当前位置:文档之家› 燃烧热实验报告

燃烧热实验报告

燃烧热实验报告
燃烧热实验报告

燃烧热的测定

摘要

本实验中借助氧弹式量热计,在测定标准物质苯甲酸的燃烧热的基础上,先求算出了所用仪器的量热计热容,再以此为基础测定了蔗糖的恒容燃烧热。文章末尾对实验中的误差和雷诺校正方法的合理性进行了讨论。

实验步骤(修正) 1. 取消硝酸滴定过程

2. 先向量热器内加入2000mL 去离子水,放入氧弹后再加入1000mL 去离子水。

3. 实验过程中,在开始时恒温段每30s 记录一个数据,维持5min ;之后使用电极点火燃烧,燃烧过程中每15s 记录一个数据,直至温度升高并恒定;温度升高并恒定后再次恢复至每30s 记录一个数据。

数据记录及处理

1. 样品质量的测量:

表1 样品质量测定

样品 m 粗/g

m 线/g

Ni m /g m 总/g m 剩/g

苯甲酸

1.2142

0.0158 0.0146 0.6245 0.0094

蔗糖1.040

4

0.0169 0.0163 0.9292 0.0078

2、水当量的测定:

表2 苯甲酸T-t数据表

t/s T/℃t/s T/℃t/s T/℃

0 0 435 0.879 705 1.092

30 0.001 450 0.924 720 1.093

60 0.001 465 0.956 735 1.095

90 0.001 480 0.982 750 1.096

120 0.002 495 1.002 765 1.096 150 0.001 510 1.019 780 1.097 180 0.001 525 1.032 810 1.098 210 0.001 540 (失误漏记)840 1.098 240 0.002 555 1.052 870 1.098 270 0.002 570 1.06 900 1.098 300 0.001 585 1.067 930 1.098 330 点火600 1.072 960 1.097 345 0.007 615 1.077 990 1.097 360 0.079 630 1.081 1020 1.097 375 0.325 645 1.084 1050 1.097 390 0.571 660 1.086 1080 1.097 405 0.725 675 1.089

420 0.815 690 1.091

3、蔗糖燃烧热的测定:

表3 蔗糖T-t数据表

t/s T/℃t/s T/℃t/s T/℃

0 0 405 0.799 645 1.02

30 0 420 0.860 660 1.022

60 0 435 0.898 690 1.024

90 -0.001 450 0.924 720 1.026

120 -0.001 465 0.944 750 1.027

150 -0.001 480 0.960 780 1.028

180 -0.001 495 0.971 810 1.029

210 -0.002 510 0.980 840 1.029

240 -0.001 525 0.988 870 1.029

270 -0.001 540 0.995 900 1.029

300 -0.001 555 1.001 930 1.029

330 点火 570 1.005 960 1.028 345 0.023 585 1.009 990 1.028 360 0.257 600 1.013 1020

1.028

375 0.529 615 1.016 390 0.712 630

1.018

4、苯甲酸燃烧T-t 数据作图(雷诺校正)

由雷诺校正图可知,升温△T=1.098K ,t=409.8s

5、蔗糖燃烧T-t 数据作图(雷诺校正)

t /s

T /C

°

由雷诺校正图可知,升温△T=1.030K ,t=391.3s

6.水当量的计算

(1) 引燃用镍丝的校正:

0.01460.00940.0052Ni m g =-=

3243/0.005217Ni vNi Ni q Q m kJ g g J =?=-?=- (2) 棉线的校正:

16736/0.0158264v q Q m kJ g g J =?=-?=-棉棉棉 (3) 量热计常数的计算: 苯甲酸燃烧反应式:76222215

C H O (s)+O (g)=7CO (g)+3H O(l)2

对于气体产物而言n ?=-0.5

已知苯甲酸恒压热容为:26460/p Q J g =- 则0.58.314289.45

2646026450(/)122.125

v p nRT Q Q J g M ?-??=-

=--=- t /s

T /C

°

A B G

燃烧物质质量0.61100.01460.01580.5806G g =--=

26417281Ni q q q J ∑=+=--=-棉

认为体系中已经将氮气排尽从而忽略由于形成硝酸造成的误差,计算可得

264500.5941281

=3000.00.9988791 4.18182036(/)

1.098

v Q G q W DC J K T --∑?+=

--??=?水

7、 计算蔗糖的恒容燃烧热v Q 和恒压燃烧热p Q (1)引燃用镍丝的校正:

0.01630.00780.0085Ni m g =-= 32430.008528Ni vNi Ni q Q m J =?=-?=-

(2) 棉线的校正:

167360.0169283v q Q m J =?=-?=-棉棉棉 (3) 蔗糖恒容燃烧热:

()v W DC T q

Q G

+?+∑=-

已知2036/W J K =

3000.00.99887912996.6D g =?=

28328311Ni q q q J ∑=+=--=-棉

0.92920.01690.01630.9060G g =--=

4(20362996.6 4.1818) 1.030311

1.64010(/)0.8960

v Q J g +??-=-

=-?

(4) 蔗糖的恒压溶解热:

由方程:122211222()12()12()11()C H O s O g CO g H O l +→+,可知0n ?= 于是41.64010(/)p v v nRT

Q Q Q J g M

?=+==-?

误差分析

由查阅文献可知,蔗糖燃烧热为-16490(J/g)。相对偏差

1649016400

100%0.6%

16490e -=

?= 实验值与理论值较为接近。

1. 定量误差分析 (1) 质量称量误差

以万分天平计,称量误差为0.0002g ,镍丝质量为差值法得到,误差应为0.0004g 。

镍丝燃烧误差:

3243

0.0004 1.2(/)1.0983243

0.0004 1.4(/)

0.9060vNi Ni vNi v Ni Q W m J K T Q Q m J g G ?=-

??=?=??=-??=?=(刻意多保留一位有效数字) 棉线燃烧误差:

16736

0.0002 3.0(/)

1.098

16736

0.0002 3.7(/)

0.9060v v v Q W m J K T Q Q m J g G ?=-

??=?=??=-??=?=棉

棉棉棉(刻意多保留一位有效数字)

燃烧物称量误差:26450

0.000615(/)1.030

26450

0.000627(/)

0.5806

v v v Q W G J K T Q Q G J g G ?=-

??=?=?-?=-??=-?=

累计加和来看,

19

100%0.93%2036

32

100%0.20%16400

v v W W Q Q ?=?=?=?=

由此分析,称量本身系统误差对最终结果造成影响较小。

值得一提的是,在实验过程中称量结束至燃烧过程中,需使用棉线及镍丝固定待测物;这一过程中难免会有待测物压片散块造成质量偏差。这是实验中非常重要的一个误差来源,其质量偏差将会线性传递至最终误差里。

在实际操作中,为了减少这类误差;可以在结束后将栓系绳子的工作放于一

称量纸上完成,将待测物固定完成后再称量纸上洒落样品。从而弥补由于样品易散造成的误差。

(2) 水的体积测量造成的误差

为便于讨论,假设两次使用2000mL 及1000mL 容量瓶会累计造成5mL 误差(认为容量瓶本身存在千分之一误差,再考虑挂壁、溅出等影响)

4.18180.998871521(/)4.18180.998871 1.030

524(/)

0.9060

v W C V J K C T

Q V J g G

ρρ?=-???=??=??????=-

??=?=水水水水 21

100% 1.03%2036

24

100%0.146%16400

v v W W Q Q ?=?=?=?=

由此可见,加入水量的误差在极大估计条件下(5mL )也不会对最终结果造成太大影响。

(3) 温度波动造成的误差

在实验的非加热段,由数据显示温度波动为0.01K ,则

22

26450 1.0881304

()0.01132(/)

1.98220362996.6 4.1818

()0.01163(/)

0.8960v v Q G q W T J K T W DC Q T J g G +∑?+?=

???=?=?++??=-???=?=水

132

100% 6.50%2036

163

100%0.994%16400

v v W W Q Q ?=?=?=?=

本实验中,由温度波动0.01K 即可对最终结果造成1%误差,由此可见温度波动是实验误差的另一主要因素。因此,采用雷诺校正是很有必要的。

(4)是否进行酸校正的定量分析:

假设氧弹内容积为1L (偏大估计),即含有790mL 氮气。本实验中反复冲入氧气至1MP 再放气至常压,重复三次除去氮气。则剩余氮气量可计算为790*0.13=0.79mL

换算为物质的量n (氮气)=0.033mmol

2223151

(g)+(g)+0==HNO ()24259800 J /mol 59800 1.758.314(273.1516.4)55587/N O H l H U H nRT

J mol

?=-?=?-?=-+??+=-

由氮气产生的热效应Q 55587J /mol*0.033mmol 1.8J =-=-

此数值仅与镍丝称量误差带来的影响大致相同,对于整个实验体系可以忽略不计。因此本实验省略酸校正分析是合理的。

2.定性误差分析 (1)热容值变化的讨论

理论上,热容随温度变化而变化;因此c=c(T)并非一个常量。在本实验中,通过计算水当量表征仪器的吸热效应,同时控制燃烧标准物质和待测物质时体系上升大致相同的温度。同时,体系整体温度上升幅度并不大(1.1℃左右),因此粗略地认为热容随温度变化幅度可忽略是合理的。

(2)待测物质量

本实验定量分析过程中可发现,待测物质量大小对最终的误差有很大影响。在实验过程第一次压片过程中,由于操作并不熟练,压制得到的苯甲酸固体质量偏小;仅仅0.6g ,计算发现由此导致的系统误差是较大的。因此,在蔗糖燃烧实验中改进了压片手法,增加了待测物质量,分析得到的系统误差显著下降。

实验操作讨论

在实验过程中,我认为有如下操作值得反思和注意 (1)压片操作

如果压片过松,则所得药片的强度较差,不宜成型,遇到外部振动或者在移动过程中会出现碎裂、散落现象。如果压片过紧,则压片器容易卡主,在取出样品过程中可能又会造成样品的损坏。

相较而言,苯甲酸标准物质颗粒较小,分布均匀,较为容易压片。而蔗糖晶体必须充分研磨成细末状再进行压片才会相对容易。

(2)固定压片的操作

将压片与点火器件稳定固定在氧弹中是本实验中最难的操作。首先需要明确,镍丝的作用是产生火花引燃体系,棉线的作用是将镍丝与待测物空间上固定在一起,同时起到引燃的作用。讲义上指出可以将镍丝压入样品内,但在本实验中受限于设备限制,以下操作更为合理:压出的样品用棉线固定捆住,同时棉线本身提供镍丝的固定支撑点,令镍丝穿过细线并环绕住压片。

同时在固定操作中,建议在下方放置称量纸。以便于收集散落的待测物,称量后校正得到正确的燃烧物质量。

(3)对于氧弹的清洁操作

两次测定之间除了需要擦净量热桶内壁、氧弹外壁的水分外,还需要将氧弹内筒仔细擦干净,除去上一次燃烧过程中产生的水,减少误差。

结论

本实验通过在氧弹式量热计中燃烧苯甲酸,通过使用雷诺校正,计算出水当量的方法作为基准,求得了蔗糖的恒压(恒容)燃烧热为1.640*104J/g 。之后通过定量、定性误差分析,讨论了实验过程中应当特别注意的细节。

思考题

1. 雷诺图解法的本质和适用范围

在量热实验中,量热计与周围环境的热交换无法完全避免,对温差测量值的影响可用雷诺(Renolds) 温度校正图校正。

如图所示,图中B 点意味着燃烧开始,热传入介质;HG 为线延长并交温度

t /s T /C

°

曲线于E 点,其间的温度差值即为经过校正的 。E 点认为是环境均衡温度。图中(G-A )为开始燃烧到温度上升至室温这一段时间内,由环境辐射和搅拌引进的能量所造成的升温,故应予扣除。同理(H-C )由室温升高到最高点这一段时间内,热量计向环境的热漏造成的温度波动,计算时必须考虑在内。故可认为,HG 两点的差值较客观地表示了样品燃烧引起的升温数值。

在量热实验中,如果无法保证体系完全与外界隔绝热交换,则需要用雷诺校正法扣除环境影响。同时在某些情况下,量热计的绝热性能良好,但搅拌器功率较大,可能由于搅拌造成温度波动,也需要用雷诺校正减小误差。

总之,雷诺校正的目的是使实验中温差变化能客观反映仅仅由燃烧产热而不受环境影响的结果。 2.

标准物质苯甲酸的恒压燃烧热Qp=-26460J/g ,恒容燃烧热为多少?

见实验部分数据呈现及处理。 3.

搅拌过快或过慢有何影响?

搅拌过快可能造成由机械搅拌做功导致体系温度升高,从而引入不必要误差;搅拌过慢会使得温度计受热不均,测量值与真实值产生偏差。 4.

本实验中苯甲酸的作用是什么?可否将一定量的苯甲酸与蔗糖混合在一

起只进行一次测量求蔗糖的燃烧热? 不可。

这样求蔗糖的燃烧热。由公式()V W DC T Q G q +?=--∑水可知,若将苯甲酸和蔗糖一起燃烧,则存在有W 和Q v (蔗糖)两个未知数,无法单独求出蔗糖的燃烧热。

如果适当改进,至少进行两次测定并严格计算二者比例,可以通过解方程组确定蔗糖的燃烧热 5.

实验中“准确量取低于环境温度为1℃的自来水3000mL ,顺筒壁小心倒

入内筒”,为什么加入内筒的水温度要选择比环境低1℃左右?

由雷诺校正定义可知,应当使得环境温度处于燃烧前后温度差之间;若超出此范围,则雷诺校正无效。

参考资料

[1] 韩德刚,高执隶,高盘良.物理化学.高等教育出版社.2001

[2] 物理化学实验第4版.北京大学出版社.2001

热重分析实验报告

热重分析实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

材料与建筑工程学院实验报告 课程名称: 材料物理性能 专业:材料科学与工程 班级: 2013级本科 姓名:张学书 学号: 3

指导老师:谢礼兰老师 贵州师范大学学生实验报告 成绩 实验一:STA449F3同步热分析仪的结构原理及操作方法 一、实验目的 1、熟悉同步热分析仪的基本原理。 2、了解STA449 F3型同步热分析仪的构造原理及性能。 3、学习STA449 F3型同步热分析仪的操作方法。 二、实验原理 差示扫描量热法(DSC)是指在加热的过程中,测量被测物质与参比物之间的能量差与温度之间的关系的一种方法技术。图1-1为功率补偿式DSC仪器示意图:

图1-1 功率补偿式D SC 示意图 1.温度程序控制器; 2.气氛控制;3.差热放大器;4.功率补偿放大器;5.记录仪 当试样发生热效应时,譬如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势U ΔT ,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使试样下面的电流Is减小,参比物下面的电流IR 增大,而Is +IR 保持恒定。降低试样的温度,增高参比物的温度,使试样和参比物之间的温差ΔT 趋于零。上述热量补偿能及时,迅速完成,使试样和参比物的温度始终维持相同。 设两边的补偿加热丝的电阻值相同,即RS =RR=R,补偿电热丝上的电功率为PS=IR 和P R=IR 。当样品没有热效应时,PS=P R;当样品存在热效应时,PS 和PR 的差ΔP能反映样品放(吸)热的功率: ΔP= PS-PR= IR -IR=(I S+IR)( I S-IR)R =(IS+IR ) ΔV =I ΔV? (1) 由于总电流IS+IR 为恒定,所以样品的放(吸)热的功率ΔP只和ΔV 成正比, 3 1 2 4 5

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

冰的熔化热-实验报告

XX大学物理学院实验报告 实验名称:测定冰的熔化热 学生姓名:XXX 学号:XX 实验日期:20XX年XX月XX日 一、数据及处理 3. 投入冰的时刻:t=250s 冰的温度:-13.0℃ 室温:26.1℃ 5. 计算得到冰的熔化热L=3.22x10J/kg 6. T-t图像:

7. 从图中得到的信息: 水的初始温度(承装水时):39.5℃; 投入冰前水温下降速度:0.1℃/30s; 投入冰时水温:38.7℃; 冰完全融化后的温度:22.1℃; 系统达到稳定状态耗时:约100s; 投入冰时温度比室温高12.6℃,稳定后温度比室温低4℃,其比值为3.15; 二、分析与讨论 1. 误差的主要来源: 误差主要来源于搅拌过程和转移过程之中水的溅出,包括溅出到桌上与溅出到外筒里,这将直接影响冰的测量质量,由于在计算式中,冰的质量位于分母,故放大了绝对误差。因此,在失败(误差过大)一次后,采取连同外筒一起测量质量的方法,防止在取出内筒过程中造成的溅出,同时测量包括溅入外筒的水。 2. 补偿法的意义: 理论公式的适用范围是有限的,在相当多的实验情况下,不可避免的会出现超出适用范围的因素,例如本实验中的对环境吸放热,无法实现完全绝热的实验条件,带来系统的偏差。补偿法可以在一定程度上减小这些不可抗因素的影响,使作用效果相反的两种因素相互抵消以维持实验结果,从而减小实验误差。在其他的实验中,例如迈克尔逊干涉仪中,也存在着大量的补偿法应用。 3. 测量值偏小的原因: (1)取出冰块和将冰块擦干时不可避免的会与外界,特别是加持、擦拭工具间相互传热,甚至与手掌间接传热,造成温度上升,使熔化热计算值偏低; (2)读取系统热平衡温度时,由于外界导热的影响以及温度计示数的延迟使温度读取值偏大,导致熔化热计算值偏低; (3)拟合过程采取直线拟合,与原本的二次拟合存在差异,导致起始温度较推断值更高,使熔化热计算值偏低。 三、收获与感想 (1)投入冰前与最终稳定后,温度的变化较为缓慢,测量数据点可以选择更疏一些。(2)投入冰后到稳定前,温度变化非常剧烈,测量数据点可以选择更密一些。 (3)投入冰与记录时间、温度难以同时进行,故可以根据投入冰前的温度变化线性推出投入冰时刻的系统温度,以获得准确值,在其他热学实验中也可以应用。 (4)在量程允许的情况下,将整个量热器称量质量,而不取出内筒,减少必要的操作步骤,减少水的溅出带来的误差。 (5)初步了解并使用了补偿法,为以后在测电阻、迈克尔逊干涉仪等实验增加经验。

最新差热分析DTA实验报告

差热分析DTA 一、实验目的 掌握热分析方法─差热分析法基本原理和分析方法。 了解差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析基本原理 差热分析法(Differential Thermal Analysis,DTA)是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。 物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差DT=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差DT<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差DT>0。上述温差DT(称为DTA 信号)经检测和放大

以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差DT=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差DT10,差热电偶的电势信号经放大和A/D换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。差热曲线直接提供的信息主要有峰的位置、峰的面积、峰的形状和个数,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA 曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

冰熔化实验报告

篇一:冰熔化实验报告 冰熔化实验报告 实验目的: 观察冰的熔化的过程,知道晶体的熔化特点,是吸热的过程。实验器材: 温度计,铁架台,石棉网,大烧杯,酒精灯,冰,秒表(或手表)实验步骤: 1、把装有冰块的大烧杯放在铁架台的石棉网上。 2、把温度计用铁架台上的架子固定,且温度计不接触大烧杯的底和壁。 3、把酒精灯放在石棉网下面。 4、点燃酒精灯开始加热大烧杯。 5、每隔半分钟记录一次温度计的读数。并记录下来。 6、根据记录的数据,在下表中做温度--时间图线。实验表格: 1实验结论: 实验延伸: 1.是不是所有物质的熔化都和冰的熔化一样具有相同的情况? 2.水凝固成冰的时的温度--时间图线又是怎样的? 2篇二:冰的熔解热的测定实验报告 实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 a 和一个已知热容的系统 b 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 c(c=a+b).这样 a (或 b)所放出的热量,全部为 b(或 a)所吸收。因为已知热容的系统在实验过程中所传递的热量 q,是可以由其温度的改变△t 和热容 c 计算出来,即 q = c△t ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 q放,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 q吸。 因为是孤立系统,则有q放= q吸(1) 设混合前实验系统的温度为t1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为 m(冰的温度和冰的熔点均认为是0℃,设为t0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为t℃(此时应低于室温10℃左右),冰的溶解热由l表示,根据(1)式有 ml+m c1(t- t0)=(m1 c1+ m2 c2+ m3 c3)(t1- t) 因tr=0℃,所以冰的溶解热为: l? (m1c1?m2c2?m3c3)(t1?t) ?tc1

实验六 差热分析草酸钙的热分解过程

实验六差热分析草酸钙的热分解过程 一、实验目的 1. 掌握差热分析法的基本原理。 2. 了解热分析仪的结构,掌握仪器的基本操作。 3. 利用差热分析技术研究草酸钙的热分解过程。 二、实验原理 热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。程序控制温度一般是指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。物质性质包括质量、温度、热焓变化、尺寸、机械特性、声学特性、电学和磁学特性等等。 在热分析技术中,热重法是指在程序控制温度下,测量物质质量与温度关系的一种技术,被测参数为质量(通常为重量),检测装置为“热天平”,热重法测试得到的曲线称为热重曲线(TG)。热重曲线以质量作为纵坐标,可以用重量、总重量减少的百分数、重量剩余百分数或分解分数表示。曲线从上往下表示质量减少,以温度(或时间)作横坐标,从左向右表示温度(或时间)增加,所得到的重量变化对温度的关系曲线则称之为热重曲线。 热重法的主要特点是定量性强,能准确地测量物质质量变化及变化的速率。在正常的情况下,热重曲线的水平部分看作是恒定重量的特征,变化最陡峭的部分,可以给出重量变化的斜率,曲线的形状和解析取决于试验条件的稳定性。热重曲线开始偏离水平部分的温度为反应的起始温度,测量物质的质量是在加热情况下测量试样随温度的变化,如含水和化合物的脱水,无机和有机化合物的热分解。物质在加热过程中与周围气氛的作用,固体或液体物质的升华和蒸发等,都是在加热过程中伴随有重量的变化。 从热重法派生出微商热重法(DTG)和二阶微商法(DDTG),前者是TG 曲线对温度(或时间)的一阶导数,后者是TG 曲线的二阶导数。 差热分析(DTA)是在程序控制温度下,测量物质与参比物之间的温度差与温度函数关系的一种技术,只要被测物质在所用的温度范围内具有热活性,则热效应联系着物理或化学变化,在所记录的差热曲线上呈现一系列的热效应峰,峰

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

冰的熔解热的测定实验报告

学院:信息工程学院 班级:通信152 学号:6102215051 姓名:潘鑫华 实验时间:第六周星期二下午八九十节

T T' θ J K T 1 T 1' 实验名称 测定冰的熔解热 一、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 二、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 A 和一个已知热容的系统 B 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 C (C =A +B ).这样 A (或 B )所放出的热量,全部为 B (或 A )所吸收。因为已知热容的系统在实验过程中所传递的热量 Q ,是可以由其温度的改变 △T 和热容 C 计算出来,即 Q = C △T ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 Q 放 ,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 Q 吸。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T 1,其中热水质量为m2(比热容为c0)。冰的质量为m1(冰的温度和冰的熔点均认为是0℃,设为T 0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T ℃(此时应低于室温10℃左右),冰的溶解热由L 表示,根据(1)式有 ML +m1c0(T - T 0)=m2c0(T 1- T ) 因T r=0℃,所以冰的溶解热为: L=[m2c0(T1-T2)-T2c0m1]/m1 (2) 综上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此整个实验在量热器内进行,但由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。所以当实验过程中系统与外界的热量交换不能忽略

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

燃烧热的测定 实验报告

燃烧热的测定 一、实验目的 ●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并 由此求算其摩尔燃烧热。 ●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的 使用方法,熟悉贝克曼温度计的调节和使用方法 ●掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 摩尔燃烧焓?c H m 恒容燃烧热Q V ?r H m = Q p ?r U m = Q V 对于单位燃烧反应,气相视为理想气体 ?c H m = Q V +∑νB RT=Q V +△n(g)RT 氧弹中 放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计) 待测物质 QV-摩尔恒容燃烧热Mx-摩尔质量 ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量 K-氧弹量热计常数?Tx-体系温度改变值

三、仪器及设备 标准物质:苯甲酸待测物质:萘 氧弹式量热计 1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计

四、实验步骤 1.量热计常数K的测定 (1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 (2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止 (4)把氧弹放入量热容器中,加入3000ml水 (5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处 (6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。 (7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。 (8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。 (9)称量剩余点火丝质量。清洗氧弹内部及坩埚。 实验步骤 2. 萘的恒容燃烧热的测定 取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度

测定冰的熔化热-实验报告

测定冰的熔化热实验报告(一)实验数据及处理 1.第一次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.69 g m0=164.16 g T2-T3=15.2℃

2.第二次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.97g m0=171.13g T2-T3=13.8℃

(T2-θ):(θ-T3)= 10.1 :3.7 (二)分析与讨论 1.从实测数据看,如果实验全过程中散热、吸热没有达到补偿,冰的熔化热结果不一定偏离“合理”的数据范围,这说明散热或吸热并不是该系统的主要实验误差来源。那么,本实验的主要误差来源是什么? 由熔化热的公式看,对计算结果影响最大的量是m,即冰的质量。由于采用间接测量法,因此冰的质量是比较容易产生误差的,比如投冰时溅出水,就会对

算出的冰的质量产生影响,从而产生误差。 2.通过实验去体会粗略修正散热的方法——补偿法在本实验中的应用对学习做实验的意义。 在实验系统不能很好地保证绝热时,用补偿法修正系统误差是一个办法,也是一个好的思路。在这次实验中,我们应该反复摸索,对各物理参量进行合理的选择和调整,使散热和吸热基本达到补偿。 然而,实验结果证实量热器是一个很好的绝热系统,因此,在分析系统误差来源时,应实事求是地、定量地进行分析,不能将误差的来源归结为系统的散热、吸热未能达到补偿。 3.在本实验室提供的条件下,实测熔化热的结果通常小于文献值 L=3.34×105J/Kg,你能分析是什么原因吗? 本实验未计算温度计插入水中的部分带来的影响。

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

草酸钙的热重-差热分析

综合热分析法测定草酸钙 【实验目的】 (1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。 (2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。 (3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。 【实验原理】 热分析是物理化学分析的基本方法之一。综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。 (1)热重分析 热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。热重法实验得到的曲线称为热重(TG)曲线。TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC2O4·H2O的微分热重曲线(DTG)]。微分热重曲线能很好地显示这些速率地变化。

燃烧热的测定实验报告

燃烧热实验报告 一、实验目的 1、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 2、掌握量热技术的基本原理,学会测定奈的燃烧热。 3、了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 4、学会雷诺图解法校正温度改变值。 二、实验原理 燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧 热称为恒容燃烧热(Q v,m ),恒容燃烧热这个过程的内能变化(Δ r U m )。在恒压条 件下测得的燃烧热称为恒压燃烧热(Q p,m ),恒压燃烧热等于这个过程的热焓变化 (Δ r H m )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列 关系式: c H m = Q p,m =Q v,m +ΔnRT (1) 本实验采用氧弹式量热计测量萘的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。 氧弹是一个特制的不锈钢容器。为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。 但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺矫正作图法进行校正。 放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律 在盛有定水的容器中,样品物质的量为n摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,

相关主题
文本预览
相关文档 最新文档