当前位置:文档之家› 第三节 两个正态总体的假设检验

第三节 两个正态总体的假设检验

第三节 两个正态总体的假设检验
第三节 两个正态总体的假设检验

第三节 两个正态总体的假设检验

上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题.

1.两正态总体数学期望假设检验

(1) 方差已知,关于数学期望的假设检验(Z 检验法) 设X ~N (μ1,σ12),Y ~N (μ2,σ22),且X ,Y 相互独立,σ12与σ22已知,要检验的是

H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验)

怎样寻找检验用的统计量呢?从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…,

1

n X 及Y 1,Y 2,…,2

n Y ,由于

2111~,X N n σμ?? ??

?,2

222~,Y N n σμ??

???,

E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )=

2

2

1

21

2

n n σσ+

故随机变量X -Y 也服从正态分布,即

X -Y ~N (μ1-μ2,

2

2

1

21

2

n n σσ+

).

从而

~N (0,1).

于是我们按如下步骤判断.

(a ) 选取统计量 Z

, (8.16)

当H 0为真时,Z ~N (0,1).

(b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使

P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. (8.17) (c ) 由两个样本观察值计算Z 的观察值z 0:

z 0

x y

.

(d ) 作出判断:

若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0.

例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭

圆度X ~N (μ1,σ12),B 车床加工的轴的椭圆度Y ~N (μ2,σ22),且σ12=0.0006(mm 2),σ22=0.0038(mm 2),现从A ,B 两台车床加工的轴中分别测量了n 1=200,n 2=150根轴的椭圆度,并计算得样本均值分别为=0.081(mm),=0.060(mm).试问这两台车床加工的轴的椭圆度是否有显著性差异?(给定α=0.05)

解 ① 提出假设H 0:μ1=μ2;H 1:μ1≠μ2. ② 选取统计量

Z

X Y

-,

在H 0为真时,Z ~N (0,1).

③ 给定α=0.05,因为是双边检验,α/2=0.025.

P {|Z |>z α/2}=0.05, P {Z >z α/2}=0.025,

P {Z ≤z α/2}=1-0.025=0.975.

查标准正态分布表,得

z α/2=z 0.025=1.96.

④ 计算统计量Z 的观察值z

z 0

x y

=

.

⑤ 作判断:由于|z 0|=3.95>1.96=z α/2,故拒绝H 0,即在显著性水平α=0.05下,认为两台车床加工的轴的椭圆度有显著差异.

用Z 检验法对两正态总体的均值作假设检验时,必须知道总体的方差,但在许多实际问题中总体方差σ12与σ22往往是未知的,这时只能用如下的t 检验法.

(2) 方差σ12,σ22未知,关于均值的假设检验(t 检验法) 设两正态总体X 与Y 相互独立,X ~N (μ1,σ12),Y ~N (μ2,σ22),σ12,σ22未知,但知σ12=σ22,检验假设

H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 从总体X ,Y 中分别抽取样本X 1,X 2,…,1

n X 与Y 1,Y 2,…,2

n Y ,则随机变量

t

()

X

Y

μ

μ---t (n 1+n 2-2),

式中

S w 2=

2

2

1122

12(1)(1)2

n S n S n n -+-+-,S 12,S 22分别是X 与Y 的样本方差.

当假设H 0为真时,统计量

t ~t (n 1+n 2-2). (8.18)

对给定的显著性水平α,查t 分布得t α/2(n 1+n 2-2),使得

P {|t |>t α/2(n 1+n 2-2)}=α. (8.19)

再由样本观察值计算t 的观察值

t 0x y

, (8.20)

最后作出判断:

若|t 0|>t α/2(n 1+n 2-2),则拒绝H 0; 若|t 0|≤t α/2(n 1+n 2-2),则接受H 0.

例8.8 在一台自动车床上加工直径为2.050毫米的轴,现在每相隔两小时,各取容量都为10的样本,所得数据列表如表8-3所示.

表8-3

假设直径的分布是正态的,由于样本是取自同一台车床,可以认为σ1=σ2=σ,而σ是未知常数.问这台自动车床的工作是否稳定?(取α=0.01)

解 这里实际上是已知σ12=σ22=σ2,但σ2未知的情况下检验假设H 0:μ1=μ2;H 1:μ1≠μ2.我们用t 检验法,由样本观察值算得:

x =2.063, y =2.059,

s 12=0.00000956, s 22=0.00000489,

s w 2=

2

2

12990.0000860.000044

10102

18

s s ?+?+=

+-=0.0000072.

由(8.20)式计算得

t 0=3.3.

对于α=0.01,查自由度为18的t 分布表得t 0.005(18)=2.878.由于|t 0|=3.3>t 0.005(18)=2.878,于是拒绝原假设H 0:μ1=μ2.这说明两个样本在生产上是有差异的,可能这台自动车床受时间的影响而生产不稳定.

2. 两正态总体方差的假设检验(F 检验法(F -test )) (1) 双边检验

设两正态总体X ~N (μ1,σ

12

),Y ~N (μ2,σ

22

,X 与Y 独立,X 1,X 2,…,1

n X 与

Y 1,Y 2,…,2

n Y 分别是来自这两个总体的样本,且μ1与μ2未知.现在要检验假设H 0:σ

1

2

=

σ

2

2

;H 1:σ12≠σ22.

在原假设H 0成立下,两个样本方差的比应该在1附近随机地摆动,所以这个比不能太大又不能太小.于是我们选取统计量 F =

212

2

S S . (8.21)

显然,只有当F 接近1时,才认为有σ

12

2

2

.

由于随机变量F *=

2

2112222

//S S σσ

~F (n 1-1,n 2-1),所以当假设H 0:σ

12

2

2

成立时,统计量

F =

212

2

S S ~F (n 1-1,n 2-1).

对于给定的显著性水平α,可以由F 分布表求得临界值

12

a F

-(n 1-1,n 2-1)与F α/2(n 1-1,n 2-1)

使得 P { 12

a F

-

(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1)}=1-α

(图8-5),由此可知H 0的接受区域是

12

a F

-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1);

而H 0的拒绝域为

F <12

a F

-(n 1-1,n 2-1),

或 F >F α/2(n 1-1,n 2-1).

然后,根据样本观察值计算统计量F 的观察值,若F 的观察值落在拒绝域中,则拒绝H 0,接受H 1;若F 的观察值落在接受域中,则接受H 0.

图8-5

例8.9 在例8.8中我们认为两个总体的方差σ12=σ22,它们是否真的相等呢?为此我们来检验假设H 0:σ12=σ22(给定α=0.1).

解 这里n 1=n 2=10,s 12=0.00000956,s 22=0.00000489,于是统计量F 的观察值为

F =0.00000956/0.00000489=1.95.

查F 分布表得

F α/2(n 1-1,n 2-1)=F 0.05(9,9)=3.18,

F 1-α/2(n 1-1,n 2-1)=F 0.95(9,9)=1/F 0.05(9,9)=1/3.18.

由样本观察值算出的F 满足

F 0.95(9,9)=1/3.18<F =1.95<3.18=F 0.05(9,9).

可见它不落入拒绝域,因此不能拒绝原假设H 0:σ12=σ22,从而认为两个总体的方差无显著差异.

注意:在μ1与μ2已知时,要检验假设H 0:σ12=σ22,其检验方法类同均值未知的情况,此时所采用的检验统计量是:

F =

1

2

2

1112

21

2

1

()1()

n i

i n i

i X

n Y

n μμ==--∑∑~F (n 1,n 2).

其拒绝域参看表8-4.

(2) 单边检验

可作类似的讨论,限于篇幅,这里不作介绍了.

单个正态总体参数的假设检验

16.3 单个正态总体参数的假设检验 设,,,12n X X X 是来自正态总体()2,N μσ的样本,考虑如下三种关于μ的检 验问题 (1) 00:H μμ≤ vs 10:H μμ> 单侧检验 (2) 00:H μμ≥ vs 10:H μμ< 单侧检验 (3) 00: H μμ= vs 10:H μμ≠ 双侧检验 ********************************************************** (1) 00: H μμ≤ vs 10:H μμ> 单侧检验 (3) 00:H μμ= vs 10:H μμ≠ 双侧检验

********************************************************** 下面给出σ已知时,上述三种检验情况的具体实现。 σ已知时的,对于单侧检验问题(1) 00:H μμ≤ vs 10:H μμ>, 2 ~, X N n σμ?? ?? ? ,故选用服从标准正态分布的检验统计量X u =, 通常称此检验为u 检验。 拒绝域选为()()?? ? ???????≥σμ-==c x n u x x W n 01:,, ,c 为临界值,简记为{}c u ≥。若显著性水平要求为α,则可确定α-=1u c 。 同理对 问题(2),00: H μμ≥ vs 10:H μμ<,水平为α的检验的拒绝域为 ()()?? ? ???????≤σμ-==αu x n u x x W n 01:,, 。 问题(3),00: H μμ= vs 10:H μμ≠,水平为α的检验的拒绝域为 ()()?? ? ???? ? ??≤σμ-= =α2-101u x n u x x W n :,, 。 ********************************************************** 例16.3.1 设某工厂生产一种产品,其质量指标服从正态分布()2 2,μN ,μ为 平均质量指标,其值越大则质量越好,10=μ是达到优级的标准。进货商店从一批产品抽取样本,, ,12n X X X ,16=n ,取显著性水平为050.=α,如何检 验这一批产品是否达到优秀。 分析: 根据工厂产品社会声誉可能的不同,分以下两种情况讨论。 情形一,按照过去长时间的记录,商店的检验人员相信该厂的产品质量很好。

正态总体参数的假设检验matlab处理

正态总体参数的检验 1 总体标准差已知时的单个正态总体均值的U检验 某切割机正常工作时,切割的金属棒的长度服从正态分布N(100,4)。从该切割机切割的一批金属棒中随机抽取15根,测得长度为: 97 102 105 112 99 103 102 94 100 95 105 98 102 100 103 假设总体的方差不变,试检验该切割机工作是否正常,即检验总体均值是否等于100?,取显著性水平a=0.05。 分析: 这是总体标准差已知时的单个正态总体均值的检验,根据题目要求可写出如下假设: H0:u=u0=100,H1=u /=u0(u不等于u0) H0称为原假设,H1称为被择假设(或对立假设) MATLAB统计工具箱中的ztest函数用来做总体标准差已知时的单个正态总体均值的检验 调用格式ztest [h,p,muci,zval]=ztest(x,mu0,Sigma,Alpha,Tail) x:是输入的观测向量 mu0:假设的均值 Sigma:总体标准差 Alpha:显著性水平,默认0.05

Tail:尾部类型变量,‘both’双侧检验(默认),u不等于uo;‘right’右侧检验,u>u0; ‘left’左侧检验,uAlpha时,接受原假设H0;p<=Alpha 时,拒绝原假设H0. muci:总体均值u的置信水平为1-Alpha的置信区间 zval:检验统计量的观测值 %定义样本观测值向量 x=[97 102 105 112 99 103 102 94 100 95 105 98 102 100 103]; mu0=100; %原假设中的mu0 sigma=2; %总体标准差 Alpha=0.05; %显著性水平 %调用ztest函数做总体均值的双侧检验(默认), %返回变量h,检验的p值,均值的置信区间muci,检验统计量的观测值zval [h,p,muci,zval]=ztest(x,mu0,sigma,Alpha) h = 1 p =

单个正态总体的假设检验

学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授成绩 2014年3月10日

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (2) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (4) 2.2 δ未知时的t检验 (6) 3 单个正态总体方差的检验 (8) 参考文献 (9)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确.此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper, and how to build hypothesis and correct judgment test. In addition, it detailed introduces the single hypothesis test from variance is known and unknown. There is a single of normal population variance test and the related application. Keywords:normal distribution;price value;hypothesis test;variance;rejected region;receptive regions;the original hypothesis 前言 假设检验是由K.Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E.Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了”高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他.也是出于这一工作,高斯是一个伟大的数学家,重要的贡献不胜枚举.但现今德国10马克的印有高斯头像的钞票,其上还印有正态

第三节-两正态总体的假设检验

第三节 两个正态总体的假设检验 上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题. 1.两正态总体数学期望假设检验 (1) 方差已知,关于数学期望的假设检验(Z 检验法) 设X ~N (μ1,σ12),Y ~N (μ2,σ22),且X ,Y 相互独立,σ12与σ22 已知,要检验的是 H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 怎样寻找检验用的统计量呢从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…, 1n X 及Y 1,Y 2,…,2n Y ,由于 2111~,X N n σμ?? ??? ,2222~,Y N n σμ?? ???, E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )= 22 121 2 n n σσ+, 故随机变量X -Y 也服从正态分布,即 X -Y ~N (μ1-μ2, 22 121 2 n n σσ+). 从而 X Y ~N (0,1). 于是我们按如下步骤判断. (a ) 选取统计量 Z X Y , () 当H 0为真时,Z ~N (0,1). (b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使 P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. () (c ) 由两个样本观察值计算Z 的观察值z 0: z 0 x y . (d ) 作出判断: 若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0. 例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭

第三节 双正态总体的假设检验

第三节 双正态总体的假设检验 上节中我们讨论单正态总体的参数假设检验,基于同样的思想,本节将考虑双正态总体的参数假设检验. 与单正态总体的参数假设检验不同的是,这里所关心的不是逐一对每个参数的值作假设检验,而是着重考虑两个总体之间的差异,即两个总体的均值或方差是否相等. 设 X ~),(211σμN , Y ~),(2 22σμN ,1 ,,,21n X X X 为取自总体),(211σμN 的一个样本, 2 ,,,21n Y Y Y 为取自总体),(2 22σμN 的一个样本, 并且两个样本相互独立, 记X 与Y 分别为样 本1,,,21n X X X 与2,,,21n Y Y Y 的均值, 21S 与22S 分别为1,,,21n X X X 与2,,,21n Y Y Y 的方差. 内容分布图示 ★ 双正态总体均值差的假设检验(1) ★ 例1 ★ 例2 ★ 双正态总体均值差的假设检验(2) ★ 例3 ★ 例4 ★ 双正态总体均值差的假设检验(3) ★ 例5 ★ 双正态总体方差相等的假设检验 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题7-3 ★ 返回 内容要点: 态总体均值差的假设检验 1.方差2 221,σσ已知情形 1) 检验假设 .:,:02110210μμμμμμ≠-=-H H 其中0μ为已知常数. 由第五章第三节知, 当0H 为真时, ),1,0(~//2 2 2 1210 N n n Y X U σσμ+--= 故选取U 作为检验统计量. 记其观察值为u . 称相应的检验法为u 检验法. 由于X 与Y 是1μ与2μ的无偏估计量, 当0H 成立时, ||u 不应太大, 当1H 成立时, ||u 有偏大的趋势, 故拒绝域形式为 k n n Y X u ≥+--= 2 2 2 1210 //||σσμ (k 待定). 对于给定的显著性水平α,查标准正态分布表得2/αu k =, 使 αα=≥}|{|2/u U P , 由此即得拒绝域为 ,//||2/2 2 2 1210 ασσμu n n Y X u ≥+--= 根据一次抽样后得到的样本观察值1,,,21n x x x 和2,,,21n y y y 计算出U 的观察值u , 若2/||αu u ≥,则拒绝原假设0H ,当00=μ时即认为总体均值1μ与2μ有显著差异;若2/||αu u <,则 接受原假设0H , 当00=μ时即认为总体均值1μ与2μ无显著差异. 类似地,对单侧检验有: 2)右侧检验:检验假设.:,:02110210μμμμμμ>-≤-H H 其中0μ为已知常数. 得拒绝域为

2正态总体参数假设检验

7.2 正态总体参数假设检验 教学目的:理解和掌握单个以及两个正态总体均值的假设检验的方法与思想,掌握正态总体方差检验的方法,能用R软件来完成这些检验。 教学重点:检验方法的掌握,检验方法思想的理解。 教学难点:检验方法的掌握。 在实际问题中,有关方差的检验问题也是常遇到的,如上节介绍的u检验和t检验中均与方差有密切的联系。因此,讨论方差的检验问题尤为重要。 7.2.1 检验 设总体未知,x1,…,nx为取自X的样本,欲检验假设 其中为已知数。 自然想到,看的无偏估计s2有多大,当H0为真时,s2应在周围波动,如果很大或很小,则应否定H0,因此构造检验统计量。对于给定的显著水平α,可查(n-1)表可得分位数 ∴拒绝域W为。 若统计量落在拒绝域W内,则拒绝,接受。 若统计量落在接受域内,则接受,拒绝 例7-6 设某厂生产铜线的折断力,现从一批产品中抽查10根测其折断力后经计算得样本均值=575.2,样本方差s2=68.16。试问能否认为这批铜线折断力的方差仍为82(公斤)(取α=0.05)? 解按题意,欲检验假设 (1), (2)引进统计量 (3)根据α=0.05,查(n-1)=(9)表得临界值

于是得拒绝域 (4)。 (5)计算 由于不在拒绝域W内,故不拒绝,即可认为该批铜线折断力的方差与82(公斤)无显著差异。 7.2.2 F检验 前面介绍的用t检验法检验两个独立正态总体的均值是否相等时,曾假定它们的方差是相等的。一般说来,两个正态总体方差是未知的,那么,如何来检验两独立正态总体方差是否相等呢?为此介绍F检验法。 设有两正态总体和分别是取 自X和Y的样本且相互独立。欲检验统计假设。 由于是的无偏估计,是的无偏估计,当为真时,自然想到和应该差 不多,其比值不会太大或大小,现在关键在于统计量服从什么分布。由§6.3节定理6-4推论我们知道,当为真时,这样,取F为检验统计量,对给定的水平α,查附表5,确定临界值使 。 即得拒绝域。 若由样本观测值算得F值,当F∈W时,拒绝,即认为两总体方差有显著差异。否则认为与相容,即两总体方差无显著差异。 例7-7 设甲、乙两台机床加工同一种轴,从这两台机床加工的轴中分别抽取若干根,测得直径数据如下 假定各台机床加工轴的直径X,Y分别服从正态分布,试比较甲、乙两台机

单个正态总体的假设检验

学号:20115034036 学年论文(本科) 学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授 成绩 2014年3月10日 1 / 13

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (2) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (4) 2。2 δ未知时的t检验 (6) 3 单个正态总体方差的检验 (8) 参考文献 (9)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确。此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper,and how to build hypothesis and correct judgment test. In addition,it detailed introduces the single hypothesis test from variance is known and unknown。There is a single of normal population variance test and the related application. Keywords:normal distribution;price value;hypothesis test;variance;rejected region;receptive regions;the original hypothesis 前言 假设检验是由K。Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E。Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了"高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他。也是出于这一工作,高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线.这传达了一种想法,在高斯的一切科这要到20世纪正态 1

单个正态总体均值和方醚的假设检验

§2 一.已知方差2σ, 检验假设::H μμ=o o (1)提出原假设::H μμ=o o ( μo 是已知数) (2)选择统计量: 2 X U n μσ-= o (3 )求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (0,1)U N : (4)选择检验水平 α,查正态分布表(附表1),得临界值12 u α- ,即 2 12 ( )X P u n α μα σ- ->=o (5) 根据样本值计算统计量的观察值u o ,给出拒绝或接受H 。的判断: 当 12 u u α - >o 时, 则拒绝H 。; 当 12 u u α - ≤o 时, 则接受H 。. 【例1】 某厂生产干电他,根据长期的资料知道,干电他的寿 解:

现取0.05 α=,即 ( 1.96)0.05 5/10 X P>= 因而,拒绝原假设,即这批干电他的平均寿命不是200小时. 【例2】P.191 ――例2.1(0.05 α=,0.01) P.193――例2.2 二.未知方差2σ, 检验假设:: Hμμ = o o : (1)提出原假设:: Hμμ = o o ( μ o是已知数) (2)选择统计量:2 X T S n - =o (3)求出在假设H o成立的条件下,确定该统计量服从的概率分布: (1) T t n- : (4)选择检验水平 α,查自由度为1 n-的t-分布表(附表2),得临界值λ,即 2 () X P S n μ λα - >= o

(5) 根据样本值计算统计量的观察值t o ,且给出拒绝或接受H 。的判断: 当t λ> o 时, 则拒绝H 。; 当 t λ≤o 时, 则接受H 。. 【例2】 某糖厂用自动打包机包装糖,每包重量服从正态分布,其标准重量μo =100斤.某日开工后测得9包重量如下: 99.3, 98.7, 100.5,101.2, 98.3, 99.7, 99.5, 102.1,100.5, 问:这一天打包机的工作是否正常?(检验水平α=5%) 解: (0)计算样本均值与样本均方差: 1.21S = (1)提出原假设::100H μ=o (2)选择统计量: 2 9 X T S = (3)求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (8)T t : (4)检验水平 α=0.05,查自由度为8的t -分布表(附表2),得临界值 2.36λ= ,即

相关主题
相关文档 最新文档