当前位置:文档之家› 物理学前沿期末考试 125413 周生海

物理学前沿期末考试 125413 周生海

物理学前沿期末考试 125413 周生海
物理学前沿期末考试 125413 周生海

陕西师范大学2014~2015学年第一学期期末考试

物理学院2012级教育硕士

物理学前沿试题

答卷注意事项:

1、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在答题纸上答题。

2、答卷前请将密封线内的项目填写清楚。

3、字迹要清楚、工整,不宜过大,以防试卷不够使用。

4、本卷共4大题,总分为100分。

一、理论物理部分( 共5题,每题5分,共25分)

1.混沌现象的主要特征是什么?

总结混沌现象可知有如下几个基本特征:

1、内在随机性:从确定性非线性系统的演化过程看,它们在混沌区的行为都表现出随机不确定性。然而这种不确定性不是来源于外部环境的随机因素对系统运动的影响,而是系统自发产生的。

2、初值敏感性:对于没有内在随机性的系统,只要两个初始值足够接近从它们出发的两条轨线在整个系统溟过程中都将保持足够接近。但是对具有内在随机性的混沌系统而言,从两个非常接近的初值出发的两个轨线在经过长时间演化之后,可能变得相距“足够”远,表现出对初值的极端敏感,即所谓“失之毫厘,谬之千里”。下面的蝴蝶效应说明这一点。

3、非规则的有序:混沌不是纯粹的无序,而是不具备周期性和其他明显对称特征的有序态。确定性的非线性系统的控制参量按一定方向不断变化,当达到某种极限状态时,就会出现混沌这种非周期运动体制。但是非周期运动不是无序运动,而是另一种类型的有序运动。混沌区的系统行为往往体现出无穷嵌套自相似结构,这种不同层次上的结构相似性是标度变换下的不变性,这种不变性体现出混沌运动的规律。

2.分形结构的特点是什么?请举例说明。

具有自相似性

1.从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。

2.在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。

举例:结晶体(雪花)、西兰花、闪电、植物根系

3. 分析小世界网络、无标度网络和随机网络三者之间的相同点和不同点。

小世界网络是一种数学之图的类型,在这种图中大部分的结点不与彼此邻接,但大部分结点可以从任一其他点经少数几步就可到达。若将一个小世界网络中的点代表一个人,而连结线代表人与人认识,则这小世界网络可以反映陌生人由彼此共同认识的人而连结的小世界现象。

无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub 点的节点拥有极其多的连接,而大多数节点只有很少量的连接。少数Hub 点对无标度网络的运行起着主导的作用。从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。

随机网络是无尺度网络的概念是随着对复杂网络的研究而出现的。“网络”其实就是数学中图论研究的图,由一群顶点以及它们之间所连的边构成。在网络理论中则换一套说法,用“节点 ”代 替 “ 顶 点 ”,用 “ 连 结 ”代 替 “ 边 ”。复 杂 网 络 的 概念 ,是 用 来 描 述 由 大 量 节 点 以 及 这 些节点之间错综复杂的联系所构成的网络。这样的网络会出现在简单网络中没有的特殊拓扑特性。

4. 从自组织临界态的角度来看,地震的物理原理是什么?

自组织临界态是指由大量相互作用成分组成的系统会自然地向自组织临界态发展;当系统达到自组织临界态时,即使小的干扰事件也可引起系统发生一系列灾变。而地震可能是自然界中自组织临态最干净而最直接的例子了,大多数时间里,地壳是静止的,处于郁滞时期,这种显而易见的平静有时候被很强烈的间歇爆发活动所打断,于是产生少数非常大的地震,但更多的是小地震。地震量级的分布是一个幂率分布,不过后来提出的古登堡—里特定律能更好的解释这个问题。地壳的运动导致了能量的积累,而由于能量的积累最终会导致板块的断裂,从而释放出能量,并且这个能量可能会引起一个级联反应,形成大的地震。

5. 讨论存在外磁场时的铁磁相变过程,Gibbs

自由能为

240011

(,)()()24

C G T M G T a T T M bM HM =+-+-。

解:在外磁场中,序参数选择为M 时,Gibbs 自由能为:

240011

(,)()()24

C G T M G T a T T M bM HM =+-+-

因为铁磁属于二级相变,一阶偏导数连续,得自发磁化强度随温度变化

)(..02m c m m

S T T b a M --

= 磁场:3..0)(M M b M T T a G

H m m C m +-=??=

磁导率:2..0.03)(1M b T T a M

H

m m C m m +-=??=χ

m C T .为居里温度。

二、 光学部分 ( 共5题,每题5分,共25分)

6. 请阐述全息学的基本原理以及 x 射线全息学具有哪些诱人的前景?

全息学以波动光学为基础,利用光的干涉和衍射原理,将物体发出的特定的波以干涉条纹的形式记录下来,并在一定的条件下使其重现。全息学分为两步,波前记录和波前重现,波前记录是将物体光波与另一相干光波——参考光波干涉,用照相的方法将干涉条纹记录下来,获得全息图或者全息照片;波前重现是利用原纪录的参考光波或其他合适的光波照射全息图,光通过全息图发生衍射,甚至衍射光波会形成原物体逼真的立体像。

与普通照相技术相比它有如下几点基本特征,1)可以形成三维图像;2)全息照相可以进行多重记录,信息容量大;3)光学系统简单——原理上无需透镜成像,是一种无透镜成像方法;4)全息照片的重现可放大或者缩小。全息图有多种类型,从记录时物体与全息图的相对位置来分类,可分为菲涅耳全息图和夫琅禾费全息图。

1971年诺贝尔物理学奖授予了伽博,以表彰他发明和发展了全息学——x 射线全息学,尽管x 射线无法利用透镜成像,但是原子的间距与x 射线的波长同数量级,周期性排列的原子对入射的x 射线散射的相互干涉,会产生衍射点阵;用相干光对这种衍射图样作第二次衍射,便可恢复晶格的像,这就是伽博x 射线全息学两步成像法的由来。

未来世界,x 射线全息学将在医学成像、生物、科研、统计计量、信息科技、文字图像、装饰、防伪、海洋科学、军事领域等有不可或缺的地位。现在全息学技术已经逐步走向市场,如高聚物全息防伪标志、透明激光全息防伪膜等,其发展前景无限美好。

7. 表面等离极化激元分哪两类,各有什么特点?

表面等离极化激元在传播方向上具有比光波大的传播波矢(更短的波长);与光的传播方向垂直的方向上是消逝场(限制光场)。在分类上包括金属纳米线波导和金属—介质—金属波导。

金属纳米微粒链状结构所支持的SPP 特性与计算得出的金属纳米圆柱体波导中的情况非常相似,对SPP 场具有亚波长尺寸的强束缚性,传播距离仅仅为数百纳米。

SPP 利用金属缝隙结构来实现波导,即(金属—介质—金属),利用两个界面的耦合,形成被限制在介质核心层中的缝隙SPP 模式。在缝隙宽度为50nm ,激发光波长1550nm 时,其典型传播距离约为10微米。

8. 简要概述电磁诱导透明技术。

电磁诱导透明技术是指通过外加控制场与吸收介质相互作用,使得介质对探测场的吸收发生改变,透射率增加甚至完全透明,即某种介质强烈地吸收某一频率的探测场,而当再加一束能被介质吸收的控制场时,介质对探测场就不再吸收了。这种现象就是电磁诱导透明技术。起源于跃迁通道之间的干涉作用,当探测光与控制光满足双光子共振时,由于两条通道的跃迁几率反号而产生干涉相消。电磁诱导透明技术在光速减慢,信息存储以及高效非线性相互作用过程等方面存在重要应用。

9. 利用高次谐波辐射实现分子轨道成像的条件是什么?

利用高次谐波辐射实现分子轨道成像的条件:一是存在一个和待成像分子的电离能相近的参考原子;二是这个参考原子的再碰撞电子波包的谐振幅总是相似的,不依赖于这个分子的取向。

10. 目前负折射率材料的制备方法有哪几种,各有什么优缺点?

在一定频率范围内介电常数和磁导率都是负数的材料,称之为负折射材料(NIM ),也叫做双负材料(DNM ),左手材料。

其制备方法包括:1、开口谐振环—金属线阵列法;2、传输线模拟方法;3、光子晶体结构法;4、负折射手征介质法。包括用手征介质和共振电偶极子离子的混合物来获得负折射,或是金属螺旋法。其优点是没有激发磁共振也可实现负折射,在实现光频段负折射上有很大的前景,缺点是折射率的绝对值小。5、量子相干法,其

优点是不需要复杂的周期性结构,对加工工艺要求不高,而且可以实现均匀地负折射材料,也是一种可以利用外加场调控的负折射材料,还可以在光频范围内实现负折射。缺点是由于要满足电偶极跃迁和磁偶极跃迁,对于原子能级的要求比较严格。 处理以上5种方法外,还可以通过金属颗粒复合材料,金属纳米线,压电压磁多层膜,铁电耦合双相各向异性等方法来实现负折射材料的制备。

三、 凝聚态部分 ( 共5题,每题5分,共25分) 11. 极化分哪几类?各类极化机制?

极化是指在电场作用下,虽然正负电荷因为电场发生运动,但是并不能离开介质而形成电流,只能产生微观尺度的相对位移,即偶极矩,这就是极化。其分类包括1、电子位移极化;2、离子位移极化;3、自发极化;4、偶极矩转向极化;5、热离子极化;6、夹层式极化。

电子位移极化,是指在外电场作用下,电子云相对原子核的位移是弹性联系,其振动频率在光频范围,所以电子极化又称为光极化,极化建立和消除时间极短。约10-15~10-16s。

离子位移极化是指离子晶体中正、负离子发生相对位移而形成的极化。

自发极化是指在没有外电场的作用时,晶体内部某些区域的正负电荷中心不重合而呈现出的电磁极矩。

偶极子转向极矩指的是当极性分子受外电场作用时,偶极子就会产生转矩,由于偶极子与电场方向相同时具有最小位能。于是,就电介质整体来看,偶极矩就不再等于零。从而出现的沿电场方向的宏观偶极矩。

热离子极化是指在高温等离子体中的正负电荷发生相对位移而形成的极化。

夹层式极化是多层电解质组成的复合绝缘中产生的一种特殊的空间电荷极化。

12.半导体的能带结构与金属导体、绝缘体的能带结构有何区别?

金属导体的费米能级εF在一个能带的中央,该能带被部分填充。由于能带的亚结构之间的能量相差很小,因此这时只需很少的能量(如一外加电场),就能把电子激发到空的能级上,形成定向移动的电流。这正是具有这种能带结构的物质被称为金属导体的原因。

如果某一能带刚好被填满,它与上面的空带间隔着一个禁带。此时大于带隙间隔的能量才能把电子激发到空带上去。一般带隙较大(大于10eV数量级)的物质,被称为绝缘体。

而带隙较小(小于1eV数量级)的物质,被称为半导体。半导体的费米能级位于满带与空带之间的禁带内,此时紧邻着禁带的满带称为价带,而上面的空带称为导带。如果由于某种原因将价带顶部的一些电子激发到导带底部,在价带顶部就相应地留下一些空穴,从而使导带和价带都变得可以导电。所以半导体的载流子有电子和空穴两种。可见,半导体介于导体与绝缘体之间的特殊的导电性是由它的能带结构决定的。

13.选取催化剂材料为什么受材料禁带宽度的制约?

催化剂材料能带构型决定着它的光吸收能力、光激电子空穴对的产生、载流子的迁移以及跃迁态的电子和空穴的氧化还原能力。若从光吸收角度考虑,直接带隙(禁带宽度)和窄带半导体显然更可取,可惜一般情况下,这种半导体的光激电子—空穴对的复合几率也比价高。例如:金属硫化物带隙能较小,相应波长较大,对可见光敏感,但是却不稳定,易氧化。反而是一些常见的半导体如TiO2虽然是间接禁带宽度半导体,却能展现出不错

的光吸收特征。但是由于禁带宽度较宽,只在紫外线区域显示其光化学活性,因而对光能的吸收利用率不高,只能利用不到5%的太阳能。

14.超导体应用时必须满足那些条件?这些条件之间的关系是什么?

超导体应用时必须是符合现实应用的高温超导材料,超导材料在超导状态下具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得10万高斯以上的稳态强磁场。而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5兆瓦的电能及大量的冷却水,投资巨大。所以超导体的应用范围非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、超导输电和超导储能;电子学应用包括超导计算机、超导天线、超导滤波器件、微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。

15.非常规超导的共性主要有哪些?

非常规超导主要包括重费米子超导,有机超导,铜氧化物超导和铁基超导等。他们的共性主要有:1、同样遵从Homes定律;2、具有同样的层状机构—2D特征;3、结构成分都有过滤或者稀土元素存在;4、非常规超导的磁共振模类似。磁共振是超导的副产品,费米子和玻色子的相互作用可以产生新的玻色子。5、量子临界点类似。6、具有相同的强关联Hubbard模型。

四、声学部分( 共5题,每题5分,共25分)

16.试举三例说明超声波都有哪些应用?这些应用基于超声波的什么特点?

一、超声波的特点:方向性好、穿透力强、有巨大能量、易透射、反射、折射与聚集等。

二、超声波在生产实际中的应用

1、雷达(方向性好,易反射)。

2、超声探伤仪(穿透力强、易透射)。

3、清洗精密部件(有巨大能量)。

17.简述超声清洗的工作机理与特点。

超声波发生器产生的高于20KHZ的超音频电能,通过换能器转换成同频率机械振动机械振动传入清洗液,超声波疏密相间地向前传导,产生无数的微小气泡,这些气泡是在超声波纵向传播的负压区形成及生长,而在正压区迅速破裂。这种微小气泡的形成、生长、迅速破裂过程称为“空化效应”。在空化效应中气泡破裂后产生超过10000个大气压的瞬时高压,连续不断产生的瞬时高压就象一连串小爆炸不断地轰击物体表面,使物体表面污

垢迅速脱落。

当液体介质中传入一定强度的超声波时,被清洗物体的表面反复出现加压和减压产生空化效应,液体内出现微小空洞,当声波达到一定强度时,空洞会发生剧烈爆炸,产生强烈碰撞,压力达5-50吨/平方厘米,具有很大的能量,使水分以超过10000G的加速度撞击被清洗物体的表面,将污物撞击下来,从而达到显著的清洗效果,并且这种效果可随液体到达被清洗物体的所有表面,这是手工洗刷,机械振动等常规手段所无法达到的。

由上述超声清洗原理可知,凡是液体浸到,空化产生的地方都有清洗作用,不受清洗件表面复杂形状的限制,如精密零部件表面的空穴、凹槽、狭缝和深孔、微孔都能得到清洗,而这些部位用一般刷洗方法是不能清洗干净的。所以超声清洗的特点是高速度、高质量,易于实现自动化。在某些场合可以用水剂代替油或有机溶剂进行清洗,或降低酸或碱的浓度清洗,减少环境污染。在一些难以清洗并有损人体健康的场合,如核工业及医疗中的放射性污物可以用超声清洗,并能实现遥控或自动化。超声清洗的另一个特点是对声反射强的材料,如金属、玻璃等,其清洗效果较好;而对声吸收较大的材料,如棉纱织物、橡胶和泡沫塑料等则清洗效果差。

18.声空化是如何产生的,有什么特点?

声波发射器产生)在液体中传播,在时空上产生压力起伏,出现低于静态压力的负压现象。在液体的负压区域,液体中的结构缺陷(空化核)会逐渐成长,形成肉眼可见的微米量级的气泡,这就是声空化。

19.请简述水下为什么用声呐系统来探测目标?为什么不用光、电磁等探测方

法?

简单说,电磁波在水下基本无法传播,衰减的很快,一般通信和探测用的电磁波,波长都很短,在水下衰减的更快,最多几米内就不行了,实际上水是很好的电磁屏蔽介质。声波在水下可以传播几千公里,很多鲸类都是用声波沟通的,声音在水下是非常有效的,一般军用声呐作用范围可达上百公里。甚至说,声波就相当于水下的电磁波。另外,像光在水下也基本无法传播,一般水下几十米就是一片黑暗了。所以潜艇是没有窗户的,有些潜艇带舷窗也只是为了水面航行时导航用,下潜时会浸水。实际上光也是一种电磁波,只是波长十分短。可以把电磁波想象成光波,这样就比较容易理解了。

20.请简述多自由度圆柱形超声电机的工作原理?

电机定子的形状为圆柱形,其结构如图3所 示 ,作用原理如图4所

示电机的定子由两个弯曲振动振子和一个纵振动振子组成,通过采用

具有一定相位差的交流电压信号来激励压电片,可分别产生纵振动和弯曲振动,

两种振动按照一定的时间和空间相位组合,定子表面产生

椭圆运动,激励转产生多自由度运动。

【毕业论文选题】物理学本科毕业论文题目

物理学本科毕业论文题目 20世纪是科学技术飞速发展的时代。在这个时代,目睹了人类分裂原子、拼接基因、克隆动物、开通信息高速公路、纳米加工和探索太空。很难设想,若没有科学技术的飞速发展,现代生活将是什么样子。与科学技术的发展一样,物理学也经历了极其深刻的革命。可以说,物理学每时每刻都在不停的发展,其活跃的前沿领域很多,是最有生命力、成果最多的之一。下面学术堂为你提供了物理学本科毕业论文题目,希望对你有所帮助。 1

物理学本科毕业论文题目一: 1、MATLAB在大学物理实验仿真中的应用 2、基于Flash的大学物理电学仿真实验的设计与实现 3、量子点和一维量子线相耦合系统在Kondo区物理性质的研究 4、基于时域物理光学方法的半空间上方目标散射研究 5、有机光电材料的光物理特性研究 6、基于激光混沌的全光物理随机数发生器 7、基于超导电路系统的量子模拟和基础量子物理研究 8、金属亚波长结构阵列电磁场增强及光学异常透射的机理研究 9、微型热电系统的多物理场耦合模型与性能优化研究 10、外尔半金属的反常物理性质研究 11、中子光子输运物理过程蒙特卡罗处理方法研究 12、红外视景仿真关键技术研究 13、关于拓扑物理的量子模拟研究 14、高真实感红外场景实时仿真技术研究 15、氢化非晶硅薄膜结构及其物理效应 16、PIC数值方法以及激光-物质相互作用若干物理研究 17、目标电磁散射特性的快速计算方法研究 18、钙钛矿半导体中的瞬态物理过程研究 19、基于激光自混合效应的多物理参数同步测量方法研究 20、高性能多物理场数值算法研究及其应用 21、超薄Bi薄膜的电子态研究 22、铁电基复合薄膜的光伏效应及其调控研究 23、高增益短波长自由电子激光相关物理研究 2

物理学最前沿八大难题

物理学最前沿八大难题 当今科学研究中三个突出的基本问题是:宇宙构成、物质结构及生命的本质和维持,所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 我们可以从物理学最前沿的八大难题来了解最新的物理学动态。 难题一:什么是暗能量 宇宙学最近的两个发现证实,普通物质和暗物质远不足以解释宇宙的结构。还有第三种成分,它不是物质而是某种形式的暗能量。 这种神秘成分存在的一个证据,来源于对宇宙构造的测量。爱因斯坦认为,所有物质都会改变它周围时空的形状。因此,宇宙的总体形状由其中的总质量和能量决定。最近科学家对大爆炸剩余能量的研究显示,宇宙有着最为简单的形状——是扁平的。这又反过来揭示了宇宙的总质量密度。但天文学家在将所有暗物质和普通物质的可能来源加起来之后发现,宇宙的质量密度仍少了2/3之多! 难题二:什么是暗物质 我们能找到的普通物质仅占整个宇宙的4%,远远少于宇宙的总物质的含量。这得到了各种测算方法的证实,并且也证实宇宙的大部分是不可见的。

最有可能的暗物质成分是中微子或其他两种粒子: neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据说是没有较为有效的测量方法。又这三种粒子都不带电,因此无法吸收或反射光,但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。如果找到它们的话,很可能让我们真正的认识宇宙的各种情况。 难题三:中微子有质量 不久前,物理学家还认为中微子没有质量,但最近的进展表明,这些粒子可能也有些许质量。任何这方面的证据也可以作为理论依据,找出4种自然力量中的3种——电磁、强力和弱力——的共性。即使很小的重量也可以叠加,因为大爆炸留下了大量的中微子,最新实验还证明它具有超过光速的性质。 难题四:从铁到铀的重元素如何形成 暗物质和可能的暗能量都生成于宇宙初始时期——氢、锂等轻元素形成的时候。较重的元素后来形成于星体内部,核反应使质子和中子结合生成新的原子核。比如说,四个氢核通过一系列反应聚变成一个氢核。这就是太阳发生的情况,它提供了地球需要的热量。当然也还有其它的种种核反应。 当核聚变产生比铁重的元素时,就需要大量的中子。因此,天文学家认为,较重的原子形成于超新星爆炸过程中,有大量现成的中子,尽管其成因还不很清楚。另外,最近一些科学家已确定,至少一些最重的元素;如金、铅等,是形成于更强的爆炸中。还有一点需要确定,即当两颗中子星相撞还会塌陷成为黑洞。

物理学前沿

陕西师范大学2014~2015学年第一学期期末考试 物理学院2012级教育硕士 物理学前沿试题 答卷注意事项: 1、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在答题纸上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4 、本卷共4大题,总分为100分。 1.理论物理部分 ( 共5题,每题5分,共25分) 1.混沌现象的主要特征是什么 对于什么是混沌,目前科学上还没有确切的定义,但 随着研究的深入,混沌的一系列特点和本质的被揭示,对混沌完整的、具有实质性意义的确切定义将会产生。目前人们把混沌看成是一种无周期的有序。它包括如下特征: (1)内在随机性。它虽然貌似噪声,但不同于噪声,系统是由完全确定的方程描述的,无需附加任何随机因数,但系统仍会表现出类似随机性的行为; (2)分形性质。前面提到的lorenz 吸引子,Henon 吸引子都具有分形的结构; (3)标度不变性。是一种无周期的有序。在由分岔导致混沌的过程中,还

遵从Feigenbaum常数系。 (4)敏感依赖性。只要初始条件稍有偏差或微小的扰动,则会使得系统的最终状态出现巨大的差异。因此混沌系统的长期演化行为是不可预测的 2.分形结构的特点是什么请举例说明。 特点是无定形,不光滑,具有自相似性。如弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星等。它们的特点都是,极不规则或极不光滑。即每一元素都反映和含有整个系统的性质和信息,从而可以通过部分来印象整体。 3.分析小世界网络、无标度网络和随机网络三者之间的相同点和不同点。 共同点:都是用特征路径长度和聚合系数来衡量网络特征。不同点:在网络理论中,小世界网络是一类特殊的复杂网络结构,在这种网络中大部份的节点彼此并不相连,但绝大部份节点之间经过少数几步就可到达。规则网络具有很高的聚合系数,大世界(largeworld,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(smallworld,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub点的节点拥有极其多的连接,而大多数节点只有很少量的连接。少数Hub点对无标度网络的运行起着主导的作用。从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。随机网络,任意两个点之间的特征路径长度短,但聚合系数低。而小世界网络,点之间特征路径长度小,接近随机网络,而聚合系数依旧相当高,接近规则网络。发现规则网络具有很高的聚合系数,大世界(large world,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(small world,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。 4.从自组织临界态的角度来看,地震的物理原理是什么

物理研究性学习论文

物理学与世界进步论文 摘要:物理学是一科探究一切物质的运动规律及其组成揭示它们之间的联系和各种运动之间的关系的广博而丰富的学问。物理学的进展密切联系着人类社会的进步和发展,物理学在自身的发展进步中积累的思想方法是人类思想领域的瑰宝。对物理的研究或学习要永远抱着一颗敬畏和永不止步的心。 关键词:物理学、牛顿、工业革命、物理思想、物理与战争、中国的物理 物理学是一科探究一切物质的运动规律及其组成揭示它们之间的联系和各种运动之间的关系的广博而丰富的学问。作为自然科学的一门重要基础科学,物理学历来是人类物质文明发展的动力和基础。同时作为人类追求真理、探索未知世界奥秘的强有力工具,物理学又是一种方法论和哲学观。在人类文明漫长的岁月中,这种古老而又生机勃勃的学科为我们造就了一个个光辉的里程碑。 物理学的进展密切联系着人类社会的进步和发展,从电话的发明到当代互联网络实现的实时通信;从蒸汽机车的制造成功到磁悬浮列车的投入运行;从晶体管的发明到高速计算机技术的成熟等等。这些无不体现着物理学对社会进步与人类文明的贡献。当今时代,物理学前沿领域的重大成就又将会引领着人类文明进入一片新天地。 在历史的滚滚长河中,涌现了一大批物理学先驱,大师,他们性格可能或好或坏,但无可争议的是他们为人类进步和社会发展做出了巨大贡献。牛顿在担任皇家学会会长期间发生了一些不好的事,甚至到晚年还开始研究神学,但也有许多人认为牛顿还是有许多用当时科学和他的学识无法解释的事,所以才开始研究神学,以得到解释,但不管怎么说牛顿是经典物理学的创始人之一,为人类的进步和社会的发展做出过巨大贡献是无可争议的。 物理学作为自然科学的一门重要基础学科,它的研究成果和研究方法可以直接应用于化学、生物、地理、气象等自然科学,大大加速了自然科学的发展和分化独立,甚至形成了新的独立学科或分支学科.如天体物理学、空间物理学、地球物理学、流体力学、生物物理、物理化学、量子化学等等,使人们更全面地探索、认识自然界的规律。作为现代科学基石的物理学,在科学文化和创立现代世界的技术文化中同样扮演了重要角色,物理学是文化不可分割的一部分。物理学的成就直接发展了各种各样的工程技术,形成了今天门类齐全、多样的工业体系.今天的许多高新技术也仍然是以物理学的研究成果为基础的.这些工程技术的发展应用,极大地提高了社会生产力水平,改变了人类的生活、生产方式,创造了辉煌的物质文明.比如,机械、建筑科学就是经典力学原理的实际运用.今天的电力、电子工业是电磁学发展的结果,光学特别是激光技术使得光纤通信、互联网、激光医学等蓬勃发展,在万有引力定律基础上发展起来的航天技术使得人类的足迹不断地向宇宙深处延伸。 在近代一次又一次的世界大变革中,好像没有中国的身影,特别是物理学中更是不见了以往“天朝上国”的身姿,这和中国自古传统以及和中国以人为核心的思想有关,当然最大的关系是,中国自古的教育体系有关,我们也无法去评价他的好坏,他阻碍了中国的科学发展,但不得不说,中国能在历史长河中一直保持自身的完整性,也是这种教育模式的功劳。但其实在中国物理并不是没有发展,而是一直得不到壮大和正视。 在中国,早在2300年之前,有关物理的名词就出现了。与今日之含义相比较,那时的含义要宽泛得多。它泛指人类对自然界及人类自身的理性认识。中国古代思想家认为自然界的规律和人文社会的规律是统一的,人文社会的法则也应该归结为天地、自然的法则;后来有人把这个观点概括为“天人合一”。从这点来看,当时的物理学与哲学是混为一体的。 中国古代的学者很关注对自然现象的观察和理解。在儒家经典著作之一的《大学》中,曾把对人的教育过程描写为:“物格而后知至,知至而后意诚,意诚而后心正,心正而后身修,

《星际穿越》中的物理学

《物理学基础与前沿专题》课程论文 题目:《星际穿越》中的物理学 姓名:林亚南 学号:SY140954 年级:2014 院系:理学院 专业:学科教学(物理)专业 任课教师:邹斌 2014年 12月 30 日

《星际穿越》中的物理学 一、为什么宇宙飞船要旋转 这是一个比较简单的问题。首先简单解释一下对于在太空飞行的宇航员来说何谓“失重”。 下面是一些关键点: (1)太空里仍有万有引力; (2)当宇航员(和飞船)只在万有引力的作用下加速时,宇航员就会有失重感; (3)对于宇航员来说,这种感觉就像重力“消失”了; (4)但人类并不怎么能感觉到重力,因为它作用于我们身体的每一个部分。 事实上,我们将重量和接触到的外力,例如地面支撑我们的力,联系起来。我们称这种力为“表观重量”(apparent weight)。 飞船当然受到引力,但引力都用来改变飞船的速度了。宇航员感到的“失重”,失去的其实是表观重量。而解决失重感的方法,就是对物体施加某种力,使之具有表观重量。 图1 地球上与飞船上的宇航员所受的力 上面的图中有两个宇航员。左边那个站在地球上,右边那个站在宇宙飞船里。如果宇航员处于引力非常小的地方(如深空),唯一使他“感受到重量”的方法办法就是令地面对他施加支持力。这种情况下,右边的宇航员也能像左边的一样感受到重量。 那么要如何在太空里对宇航员施加这个力呢这就要从力的性质入手了。大家对

下面这个公式应该十分熟悉: 这个公式表明物体会在其受到的(净)合力下加速。力和速度都是矢量,现在我们只研究极短时间内物体的运动状况。在这个极短的时间段内,物体的平均加速度是: 图2 宇宙飞船中的宇航员的速度 做圆周运动需要加速度,这一点其实我们早就知道了——每次开车转弯时,你都能感受到这股沿着角加速度方向的力。宇宙飞船在旋转时的原理亦是如此。宇航员(在旋转飞船里)受到的表观重量只取决于两点——圆周的半径和旋转的速度(通常用角速度ω表示)。以合适的速度做匀速圆周运动,飞船里的宇航员也可以获得表观重量。下面是在旋转飞船里的表观重量的表达式(用重力加速度g 来衡量): 大的宇宙飞船(半径r比较大)不需要转得太快。如果飞船比较小,就要转快一些。 图3 《星际穿越》中的宇宙飞船 二、宇航员能活着穿过虫洞吗 (一)虫洞是什么 虽然爱因斯坦和他的助手纳森·罗森(Nathan Rosen)最早不这么叫它,但是虫洞最初的确是他们的智慧结晶。当时他们正在试图用各方法来解爱因斯坦的广义相对论方程,以及用一个纯粹的数学模型来解释整个宇宙,包括重力,以及构成物质的各种粒子。其中包括的一种方法是将空间描述成两个几何面,其间由“桥”连接,而在我们的感知中,这些桥就是粒子。

物理学最前沿八大难题资料

物理学最前沿八大难 题

物理学最前沿八大难题 当今科学研究中三个突出的基本问题是:宇宙构成、物质结构及生命的本质和维持,所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 我们可以从物理学最前沿的八大难题来了解最新的物理学动态。 难题一:什么是暗能量 宇宙学最近的两个发现证实,普通物质和暗物质远不足以解释宇宙的结构。还有第三种成分,它不是物质而是某种形式的暗能量。 这种神秘成分存在的一个证据,来源于对宇宙构造的测量。爱因斯坦认为,所有物质都会改变它周围时空的形状。因此,宇宙的总体形状由其中的总质量和能量决定。最近科学家对大爆炸剩余能量的研究显示,宇宙有着最为简单的形状——是扁平的。这又反过来揭示了宇宙的总质量密度。但天文学家在将所有暗物质和普通物质的可能来源加起来之后发现,宇宙的质量密度仍少了2/3之多! 难题二:什么是暗物质 我们能找到的普通物质仅占整个宇宙的4%,远远少于宇宙的总物质的含量。这得到了各种测算方法的证实,并且也证实宇宙的大部分是不可见的。

最有可能的暗物质成分是中微子或其他两种粒子: neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据说是没有较为有效的测量方法。又这三种粒子都不带电,因此无法吸收或反射光,但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。如果找到它们的话,很可能让我们真正的认识宇宙的各种情况。 难题三:中微子有质量 不久前,物理学家还认为中微子没有质量,但最近的进展表明,这些粒子可能也有些许质量。任何这方面的证据也可以作为理论依据,找出4种自然力量中的3种——电磁、强力和弱力——的共性。即使很小的重量也可以叠加,因为大爆炸留下了大量的中微子,最新实验还证明它具有超过光速的性质。 难题四:从铁到铀的重元素如何形成 暗物质和可能的暗能量都生成于宇宙初始时期——氢、锂等轻元素形成的时候。较重的元素后来形成于星体内部,核反应使质子和中子结合生成新的原子核。比如说,四个氢核通过一系列反应聚变成一个氢核。这就是太阳发生的情况,它提供了地球需要的热量。当然也还有其它的种种核反应。 当核聚变产生比铁重的元素时,就需要大量的中子。因此,天文学家认为,较重的原子形成于超新星爆炸过程中,有大量现成的中子,尽管其成因还不很清楚。另外,最近一些科学家已确定,至少一些最重的元素;如金、铅等,是形

物理学前沿论文

物理学前沿课程作业 题目:一、超导材料的研究与发展 光催化反应机理 二、TiO 2 姓名:谭琳 学号:S130720032

一、超导材料的研究与发展 1、 引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。 2、 分类 2.1按成分分为: 元素超导体、合金和化合物超导体,有机高分子超导体三类。 2.2按Meissner 效应分为: 第一类超导体: 超导体在磁场中有一同的规律,如图a 所示:当HH c 时,B=μH ,即在超导态内能完全排除外磁场,且只有一个值。除钒、铌、钌外,元素超导体都是第一类超导体。 第二类超导体: 如图b 所示,第二类超导体的特点是:当H0而B< μH ,磁场部分穿透。当H>H c2时,B= μH ,磁场完全穿 透。也就是在超导态和正常态之间有一种混合态存在,H c 有两个值H c1和H c2 。钒、铌、钌及大多数合金或化合物超导体都是属于第二类导体。 3、 性质 3.1零电阻性 超导材料处于超导态时电阻为零,能够 无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维

物理学前沿简介

放射物理与防护绪论 物理学是自然科学中基本的学科,是研究物质运动最一般规律和物质基本结构的学科。在尺寸标度上涉及从基本粒子到整个宇宙,在时间标度上从飞秒级的短寿命到宇宙纪元。物理学确立的新概念和理论,已经成为人类对周围世界认识的不可分割的部分,直接影响到社会生产和生活,对社会发展起着推动作用。一、物理学的发展 纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段。 (一)物理学萌芽时期 在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。 在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直进、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的著作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。电磁学方面,发现了摩擦起电、磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、元气论、阴阳五行说、以太等假设。 在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。 总之,从远古直到中世纪(欧洲通常把五世纪到十五世纪叫做中世纪)末,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件

《物理学前沿》 思考题和习题精解

《物理学前沿》思考题和习题精解 第1章 1.1 你喜欢宇宙学吗?为什么? 1.2 你觉得公众对探索宇宙奥秘的兴趣越来越浓的原因是什么? 1.3 爱因斯坦指出:宇宙中最不可理解的事,是宇宙居然是可以理解的! 1.4 宇宙是均匀的,这是很重要的一点,叫做宇宙学原理。 1.5 宇宙究竟是什么?古人的定义:“古往今来谓之宇,四方上下谓之宙。” 宇宙是天地万物的总称,是无限的空间和时间的统一,“宇”是空间的概念,是 无边无际的;“宙”是时间的概念,是无始无终的。 1.6 在中国古代,关于宇宙的结构,主要有三派学说,即盖天说、浑天说和 宣夜说,此外还有昕天论、穹天论、安天论等。 1. 7 西方古宇宙说种种古印度的宇宙说更为生动,他们把宇宙的天地解释 为“海中龟驮着大象,大象背着大陆,周围环绕大蛇”的“大象龟蛇”说。在西 方有古西方的宇宙鸟龟塔说。 1.8 1924年,美国天文学家哈勃(Edwin Powell Hubble,1889-1953)发现T 仙女座大星云中的造父变星,并根据其光度变化周期推算出“仙女座大星云远在 银河系之外,是尺度同银河系相当的巨大恒星系统”的结论。这一重大发现最终 结束了多年来关于这类旋涡状星云是近邻天体还是银河系外的“宇宙岛”的争论,将人类认识宇宙的范围从银河系扩展到众多星系组成的广阔世界,开启了研究浩 瀚宇宙的新航程。 第2章 2.1 .1 仅通过直接观察,你怎样辨别天空中的一个特定天体是不是行星? 2.2 图2.1-4中的星星是顺时针旋转还是逆时针转动? 2.3 描述一个你用眼睛能做的观察以否定下述理论:各行星附在一些透明球 壳上,这些球壳以复杂的方式旋转,但总是以地球为中心,行星就是这样绕地球 运行的(地心说)。 2.4我们怎么知道地球是圆的? 答:研究教材。 2.5 开普勒喜欢哥白尼的理论中的那些地方,不喜欢哪些地方? 答:开普勒喜欢哥白尼的理论中的太阳作为宇宙的中心, 不喜欢圆轨道。 2.6 哥白尼赞成毕达哥拉斯学派,认为宇宙是和谐的,可以用简单数学关系 表达宇宙规律的基本思想。可是在托勒密的地心说中,对环绕地球运动的太阳 河其他五颗行星的运动描述非常烦琐复杂、牵强。哥白尼发现如果把太阳 作为宇宙的中心,一切将变的简单、清晰。 第3章 3.1我们怎么知道地球和别的行星绕太阳公转? 答:研究教材。 3.2 从哥白尼日心说的诞生过程看宗教对科学的作用是推动还是阻碍? 3.3 开普勒在第谷的观测数据的基础上,经过各种尝试,认识到了行星运动轨道不是圆而是椭圆,由此他提出了两个定律,分别是: ①椭圆定律,即每个行星的轨道是一个椭圆,太阳位于一个焦点上; ②等面积定律,即在行星与太阳间作一条直线,则此直线在行星运动时

物理学前沿问题探究

课程名称:前进中的物理学 论文题目:物理学前沿问题探究 学号: 姓名: 年级: 专业: 学院: 完成日期:

物理学前沿问题探究 我是南开大学物理学院的学生,自然对物理学的前沿问题较一般的同学有更多的了解,对这方面也更感兴趣,我希望能更多地了解这方面的知识,以使自己对物理学的未来有一个更清晰的认识。 物理学——一门非常严肃的科学,源自哲学,由于数学方法的引进而成为一门独立的科学,其终极目的是探知宇宙的精神。 我们的物理学发展到现在已经为我们认识和改造世界提供了一件又一件法宝: 光学显微镜,使生物学拥有了细胞学说; 蒸汽机,引发了工业革命; 引力理论,成为了太空航行的理论依据; 电力的发现,让化学出现了新的分支——电化学; 能量守恒定律,使人们不在盲目建造永动机; 热力学第二定律,指出了时间的方向性; 电子显微镜,使生命科学进入分子生物学时代; 电子计算机,引领世界进入信息时代; 将来,量子通信,量子计算机,必将使世界进入全新的量子时代! 我相信物理学必将继续引领世界前进的步伐,但是其基础是一个个前沿难题的解决或新发现,物理领域有着大量的前沿课题,相信我们年轻的一代,以及其他未来的科学家必将在这些方面有所建树。 下面我将对这些疑难问题做一个概述: 1、关于整个宇宙和天体的创生和演化 宇宙起源问题、黑洞的研究、宇宙年龄问题、宇宙有怎样的结构、暗物质、暗能量、类星体的结构、引力波的存在问题、太阳系诞生问题、地-月创生和演化、生命起源于哪里、外星生命是否存在、宇宙加速膨胀之谜…… 2、微观世界中物质结构和基本粒子的相互作用及其运动规律 物质深层结构之谜(质子自旋危机)、概率论和决定论的争论、统一场论的最终导出(大统一、超统一)、超弦、真空不空问题、量子计算机、量子隐形传态、量子非局域性、量子论与相对论之矛盾、狭义相对论与超光速疑难…… 3、宏观范围内的非线性复杂性问题 自组织与耗散结构、分形与分维、多体问题、混沌理论、孤立波、

应用物理专业前沿小论文

实现光存储的关键——电磁感应透明(EIT)技术 辽宁大学 2015级 应用物理学 强子薇 151006132

【摘要】 自上世纪60年代激光发明以来,人们对光的性质的研究已经从经典光学拓展到非线性光学和量子光学等领域。由于激光的高度相干性和高强度等特点,光与物质的相互作用被广泛而渗入地研究。光与原子相互作用是量子信息科学的一个重要研究领域,自从频率与原子共振跃迁线匹配的激光器问世以后,这一领域的研究进展迅速。原子相干效应可以使原子共振跃迁频率附近的光学性质如吸收和折射(线性极化率)、非线性极化率等发生奇特的变化,产生电磁感应透明现象,即EIT(electromagneti-cally induced transparency )。1999年Harvard大学Hau 等人利用电磁感应透明(EIT)技术在450nK的超冷原子中实现了17m/s的极慢光速。基于EIT的慢光技术具有实现光存储的巨大潜力。 【关键词】 电磁感应(EIT)透明量子干涉慢光技术光存储 【正文】 一、慢光的产生 慢光原理:让我们来用相速度和群速度这两个概念来说明慢光的产生。一般而言,光在介质中的速度和介质折射率有关,而光的传播速度又可以分为单一频率光波传播的相速度都和许多频率成分组成的光波波包传播的群速度。相速度是指单色平面波在介质中其等相位面的传播速度。对于色散介质因不同频率的单色平面波将以不同的相速度在介质中传播。对由多个单色平面波构成的波包络,其传播速度用群速度。 从本质上说,控制群速度就是控制介质的色散特性,要想实现大的群速度改变,就得产生强色散曲线。而获得强色散曲线的其中一类方法便是在介质中通过控制光的吸收和增强来改变介质的色散特性。对普通介质来说,当光脉冲的能量不等于介质中原子的电子能级的能量差(即光是远离共振)时,发生“正常”色散。即在色散曲线中,折射率n随频率的增加而单调增加,这意味着折射率对频率的偏导大于零。因此,这种“正常”色散减小了群速度。[6] 由介质极化率的微观机理可知,在介质共振频率处存在大的折射率改变,可有效减慢光的传播速度,但与此同时,介质共振频率处存在强吸收,使得光波很难透过介质而被实验观察,因而在很长一段时间内对慢光的研究都停滞不前。 转机出现在上世纪80年代,人们意识到叠加的电子态被激发时介质的光学性质可以发生极大的变化。这种叠加态的激发涉及到量子光学中极其重要且影响深远的物理概念——量子干涉。由于量子干涉对介质的色散性质的改变,原本共振处的反常色散变为正常色散,这能引起介质折射率的加强及非线性效应的改变。介质色散改变的同时,其吸收特性也发生了变化。光可以透过高吸收的光密介质,不但没有损耗甚至出现放大,而且是无粒子数反转的放大。基于此的EIT 技术可以克服瓶颈,克服介质共振频率处的强吸收。 二、EIT技术的原理 电磁波本身是一种能量,感光材料一般都是混合物,其中的一种材料会吸收电磁波的能量,(原子吸收电磁能量会导致电子跃迁而改变化学性能),发生反应,由不透明变成透明,或者由透明变成不透明。这点和变色镜的道理是一样的,因为光也是一种电磁波,都是能量的形式存在的物质。最简单的变色镜原理:玻璃

物理学前沿学习心得

物理学前沿学习心得 专业班级:物联网13-01 姓名:司文哲 学号:311309080116

物理学前沿这门课是我看名字就选的一门选修课,因为本身对于物理拥有极大的兴趣,喜欢物理这门学科,并且还因为对物理前沿的知识感到好奇和前沿物理学的研究对世界的改变让我感到惊奇而选的这门课。在上前几节课的时候,一直听老师讲的是有关物理学历史的问题,这让我有困惑和不解,为什么报了个物理学前沿却在这听物理学历史,后来在一节课中老师也说到这个问题,然后思考过后,才觉得对于物理学的历史学习还是很有必要的,有助于整个对物理学的发展有个看法和了解,这样对物理学前沿问题才会感到有兴趣。经过4个星期的上课,多多少少也了解了点屋里前沿知识的大概皮毛,这篇心得就把老师提到的几个21世纪物理学的发展方向以及各个前沿的基本概念、前景总结一下,也算是对物理学前沿这门课程的学习总结。 在查阅物理前沿的资料之前,我先对有一节课老师放的宇宙的视频说一点我对宇宙的看法和认识,我觉得我们生活在繁杂世界中,纷纷扰扰,喜怒哀乐,总以为人才是世界的中心,殊不知这是多么渺小的想法。一个大自然就能轻轻松松把人类毁灭,更不用说浩瀚无边的宇宙了,宇宙就像心胸广袤,坐定如山的巨大长者。又如各个地方都在发生着变换,停歇不得的魔鬼。我们对宇宙的认识从华夏大地的人们认为的盖天说和巴比伦的拱形天地被大海环绕的世界,到无锡拉人从美学观念觉得地球是圆形的,认为天体和我们居住的大抵都是圆形的,再到地心说,日心说和万有引力定律的发现,再到发现银河系以外的星系,期间经过了人类多少的努力和困难,才认识到我们生活千万年的外界是什么东西,然而宇宙却千万年间一直在这里,巍然无比,让人心生敬畏。 21世纪物理学发展的前景还是非常巨大的,有许多我认为改变世界的发现还在研究当中在本篇中我查阅一些物理前沿的研究分支,作为自己简单的学习。 1.暗物质和暗能量 暗能量和暗物质是一种不可见的、能推动宇宙运动的能量,宇宙中所有的恒星和行星的运动皆是由暗能量与万有引力来推动的。根据“普朗克”探测器收集的数据,科学家对宇宙的组成部分有了新的认识,宇宙中普通物质和暗物质的比例高于此前假设(73%),而暗能量这股被认为是导致宇宙加速膨胀的神秘力量则比想象中少,占不到70%。]暗能量是宇宙学研究的一个里程碑性的重大成果。支持暗能量的主要证据有两个。一是对遥远的超新星所进行的大量观测表明,宇宙在加速膨胀。按照爱因斯坦引力场方程,加速膨胀的现象推论出宇宙中存在着压强为负的“暗能量”。暗能量是什么,它的存在意味着什么?科学家才刚开始尝试回答这些问题。暗能量对宇宙整体的作用泄漏了它的行踪,而人们逐渐意识到,暗能量不仅对整个宇宙有影响,似乎也能操控宇宙的居民,指引恒星、星系和星系团的演化进程。虽然以前并没有意识到暗能量对这些结构的影响,但天文学家们几十年来一直在研究它们的演化过程。 讽刺的是,暗能量的无处不在,反而让人们很难意识到它的存在。暗能量与物质不同,它是均匀分布的,不会在某个地方聚集成团。不论是在你家的厨房,还是在星际空间,暗能量的密度都完全一样,约为10^-26千克/立方米,相当于几个氢原子的质量。太阳系中所有的暗能量加起来,与一颗小行星的质量差不多,在行星的“舞蹈”中,几乎起不了作用。只有在巨大的空间尺度上和时间跨度上,才能体现出暗能量的影响力。 2.广义相对论 广义相对论是阿尔伯特·爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。在广义相对论中,引力被描述为

工程热物理前沿课程论文(DOC)

研究生“工程热物理前沿”论文 重庆大学动力工程学院 二O一四年一月

摘要 我国是世界上能源结构以煤为主的国家之一,也是世界上最大的煤炭消费国。随着经济的发展,能源问题成为社会与经济发展的一个长期制约因素。关系全局的主要能源问题有:能源需求增长迅速,供需矛盾尖锐;能源结构不合理,优质能源短缺;效率低下,浪费惊人;环境影响更加严重。面对时代的召唤,工程热物理等相关学科将承担起我国国民经济发展的能源与环境的重大需求,努力推进节能和科学用能已成为学科的指导思想和核心,而抓紧化石燃料的洁净技术、大力开发可再生能源和新能源技术则是工程热物理学科的发展战略重点。本文主要介绍了工程热物理学科在核能发电技术、太阳能发电技术、生物质气化技术、燃料电池技术等新能源领域,及循环流化床洁净高效燃烧技术方面取得的成绩及未来发展方向。 关键词:工程热物理,核能发电,太阳能发电,生物质气化技术,燃料电池,循环流化床

ABSTRACT China is not only one of the countries whose energy structure is coal-based, but also one of the world's largest coal consumers. With the development of economy, the energy issue is the social and economic development of a long-term relationship factors, the main energy problem has global demand is growing rapidly, energy sharp contradiction between supply and demand, The energy structure unreasonable, high-quality energy shortage, Low efficiency and waste astonishing, The environmental impact is more serious. Facing the call of The Times, engineering thermal physical related subject will assume the development of our national economy energy and environment of the great demand to promote energy conservation and science use has become disciplines guiding ideology and the core, to grasp fossil fuel clean technology, vigorously develop renewable energy and new energy technology is engineering thermal physical development of the discipline of strategic emphasis. This article mainly introduced the engineering thermal physical sciences in solar power generation technology, nuclear power technology, biomass gasification technology, fuel cell technology and other new energy field, and circulating fluidized bed clean efficient combustion technology's achievements and future development direction. Keywords:Engineering thermal physical, nuclear power, solar energy, biomass gasification, fuel cells, fluidized bed

物理学前沿知识

《九年义务教育三年制初级中学教师教学用书第二册物理》试用修订版上海科学技术出版社华东地区初中物理教材编写协作组编2002年8月第一版第一次印刷 参考资料P346 1、物理学——前沿科学的支柱 自然界是无限广阔庭丰富多彩的。物理学是自然科学中最基本的科学,它研究物质运动的形式和规律,物质的结构及其相互作用,以及如何应用这些规律去改造自然界。因此,物理学又是许多科学技术领域的理论基础。 从本世纪开始,物理学经历了极其深刻的革命,从对宏观现象的研究发展到对微观现象的研究,从研究低速运动发展到研究高速运动,由此诞生了相对论和量子力学,并在许多科技领域中引发了深刻的变革。 物理学在认识、改造物质世界方面不断取得伟大成就,不断揭示物质世界内部的秘密;而社会的发展又对物理学提出无穷无尽的研究课题。例如,原子能的利用,使人类掌握了武器和新能源;激光技术的出现,焕发了经典光学物理的青春,使许多以往光学技术办不到的事情,现还能办到了;半导体科学技术的发展,导致了计算技术、无线电通信和自动控制的革命;超导电性、纳米固体材料和非晶态材料的出现,如金属物理、半导体物理、电介质物理、非晶态物理、表面与界面物理、高压物理、低温物理等。此外,物理学与其他学科之间的渗透,又产生了许多边缘交叉学科,如天体物理、大气物理、生物物理、地球物理、化学物理和最近发展起来的考古物理等。 我们可以说,物理现象存在于人类生活和每个角落,发生在宇宙的每一地方,物理学是推动科学技术发展的重要支柱,它是自然科学中应用广泛、影响深刻、发展迅速的一门基础科学和带头科学。 2、“无限大”和“无限小”系统物理学 “无限大”和“无限小”系统物理学是当今物理学发展一个非常活跃的领域之一。天体物理学和宇宙物理学就属于“无限大”系统物理学的范畴,它从早期对太阳系的研究,逐步发展到银河系,直至对整个宇宙的研究。热大爆炸宇宙模型作为20世纪后半叶自然科学中四大成就之一是当之无愧的。利用该模型可以成功地解释宇宙观测的最新结果,如宇宙膨胀、宇宙年龄下限、宇宙物质的层次结构、宇宙在大尺度范围内是各向同性的等重要结果。可以说,具有暴胀机制的热大爆炸宇宙模型已为现代宇宙学奠定了可靠的基础。但是到目前为止,关于宇宙的起源问题仍没有得到根本解决,还有待于科学工作者进一步的努力和探索。 原子核物理学和粒子物理学等属于“无限小”系统物理学的范畴。它从早期对原子和原子核的研究,逐步发展到对基本粒子的研究。 基本粒子是在物质结构层次中属于比原子核更深层次的物质单元,如光子、质子、中子、π介子等。迄今已确认有400余种基本粒子,它们都是通过宇宙射线和加速器实验发现的。基本粒子的性质可用一系列描述其内禀性质的物理量,如质量、电荷、自旋、宇称、同位旋、轻子数、重子数、奇异数、超荷等表征。基本粒子之间存在着弱相互作用、电磁相互作用和强相互作用(见下面介绍的“物质间的基本相互作用”)。通过这些相互作用,基本粒子可发生创生、湮没以及相互转化等现象。 按照参与相互作用的类型,通常将基本粒子区分为三大类:轻子、强子、和规范玻色子。轻子如电子、μ子和中微子等;它们仅参与弱作用和电磁作用。强子如质了、中子、π介子等,它们参与上述全部三种作用。规范玻色子如光子、中间玻色子(W±,Z0)、胶子等,它们是传递相互作用的媒介粒子,光子传递电磁作用,中间玻色子传递弱作用,胶子传递强作用,目前人们已经知道,强子都是由更小的粒子——“夸克”构成。至今已经发现了多种夸克。

物理化学-化学前沿与进展资料

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

相关主题
文本预览
相关文档 最新文档