当前位置:文档之家› 发动机原理名词解释

发动机原理名词解释

发动机原理名词解释
发动机原理名词解释

1.高速汽油机、高增压低速大型柴油机的燃烧过程可近似为那个基本的热力过程?为何?

由于汽油机属于均匀混合气的逐渐爆炸燃烧,燃烧速度很快,而在上止点附近容积变化很小,因此燃烧过程相当于等容加热。低速柴油机燃油质量较差,形成可燃混合气速度慢,不均匀混合气燃烧速度很慢,持续时间长,接近于等压加热。

2.工质:与能量转换有关的工作物质

循环热效率:工质所做的循环功W与循环加热量Q之比

压缩比:ε=Va/Vc

压力升高比:λ=Pz/Pc

循环平均压力Pi:单位气缸容积所做的循环功

指示功Wi:一个实际循环工质对活塞所做的有用功

平均指示压力Pmi:发动机单位汽缸工作容积的指示功

指示热效率ηi:实际循环指示功与所消耗的燃料热量之比

指示燃料消耗率bi:单位指示功的耗油量

平均有效压力Pme:发动机单位气缸工作容积所输出的有效功

有效功率Pe:指示功率减去机械损失功率是发动机的对外输出功率

有效扭矩Ttq:发动机工作时,由功率输出轴输出的扭矩

有效燃油消耗率be:单位有效功的耗油量

有效热效率ηe:发动机有效功We与所消耗的燃料热量Q之比

升功率PL:发动机每升工作容积所发出的有效功率

比质量me:发动机干质量m与所给出的标定功率之比

机械效率ηm:有效功率与指示功率之比

过量空气系数α:燃烧1千克燃料实际提供的空气量L与理论上所需空气量Lo之比

充气效率ηv:实际进入汽缸的新鲜工质与进气状态下充满气缸工作容积的新鲜工质之比

喷油泵速度特性:喷油泵油量控制机构位置固定,循环供油量随喷油泵转速变化的关系

负荷特性:发动机转速不变,其经济性指标随负荷而变化的关系

速度特性:发动机性能指标随转速变化的关系

外特性:节气门保持全开,所测得的速度特性为外特性

燃料调整特性:一定节气门开度和一定转速下,发动机功率Pe和燃油消耗率be随燃料消耗量β(或α)的变化曲线。

调速特性:在调速器起作用时,保持调速手柄位置一定,发动机性能指标随转速或负荷变化

的关系。

扭转储备系数:μ=(Ttqmax-Ttq)/Ttq×100%

稳定调速率:δ2=(n3-n1)/n标定

瞬时调速率:δ1=(n2-n1)/n标定

万有特性:较全面的表示发动机的性能,应用多参数的特性曲线。

点火提前角调整特性:汽油机保持节气门开度,转速以及混合气浓度一定时,汽油机功率和耗油率随点火提前角该表而变化的关系

分子变更系数:1千克燃料所形成的混合气燃烧后的摩尔数与燃烧前的摩尔数之比

1、试述发动机理论循环的假设条件。

答:1)假设工质是理想气体,其物理常数与标准状态下的空气物理常数相同。2)假设工质是在闭口系统中作封闭循环。3)假设工质的压缩及膨胀是绝热等熵过程。4)假设燃烧是外界无数个高温热源定容或定压向工质加热。工质放热为定容放热。5)所有过程为可逆过程组成。

2、用P-V图和T-S图说明,当定容加热循环加热量Q1一定、压缩比增加时循环热效率的变化。

答:略,参见P1图1-1b)和P3图1-5.

3、试述理论循环与实际循环的差异。

答:1)理论循环中假设工质比热容是定值,而实际气体比热容是随温度上升而增大的。2)实际循环中为了使循环重复进行,必须更换工质,因此会造成功的消耗,称为换气损失。3)实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时损失和补烯损失;实际循环汇总会有部分燃料由于缺氧产生不完全燃烧损失;在高温下部分燃烧产物分解而吸热,使循环的最高温度下降。4)实际循环中气缸壁和工质间自始至终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线,造成损失。

4、发动机的机械损失包括那几部分?各占比例如何?常用哪几种方法测量发动机机械损失?

答:摩擦损失,占62-75%;驱动各种附件损失,占10-20%;带动机械增压器损失,占6-10%泵气损失,占10-20%。

机械损失常用的测量方法有:

(1)示功图法:运用各种示功器测取发动机的示功图,从中计算指示压力值,从测功器和转速计读数中计算发动机的平均有效压力,二者之差即为该工况下内燃机的平均压力损失。这种测定方法是在真实的实验工况下进行的,理论上完全机械损失的定义,但实验结果的正确程度取决于示功图测取的正确程度。最大的误差来源于示功图上活塞的上止点位置不易确定。此外在多缸发动机中各个气缸之间存在着一定的不均匀性,这会引起一定的误差。因此,示功图法一般用于上止点位置能精确校正的情况下

(2)倒拖法:讲发动机与电力测功器相连,当发动机在给定工况下稳定运行时,待冷却水、润滑油温度都达到正常数值。然后切断发动机的供油或停止点火,并立即将电力测功器转换为电动机,以原转速拖动发动机空转,并尽可能保持冷却水温度、润滑油温度不变,此时在电力测功机上读出的倒拖功率即为给定工况下发动机的机械功率损失功率

是求机械功率损失最迅速最简便的方法。但是倒拖法要求水温和润滑油温度保持不变,由于发动机存在着着火运转和不着火运转,其摩擦功率损失和泵气功率损失存在着较大差别,得出的数值比实际值高。因此该方法测定汽油机机械损失时应用较广

(3)灭缸法:发动机在给定工况下稳定运转,测出其有效功率,然后使其中一个气缸不工作,并调整测功器使发动机恢复到原来的转速,测出此时的发动机有效功率,这样,如果灭缸后其他各缸的工况和发动机机械损失不变,则这两个功率之差即为被熄灭的缸原来所发出的指示功率。依次灭缸,最后可以从各缸指示功率总和中求得整台发动机的指示功率。

灭缸法用于柴油机在较好的情况下误差不超过5%,但对于汽油机,由于其中一个气缸不工作,影响了其他气缸的换气质量和充量系数,会造成较大的测量误差。同时该方法也不能用于涡轮增压发动机和单缸发动机,仅仅适用于多缸发动机。

(4)油耗线法:此方法只适用于柴油机,给定柴油机不变转速,逐渐改变柴油机供油齿条的位置,测出每小时耗油量(或每秒耗油量),得到负荷特性曲线

5.简述内燃机动力性和经济性的影响因素与提高途径

6、试分析影响充气效率的主要因素。

答:影响充气效率的因素有进气终了的压力pa,进气终了的温度Ta,残余废弃系数γ,配气定时,压缩比,进气状态。

7、试分析进气迟闭角对充气效率及有效功率的影响。

答:加大进气门迟闭角,高转速时充气效率增加,有利于最大功率的提高,但对于低速和中速性能则不利。减小进气迟闭角,能防止低速倒喷,有利于提高最大扭矩,但降低了最大功率。

8、简述提高充气效率的措施。

答:(1)降低进气系统阻力损失,提高气缸内进气终了压力

(2)降低排气系统的阻力损失,以减小气缸内残余废气系数

(3)减少高温零件在进气系统中对新鲜充量的加热,降低进气终了温度

(4)合理选择配气相位

(5)充分利用进气管内的动力效应

9、汽油机燃烧过程可划分为几个阶段?各阶段有何特征?画出其展开示功图。

答:三个阶段。着火延迟期:气缸压力明显脱离压缩线而急剧上升。明显燃烧期:气缸压力迅速上升。后燃期:明显燃烧期后的燃烧。P64

10、试分析汽油机爆燃产生的原因。爆燃有何危害?

答:原因:在正常火焰传播的过程中,处在最后燃烧位置上的那部分未燃混合气,进一步受到压缩和辐射热的作用,加速了先期反应。如果在火焰前锋尚未到达之前,末端混合气已经自燃,则这部分混合气烯烧速度极快,火焰速度可达每秒百米甚至数百米以上,使局部压力、温度很高,并伴随有冲击波。压力冲击波反复撞击缸壁,发出尖锐的敲击声,严重时破坏缸壁表面的附面气膜和油膜,使传热增加,气缸盖和活塞顶温度升高,冷却系统过热,汽油机功率减少,耗油率增加,甚至造成活塞、气门烧坏,轴瓦破裂,火花塞绝缘体破坏,润滑油氧化成胶质,活塞环粘在槽内等故障。

11、通过怎样调整转速和负荷可以减轻爆燃,为什么?

答:提高转速,转速增加时,火焰速度亦增加,爆燃倾向减小。降低负荷,负荷减小时,气缸的温度、压力降低,爆燃的倾向减小。

12、转速n、负荷变化时点火提前角θ分别应如何调整,为什么?

答:转速增加时,汽缸中紊流增强,火焰速度大体和转速成正比增加,因而以秒计的燃烧过程缩短,但由于循环时间亦缩短,一般燃烧过程

13.影响发动机机械效率的因素有哪些?

气缸内最高燃烧压力、转速或活塞平均速度、负荷、润滑油品质及冷却液温度、发动机技术状况

14.试分析转速和负荷对机械效率的影响。

答:转速n上升,各摩擦副之间相对速度增加,摩擦损失增加。曲柄连杆机构的惯性力加大,活塞侧压力和轴承负荷均增高,摩擦损失增加;泵气损失加大。驱动附件消耗的功多。因此,机械损失功率增加,机械效率下降。转速一定时,负荷减小,平均指示压力pmi随之下降,

而平均机械损失压力pmm变化很小,因为pmm的大小主要取决于摩擦副的相对速度和惯性力的大小,根据ηm=1-(pmm/pmi)知,随着负荷减小,机械效率ηm下降。

15.进气惯性效应和波动效应有何不同?

进气行程接近终了时,当迎着已获得充分加速的气流将进气门关小时,在进气管道中会引起短暂的压力升高,这导致活塞上行压缩行程之初,进气流动惯性仍可继续得到利用。这种利用进气管内告诉流动气体惯性增加充量的效应称为惯性效应。

进气开始时,活塞下行使气缸内进气门座处产生一定的真空度,形成负压波,它以膨胀波的形式沿进气管以a-u的传播速度向进气管口处传播(a为声速,u为气流速度)。当膨胀波到达开口端时,又从开口端反射回压缩波,其传播速度为a+u。这种进气管内的波动效应称为进气波动效应。

16.增压技术为什么能提高发动机的功率?废气涡轮增压有什么好处?

增压可以有效提高进入汽缸中的充气密度或使得可燃混合气密度增加以增大进入汽缸的空气或混合气质量,从而获得更大的发动机功率。

废气涡轮增压方式具有良好的经济性,且结构简单紧凑,

17.分析说明题,如何选择进气压力波固有频率与发动机吸气频率之比,以利用进气动态效应提高发动机的充气效率?

压力波的固有频率f1为a/4L(a为声速,L为进气管长度),当发动机转速为n时,进气频率f2为n/120,f1与f2之比为波动次数,既q1=30a/nL,可以看出当q1=1.5、2.5、3.5……时,下一个循环的进气门开启时间正好与上一个波动循环效应的正压力波相重合,使充量系数增加。当q1=1、2、3……时,进气频率与压力波频率相同,下一个循环进气门开启时间正好与负压力波重合,使充量系数减小。

18. 分别从汽油和柴油性质上的差异分析汽油和柴油混合气形成、负荷调整方法及着火和燃烧方式的不同

汽车发动机原理第4章 练习题

第4章练习题 一、解释术语 1、不规则燃烧 2、点火提前角 3、空燃比 二、选择题 1.提高汽油机的压缩比,要相应提高所使用汽油的() A、热值 B、点火能量 C、辛烷值 D、馏程 2.汽油机的燃烧过程是() A、温度传播过程 B、压力传播过程 C、热量传播过程 D、火焰传播过程 3、汽油机混合气形成过程中,燃料()、燃料蒸汽与空气之间的扩散同步进行。 A、喷射 B、雾化 C、蒸发 D、混合 4、下面列出的()属于汽油机的燃烧特点。 A、空气过量 B、有时缺氧 C、扩散燃烧 D、混合气不均匀 5、汽油机爆震燃烧的根本原因是远端混合气() A、自燃 B、被火花塞点燃 C、火焰传播不到 D、被压缩 6、汽油机的火焰速度是() A、燃烧速度 B、火焰锋面移动速度 C、扩散速度 D、气流运动速度 7、提高压缩比使汽油机的爆震倾向加大,为此,可采取()的措施。 A、减小喷油提前角 B、减小点火提前角 C、加大喷油提前角 D、加大点火提前角 三、填空题 1、根据汽油机燃烧过程中气缸压力变化的特点,可以将汽油机燃烧过程分为、和三个阶段。 2、汽油机混合气的形成方式可以分为和两种。 3、压缩比是发动机热效率的重要因素。但高压缩比会给汽油机增加的趋 势。

4、对液态燃料,其混合气形成过程包括两个基本阶段: 和。 5、燃油的雾化是指燃油喷入_________________后被粉碎分散为细小液滴的过程。 6、发动机转速增加时,应该相应地____________点火提前角。 7、在汽油机上调节负荷是通过改变节气门开度来调节进入气缸_______________的多 少。 四、简答题 1、P—φ图上画出汽油机正常燃烧,爆震燃烧和早燃的示功图,并简要说明它们的区别? 2. 用示功图说明汽油机点火提前角过大、过小,对燃烧过程和发动机性能的影响。 3. 汽油机燃烧室组织适当的紊流运动的作用有哪些?

发动机原理知识点

1.发动机的定义。 燃料在机器内部燃烧而将化学能转化为热能,再通过气体膨胀做功将其转化为机械能输出的机械设备。 2.发动机发展历经的三个阶段。 ①20世纪70年代之前(提高生产力) 目标:追求良好的动力性能。 措施:提高压缩比,提高转速。 指标:最高车速、加速性能、最大爬坡能力。三个指标均取决于发动机及其它动力装置。 ②20世纪70~80年代(石油危机) 目标:追求良好的经济性能。 措施:降低油耗、增大升功率、减轻比重量。 指标:百公里油耗。 ③20世纪80年代后期(环境污染) 目标:追求良好的环保性能。主要解决排放与噪声问题。 3.常规汽车能源和新型替代能源有哪些,各有何特点? ①汽油机:汽油和空气混合经压缩由火花塞点燃。 ②柴油机:柴油和空气混合经压缩自行着火燃烧。 ③天然气发动机LNG ④液化石油气发动机LPG ⑤酒精发动机 ⑥双燃料、多燃料发动机 4.热力系统基本概念; 在热力学中,将所要研究的对象从周围物体中隔离出来,构成一个热力系统。 系统以外的一切物质,称为外界,热力系统和外界的分界面,称为界面。5.热力学第一定律的实质; 当热能与其它形式的能量相互转换时,能的总量保持不变,只是能量的形式发生了变化—能量守衡。吸收的能量-散失的能量=储存能量的变化量 6.理想气体的四个基本热力过程; ①定容过程:热力过程进行中系统的容积(比容)保持不变的过程。 ②定压过程:热力过程进行中系统的压力保持不变。 ③定温过程:热力过程进行中系统的温度保持不变 ④绝热过程:热力过程进行中系统与外界没有热量的传递 7.四行程发动机的实际工作循环过程; 进气过程、压缩过程、燃烧过程、膨胀过程、排气过程 8.发动机实际循环向理论循环的简化条件; ①忽略进、排气过程(r-a,b-r), 排气放热简化为定容放热过程; ②压缩、膨胀过程(复杂的多变过程)简化为绝热过程; ③把燃料燃烧加热燃气的过程简化成工质从高温热源的吸热过程,分为定容 加热过程(c~z’)和定压加热过程(z’~z); ④假定工质为定比热的理想气体。

汽车发动机原理课后答案

第一章 1简述发动机的实际工作循环过程。 答: 2画出四冲程发动机实际循环的示功图,它与理论示功图有什么不同?说明指示功的概念和意义。 理论循环中假设工质比热容是定值,而实际气体随温度等因素影响会变大,而且实际循环中还存在泄露损失.换气损失燃烧损失等,这些损失的存在,会导致实际循环放热率低于理论循环。指示功时指气缸内完成一个工作循环所得到的有用功Wi,指示功Wi反映了发动机气缸在一个工作循环中所获得的有用功的数量。 4什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数PmeCm. 第二章

1为什么发动机进气门迟后关闭.排气门提前开启?提前与迟后的角度与哪些因素有关/ 答:进气门迟后关闭是为了充分利用高速气流的动能,从而实现在下止点后继续充气,增加进气量。排气门提前开启是由于配气机构惯性力的限制,若在活塞到下止点时才打开排气门,则在排气门开启的初期,开度极小,废弃不能通畅流出,缸内压力来不及下降,在活塞向上回行时形成较大的反压力,增加排气行程所消耗的功。在发动机高速运转时,同样的自由排气时间所相当的曲轴转角增大,为使气缸内废气及时排出,应加大排气提前角。 2四冲程发动机换气过程包括哪几个阶段,这几个阶段时如何界定的? 答:1)自由排气阶段:从排气门打开到气缸压力接近于排气管内压力的这个时期。 强制排气阶段:废气是由活塞上行强制推出的这个时期。 进气过程:进气门开启到关闭这段时期。 气门重叠和燃烧室扫气:由于排气门迟后关闭和进气门提前开启,所以进.排气门同时

汽车发动机原理试题库及答案

一、发动机的性能 一、解释术语 1、指示热效率:是发动机实际循环指示功与消耗燃料的热量的比值. 2、压缩比:气功容积与燃烧室容积之比 3、燃油消耗率:发动机每发出1KW有效功率,在1h内所消耗的燃油质量 4、平均有效压力:单位气缸工作容积所做的有效功 5、有效燃料消耗率:是发动机发出单位有效功率时的耗油量 6、升功率:在标定工况下,发动机每升气缸工作容积说发出的有效功率 7、有效扭矩:曲轴的输出转矩 8、平均指示压力:单位气缸容积所做的指示功 2、示功图:发动机实际循环常用气缸内工质压力P随气缸容积V(或曲轴转角)而变化的曲线 二、选择题 1、通常认为,汽油机的理论循环为( A ) A、定容加热循环 B、等压加热循环

C、混合加热循环 D、多变加热循环 6、实际发动机的膨胀过程是一个多变过程。在膨胀过程中,工质( B ) A、不吸热不放热 B、先吸热后放热 C、先放热后吸热 D、又吸热又放热 2、发动机的整机性能用有效指标表示,因为有效指标以( D ) A、燃料放出的热量为基础 B、气体膨胀的功为基础 C、活塞输出的功率为基础 D、曲轴输出的功率为基础 5、通常认为,高速柴油机的理论循环为( C ) A、定容加热循环 B、定压加热循环 C、混合加热循环 D、多变加热循环 6、实际发动机的压缩过程是一个多变过程。在压缩过程中,工质( B ) A、不吸热不放热 B、先吸热后放热 C、先放热后吸热 D、又吸热又放热

2、发动机工作循环的完善程度用指示指标表示,因为指示指标以( C ) A、燃料具有的热量为基础 B、燃料放出的热量为基础 C、气体对活塞的做功为基础 D、曲轴输出的功率为基础 2、表示循环热效率的参数有( C )。 A、有效热效率 B、混合热效率 C、指示热效率 D、实际热效率 3、发动机理论循环的假定中,假设燃烧是( B )。 A、定容过程 B、加热过程 C、定压过程 D、绝热过程 4、实际发动机的压缩过程是一个( D )。 A、绝热过程 B、吸热过程 C、放热过程 D、多变过程 5、通常认为,高速柴油机的理论循环为( C )加热循环。 A、定容 B、定压 C、混合 D、多变

涡扇发动机工作原理

动力原理: 涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快 (V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。 飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。 现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

《汽车发动机原理》课程考核大纲

《汽车发动机原理》课程考核大纲 《汽车发动机原理》课程组 2010年10月

《汽车发动机原理》课程考核大纲 一、课程的性质与任务 《汽车发动机原理》是本专业的一门专业课。它的任务是使学生掌握发动机工作过程的基本理论和提高性能指标的主要途径,并获得应用理论知识解决实际问题的初步能力;掌握车用发动机的特性和试验方法,为学习后续专业课和今后工作中合理运用发动机打下基础。 二、课程教学内容和考核目标 教学大纲已明确规定了本课程的教学内容、基本要求与考核方法。根据教学大纲规定,按照考核的特点对教学内容和基本要求加以细化,按章节详述如下: 第1章发动机的性能 (一)课程教学内容 1.1 发动机基本理论循环 发动机基本理论循环的建立目的、方法、基本假定、类型和特点;发动机基本理论循环的分析方法与评价指标;基本理论循环的平均压力和循环热效率;循环平均压力和循环热效率的影响因素。1.2 发动机实际循环 发动机的工作过程与实际循环;实际循环的表示方法;进气、压缩、燃烧、膨胀和排气等5个过程;实际循环各过程的起始与终了参数。 实际循环的评价指标——指示指标:动力性指标——指示功、指示功率和平均指示压力等;经济性指标——指示热效率和指示燃油消耗率。 1.3 发动机整机性能 发动机的性能试验的方法、设备与试验过程;发动机的性能的评价指标——有效指标:动力性指标——有效功率、有效扭矩和平均有效压力等;经济性指标——有效热效率和有效燃油消耗率;发动机排放指标与噪声指标;其它性能指标。 1.4 发动机机械损失 发动机机械损失的定义与评价指标,主要是机械损失功率和平均机械损失压力;机械损失的构成及影响因素;发动机机械损失的测量方法与原理:示功图法、倒拖法、灭缸法和油耗线法等;发动机机械损失的测量设备与试验过程。

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

汽车发动机原理课后习题答案

第二章发动机的性能指标 1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化? 答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径 2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力 3.有利于分析比较发动机不同循环方式的经济性和动力性 简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化 2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程 3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。 2.简述发动机的实际工作循环过程。 四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么? 有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。 4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失

形成的原因。 答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换 2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失 3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失 4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。分隔式燃烧室,工质在主副燃烧室之间流进、流出引起节流损失 5.泄露损失活塞环处的泄漏无法避免 5.提高发动机实际工作循环效率的基本途径是什么?可采取哪些措施? 答:减少工质比热容、燃烧不完全及热分解、传热损失、提前排气等带来的损失。措施:提高压缩比、稀释混合气等 6.为什么柴油机的热效率要显著高于汽油机? 柴油机拥有更高的压缩比, 7.什么是发动机的指示指标?主要有哪些? 以工质在气缸内对活塞做功为基础,评定发动机实际工作循环质量的

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

《汽车发动机原理》课程教学大纲

汽车发动机理论》课程教学大纲 课程名称:发动机原理 适用专业:交通运输专业 总学时(学分):48 理论学时:48 实践学时:0 适用对象:交通工程专业 一、说明 (一)课程的性质、任务 《汽车发动机理论》是交通工程专业的专业基础课程,主要内容为汽车发动机性能评价指标、提高性能指标的途径、发动机的基本工作过程(换气过程及混合气形成和燃烧过程)发动机特性等,并介绍排气污染和噪声振动等知识。通过本课程的学习,使学生掌握内燃机理论的基本知识,为提高汽车的应用效率奠定基础,为学生从事相关专业工作打下理论基础。 (二)课程的教学要求 1、掌握内燃机的能量转换以及循环充量的原理和规律,即动力机械的动力输出与能量利用问 题; 2、掌握内燃机的燃烧与排放问题,包括内燃机的燃烧过程、规律与有害排放物及噪声 控制。 3、掌握内燃机应用于汽车动力时具有重要影响的运行特性与性能调控问题。 (三)课程考核办法 课程的考核方式是将理论考试的70%成绩和实验考试的30%成绩记为总成绩。

、讲授内容 第一篇热力工程基础(6) 第二篇动力输出与能量利用 第五章发动机实际循环与评价指标( 6 学时)第一节四冲程发动机的实际循环 一、发动机的实际循环 二、发动机实际循环与理论循环的比较 第二节发动机的指示指标 一、发动机的示功图 二、发动机的指示性能指标 第三节发动机的有效指标 一、动力性指标 二、经济性指标 三、强化指标 第四节机械损失与机械效率 一、机械效率 二、机械损失的测定 三、影响机械效率的主要因素 四、发动机的热平衡 第六章换气过程与循环充量(6 学时) 第一节四冲程发动机的换气过程 一、换气过程 二、换气损失 第二节四冲程发动机的充量系数 一、充量系数

汽车发动机原理课本总结

汽车发动机原理 一、发动机实际循环与理论循环的比较 1.实际工质的影响 理论循环中假设工质比热容是定值,而实际气体比热是随温度上升而增大的,且燃烧后生成CO2、H2O等气体,这些多原子气体的比热又大于空气,这些原因导致循环的最高温度降低。加之循环还存在泄漏,使工质数量减少。实际工质影响引起的损失如图中Wk所示。这些影响使得发动机实际循环效率比理论循环低。 2.换气损失 为了使循环重复进行,必须更换工质,由此而消耗的功率为换气损失。如图中Wr所示。其中,因工质流动时需要克服进、排气系统阻力所消耗的功,成为泵气损失,如图中曲线rab’r 包围的面积所示。因排气门在下止点提前开启而产生的损失,如图中面积W所示。 3.燃烧损失 (1)非瞬时燃烧损失和补燃损失。实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失. (2)不完全燃烧损失。实际循环中会有部分燃料、空气混合不良,部分燃料由于缺氧产生不完全燃烧损失。 (3)在高温下,如不考虑化学不平衡过程,燃料与氧的燃烧化学反应在每一瞬间都处在化学动平衡状态,如2H2O=2H2+O2等,由左向右反应为高温热分解,吸收热量。但在膨胀后期及排气温度较低时,以上各反应向左反应,同时放出热量。上述过程使燃烧放热的总时间拉长,实质上是降低了循环等容度而降低了热效率。 (4)传热损失。实际循环中,汽缸壁和工质之间始终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线而造成的损失。 (5)缸内流动损失。指压缩及燃烧膨胀过程中,由于缸内气流所形成的损失。体现为,在压缩过程中,多消耗压缩功;燃烧膨胀过程中,一部分能量用于克服气流阻力,使作用于活塞上做功的压力减小。 二、充量系数 衡量不同发动机动力性能和进气过程完善程度的重要指标;定义为每缸每循环实际吸入气缸的新鲜空气质量与进气状态下计算充满气缸工作容积的空气质量的比值。 影响因素: 1.进气门关闭时缸内压力Pa 2.进气门关闭时缸内气体温度Ta 3.残余废气系数 4.进排气相位角 5.压缩比 6.进气状状态 提高发动机充量系数的措施 1.降低进气系统阻力 发动机的进气系统是由空气滤清器、进气管、进气道和进气门所组成。减少各段通路对气流的阻力可有效提高充量系数。(1)减少进气门处的流动损失1)进气马赫数M 不超过0.5受气门大小、形状、升程规律、进气相位等因素影响2)减少气门处的流动损失增大气门相对通过面积,提高气门处流量系数以及合理的配气相位是限制M值、提高充量系数的主要方法。增大进气门直径可以扩大气流通路面积;增加气门数目;改进配气凸轮型线,适当增加气门升程,在惯性力容许条件下,使气门开闭尽可能快;改善气门处流体动力性能。(2)减少进气道、进气管和空气滤清器的阻力

电喷发动机工作原理

电喷发动机工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱内,

浸在燃油中。油箱内的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸喷油器,通过控制每次喷油的持续时间来控制喷油量。喷油持续时间愈长,喷油量就愈大。一般每次喷油的持续时间为2~10ms。各缸喷油器每次喷油的开始时刻则由电脑根据安装于离合器壳体上的发动机转速(曲轴位置)传感器测得某一位置信号来控制。这种类型的燃油喷射系统的每个喷油器在发动机每个工作循环中喷油两次,喷油是间断进行的,属于间歇喷射方式 二、电子燃油喷射控制的原理 (一)各种工况控制简介

汽车发动机原理课后习题答案..

第一章发动机的性能 1.简述发动机的实际工作循环过程。 1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。此时进气门开启,排气门关闭,活塞由上止点向下止点移动。2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。压力不断上升,工质受压缩的程度用压缩比表示。3)燃烧过程:期间进排气门关闭,活塞在上止点前后。作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。 3.提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施? 提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。提高工质的绝热指数κ。可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失。⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。⑸优化燃烧室

结构减少缸内流动损失。⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。 4.什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5.什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数P meCm. 6.总结提高发动机动力性能和经济性能的基本途径。 ①增大气缸直径,增加气缸数②增压技术③合理组织燃烧过程④提高充量系数⑤提高转速⑥提高机械效率⑦用二冲程提高升功率。 7.什么是发动机的平均有效压力、油耗率、有效热效率?各有什么意义? 平均有效压力是指发动机单位气缸工作容积所作的有效功。平均有效压力是从最终发动机实际输出转矩的角度来评定气缸工作容积的利用率,是衡量发动机动力性能方面的一个很重要的指标。有效燃油消耗率是单位有效功的耗油量,通常以每千瓦小时有效功消耗的燃料量来表示。有效热效率是实际循环有效功与所消耗的燃料热量之比

《汽车发动机原理与汽车理论》习题集共16页

《汽车发动机原理与 汽车理论》 习题集 (交通学院交通运输工程教研室) 第一章发动机的性能指标 问题 1、发动机的性能指标有哪些?理论循环的简化条件是什么? 2、四行程发动机实际循环的基本组成是什么?实际循环与理论循环的差异有哪些? 3、发动机的指示指标、有效指标和强化指标各如何定义的? 答案 一、主要有动力性能指标,经济性能指标及运转性能指标。简化条件如下:1)假设工质为理想气体,其比热容为定值。比热:使1克物质的温度升高1°c 所吸收的热量。 2)假设工质的压缩与膨胀为绝热等熵过程。熵:不能利用来作功的热量,用热量的变化量除以温度的商来表示。 3)假设工质是在闭口系统中作封闭循环。 4)假设工质燃烧为定压或定容加热,放热为定容放热。

5)假设循环过程为可逆循环。 二、四行程发动机实际循环由进气、压缩、作功和排气四个行程所组成。其 差别由以下几项损失引起。 (1)实际工质影响 理论循环中假设工质比热容是定值,而实际气体比热是随温度的增长而上 升,且燃烧后生成CO2、H2O等多原子气体,这些气体的比热容又大于空气,使循环的最高温度降低。由于实际循环还存在泄露,使工质数量减少,这意味着同 样的加热量,在实际循环中所引起的压力和温度的升高要比理论循环的低得多, W所示。 其结果是循环热效率低,循环所作功减少,如图1-8中K (2)换气损失 燃烧废气的排出和新鲜空气的吸入是使循环重复进行所必不可少的,由此而 W 消耗的功称为换气损失。由于进排气系统中的流动阻力而产生的损失如图中r 所示,换气过程中因排气门在下止点前必要的提前开启而产生的损失如图中面积 W所示。 (3)燃烧损失 1)实际循环中燃烧非瞬时完成,所以喷油或点火在上止点前,并且燃烧还会延 W所示。 续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失,如图中z 2)实际循环中会有部分燃料由于缺氧产生不完全燃烧损失。 3)在高温下部分燃烧产物分解而吸热,即 2CO2+热量?2CO+O2 2H2O+热量?2 H2+O2 使循环的最高温度下降,由此产生燃烧损失。 (4)传热损失 实际循环中,气缸壁(包括气缸套、气缸盖、活塞、活塞环、气门、喷油器 W所示。 等)和工质间自始至终存在着热交换,由此造成损失如图中b 由于上述各项损失的存在,使实际循环热效率低于理论循环。 三、指示指标是以工质在气缸内对活塞作功为基础,用指示功、平均指示压 力和指示功率评定循环的动力性_____即作功能力。用循环热效率及燃油消耗率评 定循环经济性。表1-2简要说明了发动机指示指标的定义及计算方法。

汽车发动机原理名词解释

123发动机理论循环:将非常复杂的实际工作过程加以抽象简化,忽略次要因素后建立的循环模式。 循环热效率:工质所做循环功与循环加热量之比,用以评定循环经济性。 指示热效率:发动机实际循环指示功与所消耗的燃料热量的比值。 有效热效率:实际循环的有效功与所消耗的热量的比值。 指示性能指标:以工质对活塞所作功为计算基准的指标。 有效性能指标:以曲轴对外输出功为计算基准的指标。 指示功率:发动机单位时间内所做的指示功。 有效功率:发动机单位时间内所做的有效功。 机械效率:有效功率与指示功率的比值。 平均指示压力:单位气缸工作容积,在一个循环中输出的指示功。 平均有效压力 me p :单位气缸工作容积,在一个循环中输出的有效功。 有效转矩:由功率输出轴输出的转矩。 指示燃油消耗率:每小时单位指示功所消耗的燃料。 有效燃油消耗率:每小时单位有效功率所消耗的燃料。 指示功:气缸内每循环活塞得到的有用功。 有效功:每循环曲轴输出的单缸功量。 示功图:表示气缸内工质压力随气缸容积或曲轴转角的变化关系的图像。p V -图即 为通常所说示功图, p ?-图又称为展开示功图。 换气过程:包括排气过程(排除缸内残余废气)和进气过程(冲入所需新鲜工质,空气或者可燃混合气)。 配气相位:进、排气门相对于上、下止点早开、晚关的曲轴转角,又称进排气相位。 排气早开角:排气门打开到下止点所对应的曲轴转角。 排气晚关角:上止点到排气门关闭所对应的曲轴转角。 进气早开角:进气门打开到上止点所对应的曲轴转角。 进气晚关角:下止点到进气门关闭所对应的曲轴转角。 气门重叠:上止点附近,进、排气门同时开启着地现象。 扫气作用:新鲜工质进入气缸后与缸内残余废气混合后直接排入排气管中。 排气损失:从排气门提前打开,直到进气行程开始,缸内压力到达大气压力前循环功的损失。 自由排气损失:因排气门提前打开,排气压力线偏离理想循环膨胀线,引起膨胀功的减少。 强制排气损失:活塞将废气推出所消耗的功。 进气损失:由于进气系统的阻力,进气过程的气缸压力低于进气管压力(非增压发动 机中一般设为大气压力),损失的功成为进气损失。 换气损失:进气损失与排气损失之和。 泵气损失:内燃机换气过程中克服进气道阻力所消耗的功和克服排气道阻力所消耗的功的代数和。不包括气流对换气产生的阻力所消耗的功。 充量系数:实际进入气缸内的新鲜空气质量与进气状态下理论充满气缸工作容积的空气质量之比。 进气马赫数M :进气门处气流平均速度与该处声速之比,它是决定气流性质的重要参数。M 反映气体流动对充量系数的影响,是分析充量系数的一个特征数。当M 超过一定数值时,大约在0.5左右,急剧下降。应使M 在最高转速时不超过一定数值,M 受气门大小、形状、生成规律、进气相位等因素影响。 增压比:增压后气体压力与增压前气体压力之比。 增压:利用增压器提高空气或可燃混合气的压力。 增压度:发动机在增压后增长的功率与增压前的功率之比。 4抗爆性:汽油在发动机气缸内燃烧时抵抗爆燃的能力,用辛烷值表示。 干点:汽油蒸发量为100%时的温度。 自然点:柴油在没有外界火源的情况下能自行着火的最低温度。 凝点:柴油失去流动性而开始凝固的温度。 热值:单位量(固体和液体燃料用1kg ,气体燃料用1)的燃料完全燃烧时所发出的热量。当生成的水为液态时,成为高热值,气态时为低热值。无论是汽油机还是柴油机,燃料在气缸中生成的水均为气态,所用热值均为低热值。 理论空气量:1kg 燃料完全燃烧时所需的最少空气量。 过量空气系数:燃油燃烧实际供给的空气量(L )与完全燃烧所需理论空气量()的比值。 空燃比:燃油燃烧时空气流量与燃料流量的比。 5喷油器的流通特性:喷孔流通截面积与针阀升程的关系。 喷射过程:从喷油泵开始供油直到喷油器停止喷油的过程。 供油规律:供油速率随凸轮轴转角(或时间)的变化关系。 喷油规律:喷油速率随凸轮轴转角(或时间)的变化关系。 喷油提前角:燃油喷入气缸的时刻到活塞上止点所经历的曲轴转角。 燃油的雾化:燃油喷入燃烧室内后备粉碎分散为细小液滴的过程。 燃烧放热规律:瞬时放热速率和累积放热百分比随曲轴转角的变化关系。 瞬时放热速率:在燃烧过程中的某一时刻,单位时间内(或曲轴转角内)燃烧的燃油所放出的热量。 累积放热百分比:从燃烧开始到某一时刻为止已经燃烧的燃油与循环供油量的比值。

发动机基本知识总结全集

发动机构造基本原理图解 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 1、发动机总体构造 发动机是一台由多种机构和系统组成的复杂机器。现代汽车发动机的结构形式很多,发动机的具体构造也多种多样,但由于其基本工作原理一致,从总体功能来看,其基本结构大同小异,都是由二大机构和五大系统组成,即:曲柄连杆机构、配气机构、供给系统、冷却系统、润滑系统、起动系统、点火系统(柴油机没有)。我们以桑塔纳2000GSi型轿车装备的AJR型发动机的结构实例来分析发动机的总体构造。

(1) 曲柄连杆机构?曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在做功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

(2) 配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

涡喷发动机的工作原理

1.涡喷发动机的工作原理? 涡喷发动机以空气为介质,进气道将所需的的外界空气以最小的流动损失送到压气机;压气机通过高速旋转的叶片对空气压缩做功,提高空气的压力;空气在燃烧室内和燃油混合燃烧,将燃料化学能转变成热能,生成高温高压燃气;燃气在涡轮内膨胀,将热能转为机械能,驱动涡轮旋转,带动压气机;燃气在喷管内继续膨胀,加速燃气,燃气以较高速度排出,产生推力。 2.涡轮发动机的特征,什么是燃气涡轮发动机的特性?发动机特性分哪几种? 特征:发动机作为一个热机,它将燃料的热能转变为机械能,同时作为一个推进器,它利用所产生的机械能使发动机获得推力。 发动机的特性:燃气涡轮发动机的推力和燃油消耗率随发动机转速、飞行高度和飞行速度的变化规律叫发动机特性。发动机特性分为:保持飞机高度和飞机速度不变的情况下,发动机推力和燃油消耗率随发动机转速的变化规律叫发动机转速特性。在给定的调节规律下,保持发动机的转速和飞机速度不变时,发动机的推力和燃油消耗率随飞机的高度的变化规律叫高度特性。在给定的调节规律下,保持发动机的转速和飞行高度不变时,发动机的推力和燃油消耗量随飞机速度(或马赫数)的变化规律叫速度特性。 3.净推力和总推力 根据牛顿第2,第3定律,气流进入发动机和离开发动机的动量发生变化,产生推力。 净推力:取决于离开发动机的燃气动量与进来的空气动量加进来的燃油动量。净推力还包括喷管出口的静压超过周围空气的静压产生的推力。Fn=Qma(Vj-Va)+Aj(Pj-Pam) 总推力:是指当飞机静止时发动机排气产生的推力,包括排气动量产生的推力和喷口静压和环境空气静压之差产生的附加推力。Fg=Qma(Vj)+Aj(Pj-Pam)。 正常飞行时,压气机、扩压器、燃烧室、排气锥产生向前推力,涡轮、尾喷口产生向后的推力。 4.影响热效率的因素? 热效率表明,在循环中加入的热量有多少变为机械功。影响因素有:加热比(涡轮前燃气总温),压气机增压比,压气机效率和涡轮效率。加热比、压气机效率和涡轮效率增大,热效率也增大。压气机增压比提高,热效率增大,当增压比等于最经济增压比时,热效率最大,继续提高增压比,热效率反而下降。热效率也称做内效率。 5.进气道的作用?什么是进气道总压恢复系数? 一是尽可能多的恢复自由气流的总压并输送该压力到压气机,这就是冲压恢复或压力恢复;二是提供均匀的气流到压气机使压气机有效地工作。进气道出口截面的总压与进气道前方来流的总压比值,叫做进气道总压恢复系数,该系数是小于1的数值,表示进气道的流动损失。 6.进气道冲压比的定义,影响冲压比的因素? 进气道的冲压比是:进气道出口处的总压与远方气流静压的比值。冲压比越大,说明空气在压气机前的冲压压缩程度越大,影响冲压比因素:流动损失,飞行速度和大气温度。(大气密度、高度、发动机转速):当大气温度和飞行速度一定时,流动损失大,则冲压比下降;当大气温度和流动损失一定时,飞行速度越大,则冲压比增加;当飞行速度和流动损失一定时,大气温度上升,则冲压比下降。 7.压气机分哪两种?目前燃气涡轮发动机中常采用哪一种,为什么? 离心式和轴流式。目前燃气涡轮发动机中常采用轴流式压气机。这是因为轴流式压气机具有下述优点:总的增压比高,压气机效率高,单位面积的流通能力高,迎风面积小,阻力小。缺点:单级增压比低,结构复杂 离心式优点:单级增压比高,压气机稳定工作范围宽,结构简单可靠,重量轻,长度短,起动功率小,缺点:流动损失大,效率低,单位面积的流通能力低,迎风面积大,阻力大 8.进口导向叶片的功能是什么?决定进入压气机叶片气流攻角的因素是什么? 为了保证压气机工作稳定,有的在第1级工作叶轮前还有一排不动的叶片称为进口导向叶片。其功能是引导气流的流动方向产生预旋,使气流以合适的方向流入第1级工作叶轮。决定因素是:工作叶轮进口处的绝对速度(包括大小和方向),压气机的转速。 9.简要说明空气在多级压气机中的流动。 基元级的叶栅通道均是扩张形的。在叶轮内,绝对速度增大,相对速度减小。同时,总压、静压和总温、静温都升高;在整流器内,绝对速度减小;静压和静温升高,总压略有下降,总温保持不变。由此可见,空气流过基元级时,不仅在叶轮内受到压缩,而且在整流器内也受到压缩。

相关主题
文本预览
相关文档 最新文档