当前位置:文档之家› 插值法及应用研究

插值法及应用研究

插值法及应用研究
插值法及应用研究

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

二次插值算法

二次插值法亦是用于一元函数在确定的初始区间内搜索极小点的一种方法。它属于曲线拟合方法的范畴。 一、基本原理 在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。 常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。 假定目标函数在初始搜索区间中有三点、和 ,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式 (1) 式中、、为待定系数。

图1 根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得 (2) 为求插值多项式的极小点,可令其一阶导数为零,即 (3) 解式(3)即求得插值函数的极小点(4) 式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得: (5)

(6)将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式: (7)把取作区间内的另一个计算点,比较与两点函数值的大小,在保持两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述 方法进行三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为 的近似极小值点。上述求极值点的方法称为三点二次插值法。 为便于计算,可将式(7)改写为 (8) 式中: (9) (10) 二、迭代过程及算法框图 (1)确定初始插值结点 通常取初始搜索区间的两端点及中点为,, 。计算函数值,,,构成三个初始插值结点、、。

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录 一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 S6、按照不同方法进行空间插值,并比较各自优劣 打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

插值法在图像处理中的运用要点

插值方法在图像处理中的应用 作者: 专业姓名学号 控制工程陈龙斌 控制工程陈少峰 控制工程殷文龙 摘要 本文介绍了插值方法在图像处理中的应用。介绍了典型的最近邻插值、双线性插值、双三次插值、双信道插值、分形插值的原理。以分形插值为重点,在图像放大领域用MATLAB进行仿真,并与其它方法的结果做了比对。指出了各种方法的利弊,期待更进一步的研究拓展新的算法以及改进现有算法。

一、引言 人类通过感觉器官从客观世界获取信息,而其中一半以上的信息都是通过视觉获得的。图像作为人类视觉信息传递的主要媒介,具有声音、语言、文字等形式无法比拟的优势,给人以具体、直观的物体形象。在数字化信息时代,图像处理已经成为重要的数据处理类型。数字图像比之传统的模拟图像处理有着不可比拟的优势。一般采用计算机处理或者硬件处理,处理的内容丰富,精度高,变通能力强,可进行非线性处理。但是处理速度就会有所不足。图像处理的主要内容有:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解等。以上这些图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分。 日常生活中,越来越多的领域需要高分辨率图像,采用图像插值技术来提高数字图像的分辨率和清晰度,从软件方面进行改进就具有十分重要的实用价值。多媒体通信在现代网络传输中扮演重要角色,因此插值放大提高图像分辨率是一个非常重要的问题。此外,图像变换被广泛用于遥感图像的几何校正、医学成像以及电影、电视和媒体广告等影像特技处理中。在进行图像的一些几何变换时,通常都会出现输出像素坐标和输入栅格不重合的现象,也必须要用到图像插值。图像插值是图像处理中图像重采样过程中的重要组成部分,而重采样过程广泛应用于改善图像质量、进行有损压缩等,因而研究图像插值具有十分重要的理论意义和实用价值。 图像插值是一个数据再生过程。由原始图像数据再生出具有更高分辨率的图像数据。分为图像内插值和图像间插值。前者指将一幅较低分辨率的图像再生出一幅较高分辨率的图像。后者指在若干幅图像之间再生出几幅新的图像。插值过程就是确定某个函数在两个采样点之间的数值时采用的运算过程.通常是利用曲线拟合的方法进行插值算法,通过离散的输入采样点建立一个连续函数,用这个重建的函数求出任意位置处的函数值,这个过程可看作是采样的逆过程。 20世纪40年代末,香农提出了信息论,根据采样定理,若对采样值用sinc函数进行插值,则可准确地恢复原函数,于是sinc函数被接受为插值函数,也称为理想插值函数。理想插值函数有两个缺点: (1)它虽然对带限信号可以进行无错插值,但实际中带限信号只是一小部分信号。 (2)sinc函数的支撑是无限的,而没有函数既是带限的,又是紧支撑的。 为了解决这个问题,经典的办法是刚窗函数截断sinc函数,这个窗函数必须在0剑l 之间为正数,在l到2之间为负数。sinc函数对应的是无限冲激响应,不适于有限冲激相应来进行局部插值。对数字图像来说,对图像进行插值也称为图像的重采样。它分为两个步骤:将离散图像插值为连续图像以及对插值结果图像进行采样。 经典的图像插值算法是利用邻近像素点灰度值的加权平均值来计算未知像素点处的灰度值,而这种加权平均一般表现表现为信号的离散采样值与插值基函数之间的二维卷积。这种基于模型的加权平均的图像插值方法统称为线性方法。经典的插值方法有:最近邻域法,双线性插值,双三次B样条插值,双三次样条插值,sinc函数等。线性方法,它们一个共同点就是,所有这些基函数均是低通滤波器,对数据中的高频信息都具有滤除和抑制效应,因

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

插值法的原理

《财务管理》教学中插值法的快速理解和掌握 摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种情况介绍其原理。 一、已知系数F和计息期n。求利息率i

这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F略小的系数记作F,其对应的利息率为i。

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

伯努利方程原理以及在实际生活中的运用

伯努利方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 伯努利方程 p+ρgh+(1/2)*ρv2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据伯努利方程在水平流管中有 p+(1/2)*ρv2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

反证法在数学中的应用

论文编码:O1-0 摘要 反证法是数学证明方法中很重要的一部分,本文主要介绍了反证法再出等数学中的应用。首先阐述反证法的概念、逻辑根据和一般步骤。然后讨论了反正法的适用范围,这也是本文的重点内容,任何一种方法都要以应用为首要任务,我们学习它、了解它、掌握它,学会用反证法解决更多的实际问题才是我们的目的。其次研究了反证法的教学,反证法的这种数学思想在课堂教学中的渗透是很有必要的。最后讨论了应用反证法应注意的问题,真正用好反证法并非一件易事,所以我们的研究学习是很有必要的。 关键词:反证法逻辑基础教学方法适用范围;

Abstract Apagoge is an important part of math demonstration.This article introduces the application of Apagoge in elementary math.First,expounds the Apagoge's concept,logic ground and the general steps.Next,discusses the range of application,which is highlighted.Whatever methods we use,we should base on application.So we must study the method and use it to help us solve many practical problem.Then,studies how to teach the Apagoge's thinking into people's minds in the https://www.doczj.com/doc/7116518733.html,st,talks about the problem which should pay attention to in Apagoge's application.It is difficult to make a good use of the Apagoge,so we are supposed to study continuously. Keywords:Apagoge ;Logical basis;Teaching methods; Scope;

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

伯努利原理的应用

应用举例⒈ 飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 应用举例⒉ 喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。 应用举例⒊ 汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 应用举例⒋ 球类比赛中的"旋转球"具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。 应用举例⒌ 表示乒乓球的上旋球,转动轴垂直于球飞行的方向且与台面平行,球向逆时针方向旋转。在相同的条件下,上旋球比不转球的飞行弧度要低下旋球正好相反,球要向反方向旋转,受到向上的力,比不转球的飞行弧度要高。 应用举例6. 环保空调就是这个原理,一面进风,一面进水,来保持室内的温度的,环保空调又叫“水帘空调”. 应用举例7. 列车候车为啥要设定等候限距线? 列车进站的时候速度很快,车厢附近的空气被带着也会快起来,越靠近车厢的空气流速越快,越远的地方空气流速越慢。还是根据伯努利原理,靠近车厢的地方压力小,远离车厢的地方压力大,二者之间有压力差,因此,在站台上候车,如果你靠轨道太近,就会感觉后面好像有人推你往前,很可能造成事故,其实是因

拉格朗日插值法理论及误差分析

目录: 一、 引言 二、 插值及多项式插值的介绍 三、 拉格朗日插值的理论及实验 四、 拉格朗日插值多项式的截断误差及实用估计式 五、 参考文献 一、引言 插值在数学发展史上是个古老问题。插值是和拉格朗日(Lagrange )、牛顿(Newton )、高斯(Gauss )等著名数学家的名字连在一起的。在科学研究和日常生活中,常常会遇到计算函数值等一类问题。插值法有很丰富的历史渊源,它最初来源人们对天体研究——有若干观测点(我们称为节点)计算任意时刻星球的位置(插值点和插值)。现在,人们在诸如机械加工等工程技术和数据处理等科研都有很好的应用,最常见的应用就是气象预报。插值理论和方法能解决在实际中当许多函数表达式未知或形式复杂,如何去构造近似表达式及求得在其他节点处的值的问题。 二、插值及多项式插值 1、插值问题的描述 设已知某函数关系()y f x =在某些离散点上的函数值: 插值问题:根据这些已知数据来构造函数()y f x =的一种简单的近似表达式,以便于计算点,0,1,,i x x i n ≠=的函数值()f x ,或计算函数的一阶、二阶导数 值。 2、插值的几何意义 x x 0 y y 1 y 1 n y -n y 1 x 1 n x -n x

插值的几何意义如图1所示: 图1 3、多项式插值 基本概念 假设()y f x =是定义在区间,a b ????上的未知或复杂函数,但一直该函数在点01n a x x x b ≤<< <≤处的函数值01,,n y y y 。找一个简单的函数,例如函数 ()P x ,使之满足条件 (),0,1,2, ,,i P x y i n == () 通常把上述01n x x x << < 称为插值节点,把()P x 称为()f x 的插值多项 式,条件()称为插值条件,并把求()P x 的过程称为插值法。 插值多项式的存在性和唯一性 如果插值函数是如下m 次的多项式: 1011()m m m m m P x a x a x a x a --=++ + 那么插值函数的构造就是要确定()m P x 表达式中的m+1个系数 011,, ,m m a a a a -。由于插值条件包含n+1独立式,只要m=n 就可证明插值函数多 项式是唯一存在。 实际上,由n+1个插值条件可得

常见插值法

常见插值法 【摘 要】插值方法在数值分析中起着非常重要的作用。在此介绍一些常见的插值方法及 其应用范例。 【关键字】数值分析;插值方法;应用; 1. 插值法定义 插值法又称“内插法”,是利用函数f (x)在某区间中 插入若干点的函数值,作出适当的特定函数,在这些 表(1) 插值点 点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。 2.常见的插值法及其构造 Lagrange 插值法 (a).公式推导: 表(1)的Lagrange 插值的插值多项式 ∑==n i i i x l x f x 0 n )()()(L ,(j=0,1,2....n)。 其中插值基函数是 ∏ ≠=--=n j i i j i j x x x x x l 0 n ) ()()(,(i,j=0,1 2...n) 。 其插值余项为 其中),b a (∈ ξ,∏≠=+--=n j i i j i j x x x x x 0 1n )() ()(ω (b).matlab 实现方法: Matlab 没有直接求解的相关函数,现编译如下: function yi = Lagarange_chazhi(x,y,xi) % 求拉格朗日插值,并返回一个输入为xi 时的函数值 % x 为插值点向量,至少有三项 % y 为插值点值的向量,项数与x 相同 m = length(x); %求插值个数 m1 = length(y); if m<=2 error('项数不足!'); end if m~=m1 error('!!!y 的项数应与x 相同!!!'); end %对参数的判断 lag_hanshu = 0; syms X ; for (l = 1:m) %构造插值基函数 la = y(l); for a = (1:l-1) la = la*(X-x(a))/(x(l)-x(a)); end for a = (l+1:m) la = la*(X-x(a))/(x(l)-x(a)); end format long lag_hanshu = lag_hanshu+la; %求解出插值函数 end yi = subs( lag_hanshu,'X',xi); %返回插值函数输入为xi 时的值 End (c).方法缺陷:当插值点个数7n ≥时,将产生 龙格现象: 经典例子,对) 251(1 )(2x x f += 进行拉格朗日插 0x 1x 2x ....... 1-n x n x 0y 1y 2y ....... 1-n y n y ), (!)1() ()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ

伯努利原理及其应用

通俗讲解伯努利原理及其应用 当年的流体力学是那么的难学,如果有人这么给我们解释,我相信,我肯定能通过考试的。现在想起来,都是满满的回忆呀。本文从实例篇、理论篇、应用篇三个方面展开,肯定让您不虚此行。 天才/学霸/大神——伯努利 伯努利 (Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。他是伯努利这个数学家族(4代10人)中最杰出的代表,16岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位,17~20岁又学习医学,于1721年获医学硕士学位,成为外科名医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。伯努利成功的领域很广,除流体动力学这一主要领域外,还有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。 实例篇——伯努利原理 丹尼尔·伯努利在1726年首先提出:“在水流或气流里,如果速度小,压强就大;如果速度大,压强就小”。我们称之为“伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有流动,压力就大,所以外面力量大的空气就把两张纸“压”在了一起。这就是“伯努利原理”原理的简单示范。

列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。这是因为列车高速驶来时,靠近列车车厢的空气被带动而快速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后会出现明显的压强差,身体后面较大的压力将把旅客推向列车而受到伤害。 所以,在火车(或者是大货车、大巴士)飞速而来时,你绝对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车(汽车)对站在它旁边的人有一股很大的吸引力。有人测定过,在火车以每小时50公里的速度前进时,竟有8公斤左右的力从身后把人推向火车。 看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧(分享给身边的人哦~~) 2

插值法综述《计算方法》学习报告

插值法综述 一、插值法及其国内外研究进展 1.插值法简介 插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机广泛使用之后,由于航空、机械加工、自动控制等实际问题的需要,使插值法在实践和理论上都显得更为重要,并得到了空前的发展。 2.国内外研究进展 ●插值法在预测地基沉降的应用 ●插值法在不排水不可压缩条件下两相介质的两重网格算法的应用 ●拉格朗日插值法在地震动的模拟研究中的应用 ●插值法在结构抗震可靠性分析中的应用 ●插值法在应力集中应变分布规律实验分析中的应用 3.代表性文献 ●不等时距GM(1%2c1)模型预测地基沉降研究秦亚琼武汉理工大学学报 (交通科学与工程版) 2008.2 ●不排水不可压缩条件下两相介质的两重网格算法牛志伟岩土力学2008.3 ●基于拉格朗日插值法的地震动的模拟白可山西建筑2010.10 ●响应表面法用于结构抗震可靠性分析张文元世界地震工程1997 ●小议应力集中应变分布规律的实验方法查珑珑淮海工学院学报(自

然科学版)2004.6 二、插值法的原理 【原理】 设有n+1个互不相同的节点(i x ,i y ) (i=0,1,2,...n )则存在唯一的多项式: 2012()...(1)n n n L x a a x a x a x =++++ 使得()(0,1,2,...)(2) n j j L x y j n == 证明:构造方程组 201020002011211120 12......(3)...n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ??++++=? 令:0011111 n n n n n x x x x A x x ?????? =?? ?????? 01n a a X a ??????=?????? 01n y y Y y ?? ????=?????? 方程组的矩阵形式如下:(4)AX Y = 由于1 1 ()0n n i j i j A x x -===-≠∏∏所以方程组(4)有唯一解。 从而2012()...n n n L x a a x a x a x =++++唯一存在。 三、常用插值法 3.1 Lagrange 插值法 3.1.1 Lagrange 插值法的一般提法 给定))(,(i i x f x ),,1,0(n i =,多项式

插值法计算实际利率

20×0年1月1日,XYZ公司支付价款l 000元(含交易费用)从活跃市场上购入某公司5年期债券,面值1 250元,票面利率%,按年支付利息(即每年59元),本金最后一次支付。合同约定,该债券的发行方在遇到特定情况时可以将债券赎回,且不需要为提前赎回支付额外款项。XYZ公司在购买该债券时,预计发行方不会提前赎回。XYZ公司将购入的该公司债券划分为持有至到期投资,且不考虑所得税、减值损失等因素。 XYZ公司在初始确认时首先应计算确定该债券的实际利率,设该债券的实际利率为r,则可列出如下等式: 59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+(59+1250)×(1+r)-5=1000(元)(1) 上式变形为: 59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+59×(1+r)-5+1250×(1+r)-5=1000(元)(2) 2式写作:59×(P/A,r,5)+1250×(P/F,r,5)=1000 (3) (P/A,r,5)是利率为r,期限为5的年金现值系数;(P/F,r,5)是利率为r,期限为5的复利现值系数。现值系数可通过查表求得。 当r=9%时,(P/A,9%,5)=,(P/F,9%,5)= 代入3式得到59×+1250×=+=>1 000 当r=12%时,(P/A,12%,5)=,(P/F,12%,5)= 代入3式得到59×+1250×=+=<1000 采用插值法,计算r 按比例法原理:9% r 12% /解之得,r=10% 备注: 此处要用到两个表:《年金现值系数表》、《复利现值系数表》 题中的和是查《年金现值系数表》得来的,i=9%和12%,n=5;和是查《复利现值系数表》得来的,i=9%和12%,n=5 假设两个实际利率的目的在于,确定现值1000在两个利率对应现值的范围内。开始会疑惑如何确定这两个假设的利率,后来发现这是一个估值,在确定9%和12%之前可能会有很多次的预估。另外,现值的范围越小,计算出来的实际利率越精确。 对于这个值的预估,某网友给出这样的方法(还不是特别能理解那个原理,但是自己列了一个表,当然考试的时候是不可能这样列表的):一般考试会给出你大致的范围,比如注会考试就不会让你去慢慢试!一般情况下运用大升小降的原理去应付它就行,就是代入的利率求出的值大于需计算的利率的值,比如带入9%计算大于给定值,你就升高利率,升高到带入能小于需计算的利率的值时就行。比如带入11%小于给定值了,那么这个要求的利率就位于9%-11%之间。

相关主题
文本预览
相关文档 最新文档