析。 表1 常用微位移测量技术 仪器种类分辨力/nm 测量范围 电容传感器0.05-2 10nm-300μm 电感传感器 5 10μm SPM 0.05 1-10μm 激光三角测头 2.5 100-500μm 光纤位移传感器 2.5 30-100μm 双频激光干涉仪0.1 >10m 光栅尺0.1-10 70-200mm X射线干涉仪0.005 200μm F-P干涉仪0.001 5nm-300μm 2 光学微位移测量技术概述 2.1 激光三角法微位移测量技术 随着工业测量领域的不断扩展以及对测量精度和测量速度的不断提高,传统的接触式测量已经无法满足工业界的需求。而非接触测量由于其良好的精确性和

相关主题
文本预览
相关文档 最新文档