当前位置:文档之家› 弹性结构频率响应函数的测定

弹性结构频率响应函数的测定

弹性结构频率响应函数的测定
弹性结构频率响应函数的测定

弹性结构频率响应函数的测定

一实验目的

1.掌握用随机激励激振方式,进行机械阻抗测试的仪器组合及使用方法。

2.了解随机激振时的数据处理方法。

3. 测出悬臂梁的频响函数。

二实验原理及方法

激励信号可用以用以下几种方式:

一是快速正弦扫频法。将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频。从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号。

二是脉冲激励。用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间t,t越小则频率范围越大。用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以省掉,并且可以在更接近于实际工作的条件下来测定试件的频率响应函数。

三是宽白噪声激励。白噪声信号和白色光含有同一比率的所有波长的成分相同,在一切频带区域,也具有相等功率成分的那种不规则信号。从而保证了在所分析的频段内的激励信号存在频率。

频率响应函数表明了系统的动态特性,在机械结构中频率响应函数是对结构振动特性的描述,又称为机械阻抗。它可以理论计算也可以通过实验测定。工程上很多问题即便有了计算值往往也离不开实验的方法校核,特别是对于大型复杂结构,实验的方法更显得更重要。

实验装置参见图2试验件为长640mm宽56mm厚8mm悬臂梁,前四阶参考频

率为:

在结构振动实验分析中,通常把一连续弹性系统简化成离散的多自由度系统,上述悬臂梁被等分的划成n 个单元体,近似的认为每个单元体的质量只集中在结点上, 各结点之间均为弹性连接,激励点和测量点被布置在结点上。针对每一个测点系统被简化为单自由度常系数线性系统。若只考虑在输出端加有输入信号线性不相关的噪声干扰时,此系统振动方程在频域表示为:

)()()()(f N f X f H f Y +=

上式乘以输入信号付氏变换的共轭)(*f X ,在样本足够大的情况下,应用统计平均做上式的期望值的运算,可以得到:

)()()(f G f H f G XX YX = 即 ()()()YX XX G f H f G f =

式中: )(f G YX

为输入输出的互谱

)(f G XX 为输入信号的自谱

)(f H 为系统的频率响应函数

三 实验步骤

CF-7200、加速度传感器、信号调理设备、激振器等实验设备连线和实验的结构如图3.1所示。

图3.1频率响应函数的测定实验示意图

激励点已连接上,将CF-7200傅里叶分析仪的输出信号到功率放大器,调节功率放大器的电流输出旋钮,使加速度传感器感应到信号。操作CF-7200频响函数的功能键,观察频响函数的分析结果。逐次改变测点的位置,求出系统的一列频率响应函数H(f),由CF-7200上打印出H(f)的实虚部值。

四实验结果及分析

1 相干函数(未平均)分辨率800HZ 窗口长度8192

图4.1

2 相干函数(平均)分辨率800HZ 窗口长度8192

图4.2

观察图4.1与图4.2,可以发现相干函数在未平均时相干性良好,几乎为1;

平均过后就看不出相干性了。关于相干函数平均后不为1的原因可能有以下几点:①在平均处理中,谱估计有分辨率偏差;②测量过程中,可能会有外界噪声。

3 幅频响应(平均)分辨率800HZ 窗口长度8192

图4.3

观察图4.3,并在表4.1记录出前四阶测量频率,由此可以得出如下结论。

表4.1

从表4.1中可以看到各阶次频率都比参考频率小。由于加速度传感器的有一定重量,所以忽略加速传感器质量来看,总体相差不大。根据频响函数图我们可以找到悬臂梁的1~4阶的固有频率。

4 相频响应(平均)分辨率800HZ 窗口长度8192

图4.4

5 振动实部函数图分辨率800HZ 窗口长度8192

图4.5

从图4.5可知各阶频率下的悬臂梁测试点的振幅大小。

6振动虚部函数图分辨率800HZ 窗口长度8192

图4.6

从图4.6可知当前各阶频率下的悬臂梁测试点振动的方向。

五回答问题

1. 随机激励特点是什么?随机激励激振还可以用于那些方面?

答:随机激励即Random excitation,最早使用的激励技术之一,因为它很容易生成。随机激励在FFT测量的采样时间段内信号永远不是周期的,需要一个窗函数(通常是汉宁窗)来减轻泄漏的影响。即使加了窗函数,在测量结果的共振峰上,频响测量结果仍然受到泄漏的影响。在本实验中,随机激励是给悬臂梁施加的脉冲力,在激振力的作用下产生自由振动,激振频率包含一定频率以下的所有频率。因此,可以看到悬臂梁在不同频率下的振动状态。

随机激励激振可用于飞行器结构颤振损伤检测、火箭推进工具有效负载可靠性分析、发动机叶片固有频率的测定等多个方面。

2. 对于大型工件如车床床身、汽轮机轴等能否采用随机激励?

答:不可以,一般大型器件固有频率都比较小,而且激振时所需要的激振力比较大,随机激振器产生的激振力有限。对于大型器件常采用脉冲激振,时间短,激振力大,瞬时产生能量足以让系统产生响应。例如,车床振动模态试验,需要用专门的激振器对车床进行激振。

3. 在实际的工程测试中,怎样消除环境带来的低频或高频振动的影响?

答:

(1)在实验环境实施电磁屏蔽保护措施,切断干扰源通过耦合途径对敏感设备进行干扰。如屏蔽导线连接,合理的接地,电气隔离等一系列电磁兼容性控制措施。

(2)在干扰振动频率已知的情况下,可以利用软件设置上下限频率,滤除掉高频、低频干扰信号,来减轻低频或高频振动的影响。

(3)分析由环境带来的低频或高频振动的影响,并从设计分析源头采取相应的措施消除这些影响。

各种谱计算,频响函数,传递率

各种谱计算,频响函数,传递率 阅读:22802006-05-25 22:01 A.信号与谱的分类 由于时域信号有不同的分类, 变换后对应的频域也有不同的谱 信号可分为模拟(连续)信号和数字(离散)信号, 连续信号变换后称为谱密度, 离散信号变换 后称为谱. 连续信号又可分为绝对可积,平方可积(能量有限),均方可积(功率有限) 绝对可积信号有傅里叶谱(线性谱)和傅里叶谱密度(线性谱密度),如时域信号单位为电压V, 则前者单位为V,后者单位为V/Hz. 均方可积信号有功率谱PS(单位为V2)和功率谱密度PSD(单位为V2/ Hz.). 平方可积信号有能量谱密度ESD(单位为V2 s / Hz.). 注1 平方量称为功率,平方量乘秒称为能量,谱分量除以频率称为谱密度. 注2 功率谱密度另一定义(离散信号的功率谱密度)见下述, 连续信号的功率谱密度. 为连续(光滑)曲线, 离散信号的功率谱密度为不连续的阶梯形.. 注3 随机信号求功率谱密度时为减少方差,可采用平均,重叠和加窗处理(Welch法). 数字信号又可分为绝对可和,平方可和,均方可和. B.各种谱计算 1. 线性谱Linear Spectrum: 对时域离散信号作DFT(离散傅里叶变换)得到, 采用方法为FFT(快速傅里叶变换)法.X(f)=FFT(x(t)) 2. 自功率谱APS=Auto Power Spectrum: 离散信号的线性谱乘其共轭线性谱 APS(f)=X(f)*conj(X(f)), conj=conjugate共轭(实部不变,虚部变符号). 3. 互功率谱CPS=Cross Power Spectrum::x(t)的线性谱乘y(t)的共轭线性谱 互功率谱是复数,可表示为幅值和相位或实部和虚部等. CPS(f)=X(f) *conj(Y(f)) Y(f)=FFT(y(t)) 4. (自)功率谱密度PSD(=Power Spectrum Density): PSD(f)=APS(f)/Δf Δf—频率分辨率(Hz), 自功率谱密度与自相关函数成傅立叶对应关系 故功率谱密度也称为规一化的功率谱. 5. 互功率谱密度CSD=CPS(f)/Δf A.频响函数FRF, 传递率 A1.频响函数.FRF为响应的傅里叶变换与力的傅里叶变换之比或力和响应的互谱与力的自谱之比后者可通过平均减少噪声,故较常用. H(f)=X(f ) / F(f)=X(f)*conj(F(f)) / F(f)*conj(F(f))=CPS / APS. A2. 频响函数有三种表达形式 频响函数表达成分子多项式与分母多项式(特征多项式)之比,也称有理分式. (两多项式求根后) 频响函数表达成极点,零点和增益ZPK形式. 频响函数表达成部分分式,也称极点留数形式,( 部分分式的分子项称为留数.), 例如:最常见的单自由度(位移)频响函数H(ω)=X(ω)/F(ω)

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

第七章_频响函数的估计

7. 频响函数的估计(相干分析) 7.1. SISO 系统的频响函数及其估计 对于SISO 系统,其频响函数的估计有很多计算方法,主要的有三种估计式。在没有噪声污染的情况下,它们的估计是等价的。但是实际上,由于不可避免的存在噪声,三种估计有所差异。 本节讨论在主要的三种噪声污染下,三种传统估计式与真值之间的误差。 7.1.1. 随机激励下的频响函数 考虑一个SISO 时不变线性系统,其频率响应函数为()ωH 。设随机输入和响应信号分别为)(t x 和)(t y ,其傅立叶变换分别为)(ωX 和)(ωY ,则有 ()()()ωωωX H Y = 上式两端乘以()ω*X ,取时间平均及集合平均,并注意()ωH 与平均无关,则 ()()[]()()()[] ωωωωω**1 lim 1lim X X T H X Y T T T ∞→∞→= 即 ()()()ωωωx xy S H S = 如果()ωx S 不为零,则可得系统的频响函数的第一种计算式 ()()() ωωωx xy S S H = 1 同样,如果在系统输入/出频谱式两端乘以()ω*Y ,取时间平均和集合平均,得 ()()()ωωωyx y S H S = 如果()ωyx S 不为零,则可得系统的频响函数的第二种计算式 ()()() ωωωyx y S S H = 2 将系统输入/出频谱式两端取共轭,得

()()()ωωω***X H Y = 乘以原输入/出频谱式,并去时间平均和集合平均,得 ()()()ωωωx y S H S 2 = 可得系统的频响函数的幅值计算式 ()()() ωωωx y a S S H = 2 7.1.2. 频响函数的估计方法 考虑一个SISO 时不变线性系统,其频率响应函数为()ωH 。设系统的实际输入和响应信号分别为)(t u 和)(t v ,其傅立叶变换分别为)(ωU 和)(ωV ,它们的测量信号分别为)(t x 和)(t y ,其傅立叶变换分别为)(ωX 和)(ωY 。 (1) 输出端噪声的影响 若只有输出端受到噪声信号)(t n 的污染,并设它与系统的)(t u 和)(t v 无关。则有 ()()t u t x = ()()ωωU X = ()()()t n t v t y += ()()()ωωωN V Y +=

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

频响函数用于转子振动信号诊断

A frequency response function-based structural damage identi?cation method Usik Lee *,Jinho Shin Department of Mechanical Engineering,Inha University,253Yonghyun-Dong,Nam-Ku,Incheon 402-751,South Korea Received 9March 2001;accepted 9October 2001 Abstract This paper introduces an frequency response function (FRF)-based structural damage identi?cation method (SDIM)for beam structures.The damages within a beam structure are characterized by introducing a damage distribution function.It is shown that damages may induce the coupling between vibration modes.The e?ects of the damage-induced coupling of vibration modes and the higher vibration modes omitted in the analysis on the accuracy of the predicted vibration characteristics of damaged beams are numerically investigated.In the present SDIM,two feasible strategies are introduced to setup a well-posed damage identi?cation problem.The ?rst strategy is to obtain as many equations as possible from measured FRFs by varying excitation frequency as well as response measurement point.The second strategy is to reduce the domain of problem,which can be realized by the use of reduced-domain method in-troduced in this study.The feasibility of the present SDIM is veri?ed through some numerically simulated damage identi?cation tests.ó2002Elsevier Science Ltd.All rights reserved. Keywords:Structural damage;Damage identi?cation;Beams;Frequency response function;Damage-induced modal coupling;Reduced-domain method 1.Introduction Existence of structural damages within a structure leads to the changes in dynamic characteristics of the structure such as the vibration responses,natural fre-quencies,mode shapes,and the modal dampings.Therefore,the changes in dynamic characteristics of a structure can be used in turn to detect,locate and quantify the structural damages generated within the structure.In the literature,there have been appeared a variety of structural damage identi?cation methods (SDIM),and the extensive reviews on the subject can be found in Refs.[1–3]. The ?nite element model (FEM)update techniques have been proposed in the literature [4–9].As a draw- back of FEM-update techniques,the requirement of reducing FEM degrees of freedom or extending the measured modal parameters may result in the loss of physical interpretability and the errors due to the sti?-ness di?usion that smears the damage-induced localized changes in sti?ness matrix into the entire sti?ness matrix.Thus,various experimental-data-based SDIM have been proposed in the literature as the alternatives to the FEM-update techniques. The experimental-data-based SDIM depends on the type of data used to detect,locate,and/or quantify structural damages.They include the changes in modal data [10–18],the strain energy [19,20],the transfer function parameters [21],the ?exibility matrix [22,23],the residual forces [24,25],the wave characteristics [26],the mechanical impedances [27,28],and the frequency response functions (FRFs)[29–31].Most of existing modal-data-based SDIM have been derived from FEM model-based eigenvalue problems. As discussed by Banks et al.[32],the modal-data-based SDIM have some shortcomings.First,the modal * Corresponding author.Tel.:+82-32-860-7318;fax:+82-32-866-1434. E-mail address:ulee@inha.ac.kr (U.Lee). 0045-7949/02/$-see front matter ó2002Elsevier Science Ltd.All rights reserved.PII:S 0045-7949(01)00170-5

频谱分析仪的响应函数

什么是频率响应函数 动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。这也称为网络分析,系统的输入和输出同时测量。通过这些多通道测量,分析仪可以测量系统如何“改变”输入。一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。 宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被广泛地用作激励信号。图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。 在各种激励条件下,对UUT系统的特性进行了实验测量。这些特征包括:频率响应函数(FRF),通过以下参量描述: 增益频率函数。相位频率函数。共振频率,阻尼因素,总谐波失真,非线性。 利用宽带随机激励的FFT、交叉功率谱法测量频率响应。宽带激励可以是高斯分布的真随机噪声信号,也可以是一个伪随机信号,其振幅分布可以由用户来

定义。宽带这一术语可能具有误导性,因为一个好的实现的随机激励信号应该是频带有限的,并由分析频率范围的上限控制。也就是说,激励不应该激发高于测量仪器所能测量的频率。随机发生器只产生频宽在分析频率范围内随机信号。这也将把激发能量集中在有用的频率范围,以提高测试动态范围。 宽带随机激励的优点是它能在短时间内激发宽频段,因此总测试时间较短。宽带激励的缺点是其频率能量在短时间内广泛传播。每个频率点激发的能量贡献远小于总信号能量(大概是-30到-50dB小于总数)。即使对于频率响应函数(FRF)估计有一个大的平均数字,宽带信号也不能有效地测量UUT的极端动态特性。 扫频正弦测量,优化了每个频率点的测量值。由于激励信号是一个正弦波,在某一时刻其所有的能量都集中在一个频率上,改进了宽带激励中的动态范围不足的缺点。此外,如果频率响应幅值大小下降,响应的跟踪滤波器可以帮助接收到非常小的正弦信号。只要优化每个频率的输入范围,就可以将测量的动态范围扩展到150分贝以上。 频率响应函数的应用 频率响应函数的应用很广,其中测试试件的固有频率是基础应用,可以有效的避免共振频率。试件由于材质、材料属性、形状的不同会影响自身刚度和质量。它的固有频率只受刚度分布和质量分布的影响,阻尼对固有频率的影响有限。质量增大固有频率必然降低,刚度增大固有频率必然增大。 理论上讲,试件有多阶固有频率。在二维频谱图中,并不是所有的峰值对应的都是固有频率,因为有可能是激励频率或是它的倍频。因此通常通过测量频响

什么是频率响应函数

动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。这也称为网络分析,系统的输入和输出同时测量。通过这些多通道测量,分析仪可以测量系统如何“改变”输入。一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。 宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被广泛地用作激励信号。图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。 在各种激励条件下,对UUT系统的特性进行了实验测量。这些特征包括:频率响应函数(FRF),通过以下参量描述: 增益频率函数。相位频率函数。共振频率,阻尼因素,总谐波失真,非线性。 利用宽带随机激励的FFT、交叉功率谱法测量频率响应。宽带激励可以是高斯分布的真随机噪声信号,也可以是一个伪随机信号,其振幅分布可以由用户来定义。宽带这一术语可能具有误导性,因为一个好的实现的随机激励信号应该是频带有限的,并由分析频率范围的上限控制。也就是说,激励不应该激发高于测

量仪器所能测量的频率。随机发生器只产生频宽在分析频率范围内随机信号。这也将把激发能量集中在有用的频率范围,以提高测试动态范围。 宽带随机激励的优点是它能在短时间内激发宽频段,因此总测试时间较短。宽带激励的缺点是其频率能量在短时间内广泛传播。每个频率点激发的能量贡献远小于总信号能量(大概是-30到-50dB小于总数)。即使对于频率响应函数(FRF)估计有一个大的平均数字,宽带信号也不能有效地测量UUT的极端动态特性。 扫频正弦测量,优化了每个频率点的测量值。由于激励信号是一个正弦波,在某一时刻其所有的能量都集中在一个频率上,改进了宽带激励中的动态范围不足的缺点。此外,如果频率响应幅值大小下降,响应的跟踪滤波器可以帮助接收到非常小的正弦信号。只要优化每个频率的输入范围,就可以将测量的动态范围扩展到150分贝以上。 频率响应函数的应用很广,其中测试试件的固有频率是基础应用,可以有效的避免共振频率。试件由于材质、材料属性、形状的不同会影响自身刚度和质量。它的固有频率只受刚度分布和质量分布的影响,阻尼对固有频率的影响有限。质量增大固有频率必然降低,刚度增大固有频率必然增大。 理论上讲,试件有多阶固有频率。在二维频谱图中,并不是所有的峰值对应的都是固有频率,因为有可能是激励频率或是它的倍频。因此通常通过测量频响函数的方式来测量固有频率,频响函数对应的峰值都是系统的固有频率。多数情况下,我们只关心低阶或特定阶固有频率。 常用两种方法测试频率响应函数,锤击法和正弦扫频法。

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析

目录 一.频率响应的基本概念 (2) 1. 概念 (2) 2. 研究频率响应的意义 (2) 3. 幅频特性和相频特性 (2) 4. 放大器产生截频的主要原因 (3) 二.频率响应的分析方法 (3) 1. 电路的传输函数 (3) 2. 频率响应的波特图绘制 (4) (1)概念 (4) (2)图形特点 (4) (3)四种零、极点情况 (4) (4)具体步骤 (6) (5)举例 (7) 三.单级放大电路频率响应 (7) 1.共射放大电路的频率响应 (7) 2.共基放大电路的频率响应 (9) 四.多级放大电路频响 (10) 1.共射一共基电路的频率响应 (10) (1)低频响应 (11) (2)高频响应 (12) 2.共集一共基电路的频率响应 (13) 3.共射—共集电路级联 (14) 五.结束语 (14)

一.频率响应的基本概念 1.概念 我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。 2.研究频率响应的意义 通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。例如输入信号i u 为方波,s U 为方波的幅度,T 是周期, 0/2ωπ=T ,用傅里叶级数展开,得...)5sin 5 1 3sin 31(sin 22000++++= t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。电容C 对K 次谐波的复阻抗是C jK 0/1ω,那么,放大电路对各次谐波的放大倍数相同吗?放大电路总的输出信号能够再现输入信号的变化规律吗?也就是放大电路能够不失真地放大输入信号吗?为此,我们要研究频率响应。 3.幅频特性和相频特性 幅频特性:放大电路的幅值|A|和频率f(或角频率ω)之间的关系曲线,称为幅频特性曲线。由于增益是频率的函数,因此增益用A (jf )或A (ωj )来表示。在中频段增益根本不随频率而变化,我们称中频段的增益为中频增益。在中频增益段的左、右两边,随着频率的减小或增加,增益都要下降,分别称为低频增益段和高频增益段。通常把增益下降到中频增益的0.707倍(即3dB )处所对应的频率称为放大电路的低频截频(也称下限频率)L f 和高频截频(也称上限频率)H f ,把L H f f BW -=称为放大器的带宽。 相频特性:放大电路的相移?和频率f(或角频率ω)之间的关系曲线,称为相频特性曲线。

弹性结构频率响应函数的测定

弹性结构频率响应函数的测定 一实验目的 1.掌握用随机激励激振方式,进行机械阻抗测试的仪器组合及使用方法。 2.了解随机激振时的数据处理方法。 3. 测出悬臂梁的频响函数。 二实验原理及方法 激励信号可用以用以下几种方式: 一是快速正弦扫频法。将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频。从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号。 二是脉冲激励。用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间t,t越小则频率范围越大。用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以省掉,并且可以在更接近于实际工作的条件下来测定试件的频率响应函数。 三是宽白噪声激励。白噪声信号和白色光含有同一比率的所有波长的成分相同,在一切频带区域,也具有相等功率成分的那种不规则信号。从而保证了在所分析的频段内的激励信号存在频率。 频率响应函数表明了系统的动态特性,在机械结构中频率响应函数是对结构振动特性的描述,又称为机械阻抗。它可以理论计算也可以通过实验测定。工程上很多问题即便有了计算值往往也离不开实验的方法校核,特别是对于大型复杂结构,实验的方法更显得更重要。 实验装置参见图2试验件为长640mm宽56mm厚8mm悬臂梁,前四阶参考频

率为: 在结构振动实验分析中,通常把一连续弹性系统简化成离散的多自由度系统,上述悬臂梁被等分的划成n 个单元体,近似的认为每个单元体的质量只集中在结点上, 各结点之间均为弹性连接,激励点和测量点被布置在结点上。针对每一个测点系统被简化为单自由度常系数线性系统。若只考虑在输出端加有输入信号线性不相关的噪声干扰时,此系统振动方程在频域表示为: )()()()(f N f X f H f Y += 上式乘以输入信号付氏变换的共轭)(*f X ,在样本足够大的情况下,应用统计平均做上式的期望值的运算,可以得到: )()()(f G f H f G XX YX = 即 ()()()YX XX G f H f G f = 式中: )(f G YX 为输入输出的互谱 )(f G XX 为输入信号的自谱 )(f H 为系统的频率响应函数 三 实验步骤 CF-7200、加速度传感器、信号调理设备、激振器等实验设备连线和实验的结构如图3.1所示。

VIBRO_1_DIRECT_simulations-ACTRAN振动声学直接频响分析理论

Vibro-Acoustic Simulations
ACTRAN Training – VIBRO
Copyright Free Field Technologies

Introduction
Pre-requisites - before going through this presentation, the reader should have read and understood the following presentations:
1_BASICS_General_Program_Organization.pdf; Workshop_BASICS_0_Edit_an_ACTRAN_input_file.pdf.
These slides present the basics materials, components and boundary conditions involved in a structural simulation in physical coordinates.
2
Copyright Free Field Technologies

Content
The structural Materials
The visco-elastic and shell Component
The equivalent beam Component and Material
The discrete Component and Material
The Boundary Conditions
Meshing Criteria
3
Copyright Free Field Technologies

[频响] 频响分析方法总结

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal 前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。 直接法在定义边界条件时通过选项*boundary的amplitude参数来引用频变幅值,但这里默认的好像是位移,如果我有的是加速度或者速度数据,想用直接法进行分析应该如何设定呢,希望知道的大神能相告。 模态法和子空间法不能使用*boundary选项定义边界条件的运动,而只能通过选项*base motion来定义边界条件的运动。

频响分析

radioss频响分析 材料 属性T=*** 1.loadcollector spc DOF 123456 钻柱 井壁 2. A DOF1=2.54mm DAREA DAREA 载荷激励 SPCD 强制位移、速度激励、加速度激励 如果是SPCD,则激励处还需添加相应自由度的SPC约束 3. B card image=TABLED1 x(1)=0,y(1)=1,x(2)=1000,y(2)=1 如果是激励曲线,则从utility——>table creat中导入 4. OMEGA card image=FREQi 勾选FREQ1,F1=20,DF=20,NDF=49 5. RLOAD2card image=RLOAD2 EXCITED——>A TB——>B TP——>φ DELAY——>τ DPHASE——>θ TYPE=LOAD 如果有好几个载荷,则用DLOAD组合 6.loadstep type=freq.resp(direct) SPC——>SPC DLOAD——>RLOAD2 FREQ——>OMEGA 7.定义set type=SET_GRID 6.control cards Displacements format=HG, DISP_FORM=PHASE, DISP_OPT=SID PARAM coupmass:yes G=0.06 OUTPUT keyword=HGFREQ FREQ=ALL 6.loadstep type=freq.resp(direct) 6.loadstep type=freq.resp(direct) 直接频响 模态频响还需设置EIGRL卡片 汽车白车身 输入:白车身与底盘相连的点 输出:方向盘,底板、座椅…

离散系统的频率响应分析和零、极点分布

实验2 离散系统的频率响应分析和零、极点分布 一、实验目的 通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。 二、基本原理 离散系统的时域方程为 其变换域分析方法如下: 频域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [ω ω ωj j j m e H e X e Y m n h m x n h n x n y= ? - = * =∑∞ -∞ = 系统的频率响应为 ω ω ω ω ω ω ω jN N j jM M j j j j e d e d d e p e p p e D e p e H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 Z域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [z H z X z Y m n h m x n h n x n y m = ? - = * =∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 1 1 分解因式 ∏- ∏- = ∑ ∑ = = - = - = - = - N i i M i i N i i k M i i k z z K z d z p z H 1 1 1 1 ) 1( ) 1( ) ( λ ξ ,其中i ξ 和i λ 称为零、极点。 在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane (num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 三、实验内容及要求 一个LTI离散时间系统的输入输出差分方程为 y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1) (1)编程求出此系统的单位冲激响应序列,并画出其波形。 (2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4),编程求此系统输出序列y(n),并画出其波形。 (3)编程得到系统频响的幅度响应和相位响应,并画图。 (4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。 解答:

频率响应函数与数字滤波实验

基于LabVIEW 的频率响应函数与数字滤波及相关分 析的研究 Research of frequency response function and digital filter and related analysis base on LabVIEW 张景生 10010302005 摘要:虚拟仪器是一种以计算机为载体的自动化测量与控制系统,用来对现实世界的各种物理量进行测量或者对物理过程进行控制。频率响应函数是描述测试系统动态特性的重要参数,通过频率响应函数进行频率分析也是进行数字滤波器设计的重要方法。滤波是信号处理的一项重要内容。广义的滤波是在被测试的信号中选取感兴趣的那一部分信号。相关是指两个变量之间的线性关系。相关分析是分析两个信号之间关系或一个信号在一定位移前后之间关系的重要工具。本文基于虚拟仪器LabVIEW 来研究频率响应函数与数字滤波及相关分析。 关键词:虚拟仪器LabVIEW 、频率响应函数与数字滤波、相关分析 一、虚拟仪器LabVIEW 简介 虚拟仪器是一种以计算机为载体的自动化测量与控制系统,用来对现实世界的各种物理量进行测量或者对物理过程进行控制。目前最流行的虚拟仪器应用程序的开发平台就是美国National Instrument (简称NI )公司的LabVIEW 。LabVIEW 是Laboratory Virtual Instrument Engineering Workbench (实验室虚拟仪器工程平台)的首字母组合。 二、频率响应函数与数字滤波 2.1 频率响应函数 频率响应函数是描述测试系统动态特性的重要参数,通过频率响应函数进行频率分析也是进行数字滤波器设计的重要方法。 频率响应函数是系统输出与输入的傅里叶变换之比 () ()()Y H j X ωωω= 实验时用冲激函数作为系统激励信号,用各种数字滤波器作为测试系统。冲激函数具有无限宽广的频谱,用冲激函数做激励信号相当于对测试系统输入所有频率的信号,系统必然有对应的输出。计算出系统输出与输入的傅里叶变换之比,就是系统的频率响应函数。 2.2 数字滤波 滤波是信号处理的一项重要内容。广义的滤波是在被测试的信号中选取感兴趣的那一部分信号。它包括利用电的、机械的和数学的等技术手段滤除信号的噪声或虚假信号。工程测

第3章频率响应分析

第 3章 频率响应分析 3.1 动力学分析中的矩阵组集 l 在瞬态响应分析、 频率响应分析、 复模态分析中, MSC Nastran 提供了两种计算方法: 直接法和模态法。 l 根据动力分析类型和计算方法的不同,动力学矩阵组集也不一样。 3.1.1 阻尼矩阵 1.阻尼概述 l 阻尼反映结构内部能量的耗散。 l 阻尼产生的机理。 ? 粘性效应(如粘性阻尼器、振动减振器引起) ? 外摩擦(如结构连接处的相对滑动) ? 内摩擦(取决于不同的材料特性) ? 结构非线性(如塑性效应) l 阻尼的模拟。 ? 粘性阻尼力 v f bu = & ? 结构阻尼力 s f igku = 其中: 1 i =- ;g = 结构阻尼系数。 2.结构阻尼与粘性阻尼 假设结构简谐响应为: e i t u u w = 对粘性阻尼: 2 2 () (e )(e )e () e e e () i t i t i t i t i t i t mu bu ku p t m u b i u ku p t mu ib u ku p t w w w w w w w w w w ++= -++= -++= &&& 对结构阻尼: 2 2 (1)() (e )(1)e () e e e () i t i t i t i t i t mu ig ku p t m u ig ku p t mu igku ku p t w w w w w w w ++= -++= -++= && 可以得到

频率响应分析 第 3 章 57 gk gk b b w w =?= 如果 n k m w w == 那么 n n gk b g m w w = = 但因为 2 c n b m w = 得到 2 c b g b z == 其中: z =临界阻尼比率(临界阻尼百分比) ; 1 g Q = =结构阻尼因子;Q =品质因子或放大因子。 结论: l 粘性阻尼与速度成比例。 l 结构阻尼与位移成比例。 l 临界阻尼比 / cr b b z = 。 l 品质因子与能量耗散成反比。 l 在共振点( n w w @ )有如下关系: /2 1/(2) 1/ g Q Q g z z = = = 3.阻尼输入 (1)结构阻尼。 MATi 卡片: 1 2 3 4 5 6 7 8 9 10 MA T1 MID E G NU RHO A TREF GE MA T1 2 30.0E6 0.3 0.10 PARAM,G,factor (Default = 0.0) 用结构阻尼系数乘整个系统刚度矩阵。 PARAM,W3,factor (Default = 0.0) 将结构阻尼转化为等效粘性阻尼。 PARAM,W4,factor (Default = 0.0) 将单元结构阻尼转化为等效粘性阻尼。

相关主题
文本预览
相关文档 最新文档