当前位置:文档之家› fluent中燃烧模型分类

fluent中燃烧模型分类

fluent中燃烧模型分类
fluent中燃烧模型分类

FLUENT燃烧模型

化学反应

模拟方法

方法描述计算反应的选择

有限速率模型需要求解组分质量分数的

输运方程,化学反应机理

由用户自己定义。反应速

率在组分输运方程中作为

源项,并由阿累尼乌斯公

式计算。应用范围最广泛。

应用:模拟化学组分混合、

输运和反应的问题;壁面

或粒子表面反应问题

层流有限

速率模型

使用Arrhenius公式计算化学源项,忽略湍流脉动的影响。对于化学动力学控制的燃烧(如层流燃

烧),或化学反应相对缓慢的湍流燃烧是准确的。但对一般湍流火焰中Arrhenius化学动力学的高度

非线性一般不精确;对于化学反应相对缓慢、湍流脉动较小的燃烧(如超音速火焰)可能可以接受。

漩涡破碎模型

Eddy Dissipation

大部分燃料快速燃烧,整体反应速率由湍流混合控制。复杂且常是未知的化学反应动力学速率可以

完全的被忽略掉。化学反应速率由大尺度涡混合时间尺度k/ε控制。只要k/ε(湍流)出现,燃烧

即可进行,不需要点火源来启动燃烧。(缺点:未能考虑分子输运和化学动力学因素的影响)

适用条件:高雷诺数湍流预混燃烧过程。

EBU-Arrehenius

模型

EDC模型

假定化学反应都发生在小涡中(精细涡),反应时间由小涡生存时间和化学反应本身需要的时间共

同控制。EDC模型能够在湍流反应中考虑详细的化学反应机理。但是他们的数值积分计算开销很大。

使用条件:只有在快速化学反应假定无效的情况下才能使用这一模型(如快速熄灭火焰中缓慢的

CO烧尽、选择性非催化还原中的NO转化问题)。

非预混燃烧模型不求解每个组分的质量分数输运方程,求解混合分数输运方程和一个或两个守恒标量的方程,然后从预测的混合分数公布推导出每一个组分的浓度。通过概率密度函数或PDF来考虑湍流的影响。

应用:主要用于模拟湍流扩散火焰的反应系统。这个系统要求接近化学平衡,氧化物和燃料以两个或者三个进口进入计算域。

预混燃烧模型主要用于单一、完全预先混合好的燃烧系统。反应物和燃烧产物被火焰前沿分开。求解出反应发展变量来预测前沿的位置。湍流的影响通过湍流火焰速度计算。

部分预混燃烧模型描述非预混燃烧完全预混燃烧相结合的系统。结合混合分数方程和反应物发展变量来分别确定组分浓度和火焰前沿位置。适用于计算域内具有变化等值比率的预混火焰情况。通过求解混合分数方程和反应过程参数来确定火焰峰面的位置。

PDF输运方程模型结合CHEMKIN可以考虑详细的化学反应机理,高度的非线性化学反应项是精确模拟,无须封闭模型,可以合理的模拟湍流和详细化学反应动力学之间的相互作用,是模拟湍流燃烧的精确模拟方法。但计算量特别大。

优点:可以计算中间组分;考虑分裂影响;考虑湍流-化学反应之间的作用;无需求解组分输运方程

缺点:系统须满足(靠近)局部平衡;不能用于可压缩或非湍流流动;不能用于预混燃烧。

FLUENT各种燃烧模型

气相燃烧模型

有限速率模型

求解反应物和生成物输运组分方程,用户自己定义化学反应机理。反应率作为源项在组分输运方程中通过阿雷纽斯方程或涡耗散模

型。适用条件:预混燃烧、局部预混燃烧、费预混燃烧。

PDF模型

不求解单个组分输运方程,求解混合组分分布输运方程。组分浓度由混合组分分布求得。用概率密度函数PDF考虑湍流效应,通过

火焰面方法(即混即燃模型)或化学平衡计算来处理。适用条件:湍流扩散火焰的模拟和类似的反应过程。

应用:非预混燃烧(湍流扩散火焰),计算航空发动机环形燃烧室中的燃烧问题,液体/固体火箭发动机中的复杂燃烧问题。

非平衡反应模型

层流火焰模型是混合组分/PDF模型的进一步发展,模拟非平衡火焰燃烧,模拟富油侧时,典型平衡火焰假设师兄啊。可模拟形成

NOx的中间产物。

应用:模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。

预混燃烧模型

专用于燃烧系统或纯预混的反应系统。充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量预测火焰面位置。湍流

效应可通过层流和湍流火焰速度的关系来考虑。

应用:模拟飞机加力燃烧室中的复杂流场模拟、汽轮机、天然气燃烧

分散相燃烧模型液体燃料燃烧

喷射燃烧

固体颗粒燃烧

随机轨道模型

利用离散的随机跟踪法模拟瞬态

湍流速度脉动对粒子轨迹的影响

需定义油滴在初始状态的

位置、速度、尺寸和温度分

布及油滴的物性,根据这些

设置计算粒子的轨迹和传

热/传质,并可以计算粒子

与连续相的相互影响。

应用领域:

拉格朗日坐标系啊模拟分散相在瞬态和稳态下的运动

轨迹;多种球形和非球形粒子的曳力规律;线性分布

或Rosin-rammler方程的粒子大小分布;连续相的湍流

效应对粒子传播的影响;分散相的加热/冷却;液滴的

汽化和蒸发;燃烧粒子,包括油滴的挥发过程和焦炭

的燃烧;连续相与分散相的耦合。

粒子云模型

追踪粒子平均轨道的粒子云的形

成和演化的统计过程。粒子云浓

度通过粒子平均轨迹的概率密度

函数来表示。

污染模型

NOx模拟三种NOx形成的模型:Thermal NOx、Prompt NOx、Fuel NOx形成模型。

烟尘模型

(soot model)

可以考虑单步和两步的烟尘生成问题。烟尘燃烧由有限速率模型模拟,并考虑烟尘对辐射吸收的影响。

热辐射模型

DTRM模型简单,适用对象的尺度范围较大。没有包含散射和不能计算非灰辐射。提高射线数量可提高该模型精度,但计算量明显增加。

P-1模型是P-N模型的简化,适用大尺度辐射计算。计算量小,含散射效应。计算域尺寸较大时模型非常有效,可用在较复杂计算域中。The Rosseland模型最简化的辐射模型,只能应用于大尺度辐射计算。速度最快,需要内存最小。

Discrete

ordinates(DO)模型

最复杂辐射模型,大小尺度辐射计算都适用,可计算非-灰度辐射和散射效应,计算量大。

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

第六章 FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟 6.1 燃烧模拟的重要性 ●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等) ●面向实际现象(如点火、熄火、燃烧污染物生成等) 6.2 FLUENT燃烧模拟方法概要 ●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。然而,需要注意的是:你必须 保证你所使用的物理模型要适合你所研究的问题。FLUENT在燃烧模拟中的应用可如下图所示: ●气相燃烧模型 一般的有限速率形式(Magnussen 模型) 守恒标量的PDF模型(单或二组分混合物分数) 层流火焰面模型(Laminar flamelet model) Zimont 模型 ●离散相模型 煤燃烧与喷雾燃烧 ●热辐射模型 DTRM, P-1, Rosseland 和Discrete Ordinates模型 ●污染物模型 NO x 模型,烟(Soot)模型

6.3 气相燃烧模型 6.3.1 燃烧的化学动力学模拟 实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间 的反应时间尺度相差很大(10- 9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。 在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: ● 有限速率燃烧模型——>预混、部分预混和扩散燃烧 ● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃 烧 ● 反应进度方法(Zimont 模型)——>预混燃烧 ● 混合物分数和反应进度方法的结合——>部分预混燃烧 6.3.2一般的有限速率模型 ● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下: 6-1 其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率: 6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。在混合(mixing )速率方法中,混合速率和涡的时间尺度, k /ε.有关,其物理意义为化学反应受限于湍流导致的组分和热量的混合速率。J i 表达如下: 6-3 ● 计算所需参数包括:(i )组分及其热力学参数值;(ii )反应及其速率常数值。其中,FLUENT 提供了一个混合物组分的数据库可供查找选用,另外也提供了一个化学反应机理以及组分热力学性质的数据库可供查找选用。 ● 有限速率模型的优缺点: 优点:适用于预混、部分预混和扩散燃烧;简单直观 缺点:当混合时间尺度和反应时间尺度相当时(即Da>>1)缺乏真实性;难以解决化学 反应与湍流的耦合问题;难以预测反应的中间组分;模型常数具有不确定性 6.3.3 守恒标量的PDF 模型 ∑=k jk j R R

Fluent多相流模型选择

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则 1、基本原则

1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相 模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴 和粒子负载流动,采用混合模型或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣 的流动特种,选择合适的流动模型。此时由于模型只是对部分流动特 征采用了较好的模拟,其精度必然低于只包含单个模式的流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混 合模型,反之使用欧拉模型。 2)如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间 曳力规律不明确,最好选用混合模型。 3)如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部 分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。 但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收 敛困难。

fluent燃烧简介

FLUENT燃烧简介 FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。 1.1 FLUENT燃烧模拟方法概要 燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示: 离散相模型气相燃烧模型 输运方程 预混燃烧 部分预混燃烧 连续性扩散燃烧 动量 能量 化学组分 污染物模型热辐射和传热模型 图 1 FLUENT模拟过程中所需的物理模型 1.1.1 气相燃烧模型 一般的有限速率形式(Magnussen模型) 守恒标量的PDF模型(单或二组分混合分数) 层流火焰面模型(Laminar flamelet model) Zimount 模型 1.1.2 离散相模型 煤燃烧与喷雾燃烧 1.1.3 热辐射模型 DTRM,P-1,Rosseland 和Discrete Ordinates 模型 1.1.4 污染物模型 NOx模型,烟(Smoot)模型 2.1气相燃烧模型 ·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: 有限速率燃烧模型---预混、部分预混和扩散燃烧 混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧

反应进度方法(Zimont模型)---预混燃烧 混合物分数和反应进度方法的结合---部分预混燃烧 2.2.1 有限速率模型 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。 求解积分的输运方程,得到每种组分的时均质量分数值,如下: -----(1) 其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率: -----(2) -----(3) 计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。 有限速率模型的有缺点: 优点:适用于预混、部分预混和扩散燃烧,简单直观; 缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 2.2.2守恒标量的PDF模型 守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。 -----(4) -----(5) 其中-----(6) 混合分数定义-----(7)

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

使用非预混燃烧模型

《数值计算与工程仿真》专刊—FLUENT HELP 算例精选中文版(二)
算例 13
引言
使用非预混燃烧模型
煤粉燃烧的模拟包括气相连续流场的建模和它与煤粒非连续相的作用的建 模。穿过气体的煤粒会挥发燃烧并成为与气相反应的燃料源。反应可以用组份 输运模型(the species transport)或模型(the non-premixed combustion)模拟, 在本指南中你将用非预混燃烧模型模拟简单煤粉燃烧炉中的化学反应。 在本指南中你将学会: 1.怎样用 prePDF 预处理程序为煤粉燃料准备 PDF 表格。 2.怎样为非预混燃烧化学模型定义输入条件。 3.怎样定义煤粒的非连续相。 4.怎样解决包含非连续相煤粒的反应的模拟。 非预混燃烧模型用这样的一种建模方法:用一个或二个守恒量,即混合分 数求解输运方程。多种化学组份,包括基团和中间产物组份可能被包含在对问 题的定义当中,而且它们的浓度将来至于混合分数分布的预测。组份的特性参 数是通过化学数据库获得。湍流化学反应是用 Beta 或者双 delta 概率密度函数 来模拟的。关于非预混燃烧模拟方法的更多细节请参看使用手册。
前提条件
本指南是建立在你已经熟悉 FLUENT 的菜单结构并且已经做完指南 1 的基 础上的。因此在建立过程中的一些步骤和解决过程将被省略。
问题描述
本指南中用的煤燃烧系统为一简单的 10m*1m 的二维管道, 如图 13.1 所示。 因为是对称的,所以只模拟宽度方向上的一半区域。2D 管道的进口分为两股流 动。管道中心附近的高速流速度为 50m/s,宽度为 0.125m。另一股流的速度为 15m/s, 宽度为 0.375m.两股流都为 1500K 的空气。 煤粒在高速流的附近以 0.1kg/s
—151 —
https://www.doczj.com/doc/7010651386.html,

Fluent 湍流模型小结

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: 直接模拟(direct numerical&Oσλαση; simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 大涡模拟(large&Oσλαση; eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 应用Reynolds时均方程(Reynolds-averaging&Oσλαση; equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

CFD讲义-湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

第二节,平均量输运方程 雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du ''-?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u ''-ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍

FLUENT中两相流、多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相; 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等; 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道” 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model) 混合模型(Mixture Model) 欧拉模型(Eulerian Model) 模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型; 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动; 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流; 缺点:界面特性包括不全,扩散和脉动特性难于处理。 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型; 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;

fluent中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF (用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=*Re_DH^ (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg(8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L (8-3) 式中的比例因子0.07 是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形时,L可以取为管道的水力直径。 湍 流的特征长取决于对湍流发展具有决定性影响的几何尺度。在上面的讨论中,管道直径是决定湍流发展过程的唯一长度量。如果在流动中还存在其他对流动影响更大 的物体,比如在管道中存在一个障碍物,而障碍物对湍流的发生和发展过程起着重要的干扰

第14章 非预混燃烧模拟

第十四章非预混燃烧模拟 Chapter 14. Modeling Non-Premixed Combustion 在非预混燃烧中,燃料和氧化剂以相异流进入反应区。这与预混燃烧系统截然不同。在预混燃烧系统中,反应物在燃烧以前以分子水平混合。非预混燃烧的例子包括甲烷燃烧、粉煤炉和内部燃烧柴油(压缩)发动机。 在一定假设条件下,热化学可被减少成一个单一的参数:混合分数。混合分数,用f表示,是来自燃料流的质量分数。换句话说,混合分数就是在所有组分(CO2、H2O、O2等)里,燃烧和未燃烧燃料流元素(C、H等)的局部质量分数。因为化学反应中元素是守恒的,所以这种方法极好。反过来,质量分数是一个守恒的数量,因此其控制输运方程不含源项。燃烧被简化为一个混合问题,并且与近非线性平均反应率相关的困难可以避免。一经混合,即可用层流小火焰(laminar flamelet)模型将化学反应模拟成为化学平衡或近化学平衡。 模型包括以下几个部分: 14.1:平衡混合分数/PDF模型(Description of the Equilibrium Mixture Fraction/PDF Model); 14.2:非预混平衡化学反应的模拟方法(Modeling Approaches for Non-Premixed Equilibrium Chemistry); 14.3:非预混平衡模型的用户输入(User Inputs for the Non-Premixed Equilibrium Model); 14.4:层流小火焰模型(The Laminar Flamelet Model); 14.5:在prePDF数据库中添加新种类(Adding New Species to the prePDF Database); 14.1:平衡混合分数/PDF模型 非预混模拟方法包括解一或两个守恒量(混合分数)的输运方程。不解单个组分方程。取而代之的是每个组分的浓度用预混分数场得到。热化学计算在prePDF中进行,并列成表以便于在FLUENT中查询。紊流和化学的相互作用考虑为一个概率(几率)密度函数(PDF)。 关于非预混混合分数/PDF模型的信息在以下分节中讲述: 14.1.1:非预混方法的优点和局限(Benefits and Limitations of the Non-Premixed Approach); 14.1.2:非预混方法的细节(Details of the Non-Premixed Approach); 14.1.3:非预混模拟的限制和特有案例(Restrictions and Special Cases for Non-Premixed Modeling); 见14.2:模拟和解决顺序的回顾,以及14.3;应用模型指导。 14.1.1非预混方法的优点和局限 非预混方法的优点(Advantages of the Non-Premixed Approach):非预混模拟方法已被明确用于模拟进行快速化学反应的紊态扩散火焰的研究。对这样的系统,该方法有许多点优于第十三章中描述的有限率公式。非预混

fluent湍流模型 总结

一般来说,DES和LES是最为精细的湍流模型,但是它们需要的网格数量大,计算量和内存需求都比较大,计算时间长,目前工程应用较少。 S-A模型适用于翼型计算、壁面边界层流动,不适合射流等自由剪切流问题。 标准K-Epsilon模型有较高的稳定性、经济性和计算精度,应用广泛,适用于高雷诺数湍流,不适合旋流等各相异性等较强的流动。 RNG K-Epsilon模型可以计算低雷诺数湍流,其考虑到旋转效应,对强旋流计算精度有所提供。 Realizable K-Epsilon模型较前两种模型的有点是可以保持雷诺应力与真实湍流一致,可以更加精确的模拟平面和圆形射流的扩散速度,同时在旋流计算、带方向压强梯度的边界层计算和分离流计算等问题中,计算结果更符合真实情况,同时在分离流计算和带二次流的复杂流动计算中也表现出色。但是此模型在同时存在旋转和静止区的计算中,比如多重参考系、旋转滑移网格计算中,会产生非物理湍流粘性。因此需要特别注意。专用于射流计算的Realizable k-ε模型。 标准K-W模型包含了低雷诺数影响、可压缩性影响和剪切流扩散,适用于尾迹流动、混合层、射流、以及受壁面限制的流动附着边界层湍流和自由剪切流计算。 SST K-W模型综合了K-W模型在近壁区计算的优点和K-Epsilon模型在远场计算的优点,同时增加了横向耗散导数项,在湍流粘度定义中考虑了湍流剪切应力的输运过程,适用更广,可以用于带逆压梯度的流动计算、翼型计算、跨声速带激波计算等。 雷诺应力模型没有采用涡粘性各向同性假设,在理论上比前面的湍流模型要精确的多,直接求解雷诺应力分量(二维5个,三维7个)输运方程,适用于强旋流动,如龙卷风、旋流燃烧室计算等。 !!!!! 所以在选择湍流模型时要注意各个模型是高雷诺数模型还是低雷诺数模型,前者采用壁面函数时,应该避免使用太好(对壁面函数方法)或太粗劣(对增强函数处理方法)的网格。而对于低雷诺数模型,壁面应该有好的网格。另外fluent 对壁面函数除了有增强处理以外,还有非平衡处理。(FLUENT首选标准壁面方程组,它能很好的计算出以壁面为边界的流动情况。但是,当流体流动分离太大。以致于远远偏离了理想条件时,就不太适用了,在其他情况下,剪切应力及平衡假设大大限制了壁面方程的通用性。相应的,当近壁面流动处于高压之下时,当流动处于不平衡状态时,这些假设就不在成立了。不平衡方程组提供了处理以上情况的方法)非平衡壁面函数被推荐使用在包含脱流、回流和冲击的复杂流动当中。 但是考虑到壁面函数的局限性(对近壁面的影响无效),壁面函数方法的局限性(y+应用于壁面函数) 标准的壁面函数能够为大多数高雷诺数的边界限制流提供合理、精确的预测。而非平衡

相关主题
文本预览
相关文档 最新文档