当前位置:文档之家› 探究斐波那契数列

探究斐波那契数列

探究斐波那契数列
探究斐波那契数列

探究斐波那契数列

教学目标:

1.通过了解斐波那契数列,激发学生的学习兴趣,体会抽象数学概念的实际意义,更好地理解、掌握数学。

2.通过展示生活中的数学,让学生欣赏数学的外在美和,体会数学的内在美,感受数学的神奇美,欣赏数学的艺术美。

3.指导学生在现代技术条件下如何从网络上选择知识、学习知识进而解决问题。

教学重点:

1.认识斐波那契数列。2、感受数学美和数学思想。

教学难点:

1.指导学生克服数学材料文章的抽象符号越多、阅读困难的问题。

2.提高探究内容的的可读性、趣味性。

教学内容分析:

中数学课程提倡把数学探究以不同的形式渗透在各模块和专题内容之中。《斐波那契数列》是人民教育出版社《普通高中课程标准实验教科书〃数学〃必修5》第37页的阅读材料,是学生在学习完数列的概念与表示方法后安排的一节课外学习内容。斐波那契数列有广泛的应用价值。如(1)叶子在植物梗予上的排列(2)花朵的花瓣数(3)蜜蜂的繁殖(4)人口年龄结构的预测(5)优选法(6)方程论,它涉及面之广,引起了科学家的密切注意和极大的兴趣,美国专门出版了一份《斐波那契季刊》,登载斐波那契数列在应用上的新发现及相关理论。这些内容有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,提高学生对数学的科学价值、应用价值、文化价值的认识。

教学方式和手段:

本节课采用高中数学课程倡导的自主探索、动手实践、合作交流、阅读自学等学习数学的方式,有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。本节课以“数学探究”的学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。

在教学手段上,采用PowerPoint,Excel、几何画板等多媒体技术手段,它为我们提供大量的信息和课程内容,提高了课堂效率、丰富课堂内容。

教学过程:

1.1数学在人类历史上的作用。

1.2波那契兔子问题、递推关系式、斐波那契的国籍、生平、著作、介绍斐波那契的图书、杂志。

1.3组的分工。

2.1第一小组汇报

内容:斐波那契数列通项公式、前n 项和公式,用几何画板验证,用Excel 求解斐波那契。

探究结果:

(1)通项公式为a n = 15 [(1+52 )n -(1-52 )n ] (2)S n = 15 [(1+52 )n+2 -(1-52 )n+2] -1 (3)可以用Excel 计算机求斐波那契数列,发现12-=+n n a S 。

2.2第二小组汇报

探究内容:斐波那契与动植物生长

探究结果:

斐波那契与枝叶生长:波兰数学家史坦因豪在其名著《数学万花筒》中提出一个问题:一棵树一年后长出一条新枝,新枝隔一年后成为老枝,老枝又可每年长出一条新枝,如此下去,十年后新枝将有多少?这个规律,就是生物学上著名的“鲁德维格定律”。

斐波那契与蜜蜂繁衍:从蜜蜂的繁殖来看,蜜蜂的生长规律是很有趣的,雄蜂只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌蜂(即工蜂或蜂后),末受精的孵化为雄蜂、人们在追溯雄蜂的祖先时,发现一只雄蜂的第n 代的祖先数目刚好就是斐波那契数列的第n 项Fn .如以*表示雄蜂,×表示雌蜂,就得雄蜂的家属结构图(图2):雄蜂第六代的排列情况与钢琴的13个半音阶排列也完全吻合。因此音调也与斐波那契数列有关.

2.3第三小组汇报

探究内容:斐波那契数列与螺线

探究结果:

蓟,它们的头部几乎呈球状。在图【3-1】里,标出了两

条不同方向的螺旋。我们可以数一下,顺时针旋转的螺旋一共

有13条,而逆时针旋转的则有21条。例如带小花的大向日葵的

管状小花排列成两组交错的斐波那契螺旋,并且顺时针和逆时

针螺旋的条数恰是斐波那契数列中相邻的两项,其中顺时针的

螺旋有34条,逆时针的螺旋有55条。蒲公英和松塔、蜘蛛网、

水流的旋涡、蜗牛壳的螺纹以及星系内星球的分布等也是按照斐波那契螺旋排列的。

法国数学物理学家杜阿迪和库因此创立了一门新的学科:植物生长动力学。他们指出:植物的相继原基沿着一条很精密盘绕的螺线(生成螺线)十分稀疏地相间排列,而且相继原基之间的夹角恰是82137'

,这个角恰恰是将圆周分成1:0.618…..的两个半径夹角,这样原基可以最有效地挤在一起,这是让实粒按两条螺线分布且它们紧密而不会留下空隙地唯一角度。

2.4第四小组汇报

探究内容:斐波那契数列的简单性质

探究结果:

斐波拉契的性质与魔术。 )3()1(122≥--=--n a a a n n n n

例如:12=1〃2-1; 22=1〃3+1;32=2〃5-1;52=3〃8+1;82=5〃13-1;132=8〃21+1;;212

=13〃34-1;342=21〃55+1

这与平时的拼剪魔术有关,例如:82 ←→ 5〃13(即64=65)

其它性质:(1))3(12211≥=----+n a a a a a n n n n n (2))3(12212≥=+--n a a a n n n 2.5第五小组汇报

探究内容:斐波那契数列与黄金分割。

探究结果:用斐波拉契数列1,1),3(2121==≥+=--a a n a a a n n n ,构造新数列1+=n n n a a b ,请写出数列}{n b 的前5项,发现规律618.0215lim 1

≈-=+∞→n n n a a 2.6第六小组汇报

探究结果:

F n =?????+?++++?+++-+----为奇数时当为偶数时当)(n C C C C n C C C C n n n

n n n n n n n 212)1(222211022110s 2.7第七小组汇报

探究内容:斐波那契与叶序、花瓣数现象

探究结果:叶子的排列,能够用以下的叶序分数来表示,每一循回的叶数

完成的旋转圈数,樱树的叶序分数为52,榆树、郁金香、梨树、柳树的叶序分数为 21、31、83,13

5,还有其它的叶序分数为

55213413218,,,所有的叶序分数都是斐波那契数列中交错的两项组成,此外,不少植物叶状虽然不同,但其排布却有相似之处,比如相邻两张叶片在与垂直平面上的投影夹角是82137'

,科学家经过计算表明:这个角度对植物叶子通风,采光来讲,都是最佳的。 3.1师:小结

4练习

4.1、一只蜜蜂从0号蜂房开始爬,只能往比原来的房号大的蜂房爬,最后爬到9号蜂房,问有多少种不同的爬法?(2003年全国希望杯数学邀请赛)

4.2、有一条n 级楼梯,如果每步只能跨上一级或两级,要登上第n 级台阶,共有几种走法?

斐波那契数列

第1章绪论 布置的作业共6题: 基础知识题:1.6 1.7 1.8 1.10 算法设计题:1.17 1.20 一、基础知识题 ◆1.6 ③在程序设计中,常用下列三种不同的出错处理方式: (1)用exit语句终止执行并报告错误; (2)以函数的返回值区别正确返回或错误返回; (3)设置一个整型变量的函数参数以区别正确返回或某种错误返回。 试讨论这三种方法各自的优缺点。] 答题思路:查错和容错能力 答:程序出错处理是指发现错误并根据出错的原因作出适当的处理,处理的目的是找到出错的原因。出错的原因一般包括缺乏某些资源和程序设计有问题两类。如果是前者,程序仍然可以继续运行,只是处于等待资源或执行其他流程的状态。如果是后者,则需要修改源代码。

◆1.7 ③在程序设计中,可采用下列三种方法实现输出和输入: (1)通过scanf和printf语句; (2)通过函数的参数显式传递; (3)通过全局变量隐式传递。 试讨论这三种方法的优缺点。 答题思路:错误局部化(软件模块化)、执行效率(内存开销) 答:在正规的软件设计中,要求各模块之间以恰当的方式进行调用,以便使各模块中出现的错误局部化。 其是方式3,在出现错误时查错的开销将很大,尽量不使用。

◆1.8 ④设n为正整数,试确定下列各程序段中前置以记号@的语句的频度。评析:频度≠时间复杂度 注意:(1)、(2)、(3)三个程序段中任何两段都不等效(即k和i的终值不相同 )

书后附有答案 标答:程序段(8)取自著名的McCarthy91函数 ? ??≤+>-=100 ))1((10010)(x x M M x x x M 对任何 x ≤100,M(x)=91。此程序实质上是一个双重循环,对每个y(>0)值,@语句执行11次,其中10次是执行x++。 刘解:请注意x 的初值已经是91了,必须加到101才能终止程序的循环。if 语句从x=91开始直到x=101都执行,共执行11次,其中10次是执行x++。

黄金分割与斐波那契数列

第八讲 黄金分割与斐波那契数列 一、 黄金分割 1. 黄金分割的概念 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1):2,取其小数点后三位的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字。 德国天文学家开普勒(J.Kepler )曾说“几何学有两大宝藏,其一为毕氏定理,其二为将一线段分成外内比。前者如黄金,后者如珍珠。” 所谓将一线段分成“中外比(或称中末比或外内比)”,这是欧几里得在《几何原本》(公元前三世纪前后)里的说法: A straight line is said to have been cut in extreme and mean radio when, as the whole line is to the greater segment, so is the greater to the less. 分一线段为二线段,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比。 关于黄金分割的历史,可以追溯到公元前6世纪古希腊的毕达哥拉斯学派,他们已经研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。而《几何原本》是吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数学帕乔利称之为神圣比例,并专门为此著书立说。德国天文学家开普勒称之为神圣分割。当时,人们都还是称之为“中外比”,直到19世纪初,黄金分割这个名称才出现。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们常说的比例方法。 其实有关“黄金分割”,中国也有记载。虽然没有古希腊的早,但它是中国古代数学家独立创造的,后来传入了印度。经考证,欧洲的比例算法是源于中国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 2. 黄金分割的尺规作图 设线段为AB 。作BD ⊥AB ,且 ,连AD 。以D 为圆心,DB 为半径作圆弧,交AB BD 2 1

数列的极限、数学归纳法

数列的极限、数学归纳法 一、知识要点 (一) 数列的极限 1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作 A a n n =∞ →lim . 2.运算法则:若lim n n a →∞ 、lim n n b →∞ 存在,则有 lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ±=±;lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ?=? )0lim (lim lim lim ≠=∞→∞ →∞→∞→n n n n n n n n n b b a b a 3.两种基本类型的极限:<1> S=?? ???-=>=<=∞ →)11() 1(1) 1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、 p b 且)(0)(N n n g ∈≠,则??? ????>=<=∞→)()() (0)()(lim q p q p b a q p n g n f q p n 不存在 4.无穷递缩等比数列的所有项和公式:1 1a S q = - (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞ = (当lim n n S →∞ 存在时) (二)数学归纳法 数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。 ②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。 二、例题(数学的极限)

斐波那契数列资料

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1) 又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质 也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:

专题12数列极限数学归纳法

专题三 函数 不等式 数列 极限 数学归纳法 一能力培养 1,归纳猜想证明 2,转化能力 3,运算能力 4,反思能力 二问题探讨 1 冋题1数列{ a n }满足3] , a i a 2 2 问题2已知定义在R 上的函数f(x)和数列{ a n }满足下列条件: a 1 a , a . f (a n 1) (n =2,3,4, ),a 2 印, f (a n ) f (a n 1) = k(a n a n 1) (n =2,3,4,),其中 a 为常数,k 为非零常数 (I) 令b n a n 1 a n ( n N ),证明数列{b n }是等比数列; (II) 求数列{ a n }的通项公式;(III)当k 1时,求 lim a n . n umv uuuv uuuv uuuv uuuiv uuv 问题3已知两点M ( 1,0) ,N (1,0),且点P 使MP MN , PM PN , NM NP 成公差小 于零的等差数列? uuuv uuuv (I)点P 的轨迹是什么曲线? (II)若点P 坐标为(X g , y 。),记 为PM 与PN 的夹角,求tan 2 a n n a n ,(n N ). (I)求{a n }的通项公式 (II)求丄 100n 的最小值; a n (III)设函数 f(n)是— 100n 与n 的最大者,求 f (n)的最小值.

三习题探讨 选择题 2 1数列{a n }的通项公式a n n kn ,若此数列满足a n a n ,(n N ),则k 的取值范围是 A, k 2 B, k 2 C,k 3 D, k 3 2等差数列{ a n },{ b n }的前n 项和分别为S n ,T n ,若」 --- ,贝V —= T n 3n 1 b n 2 2n 1 2n 1 2n 1 A,— B,- C,- D,- 3 3n 1 3n 1 3n 4 3已知三角形的三边构成等比数列 ,它们的公比为q ,则q 的取值范围是 若AF , BF , CF 成等差数列,则有 1 6在 ABC 中,ta nA 是以4为第三项,4为第七项的等差数列的公差,ta nB 是以-为 3 第三项,9为第六项的等比数列的公比,则这个三角形是 A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空 2m 项之和S 2m ___________________________________ 11等差数列{a n }中,S n 是它的前n 项和且S 6 S 7,S 7 S 8,则①此数列的公差 d 0, 1苗 A, (0, 丁) B,(1 5 1 、5 1 、、 5 c,[1, 丁) D,( 1_5) 2 4在等差数列{a n }中,a 1 8 B ,75 1 ,第10项开始比1大,记 25 t 色 25 4 C , 75 [ im A (a n n n _3 50 S n ) t ,则t 的取值范围是 4 D ,75 t 5o 5 设 A (x i , y i ),B (X 2, y 2),C (X 3, y 3)是椭圆 2 y b 2 1(a 0)上三个点 ,F 为焦点, A, 2X 2 X ] x 3 B,2y 2 y 1 y 3 2 C,— X 2 2 D, X X 1 X 3 X 1 X 3 7等差数列{a n }前n (n 6)项和& 324,且前6项和为36,后6项和为180,则n 22 32 23 33 62 63 {a n }中』m(a 1 a ? 10 一个数列{a n },当n 为奇数时,a . 9在等比数列 2n 3n 6n ,则 lim S n 1 a n ) ,则a 1的取值范围是 ________________ 15 n 5n 1 ;当n 为偶数时,a n 22 .则这个数列的前

斐波那契数列的性质

斐波那契数列的性质 一、通项公式:a n = 5〔1+ 52〕n - 5 〔1? 52〕n 二、设p,q,u,v 为自然数且p = min{ p ,q , u , v} . 若p + q = u + v , 则对于斐波那契数列{ an} ,以下公式恒成立:a p a q - a u a v = (-1)p+1a u-p a q-u 三、a n +1a n?1 - a n 2 = (?1)n (n >= 1, n 属于 N) 四、a 2n +1 = a n +12 + a n 2 (n 属于N ) 五、a n +12 - a n?12 = a n 2 (n >= 1, n 属于N) 六、a n +m = a n?1a m + a n a m +1 (n >= 1, n 和m 属于N) 七、a 2n +2a 2n?1 - a 2n a 2n +1 = 1(n >= 1, n 属于N) 八、a m +n 2 - a m?n 2 = a 2m * a 2n (m > n >= 1) 九、a n?1?a n +2 - a n ?a n +1 = (?1)n (n >= 2) 十、{f 2n f 2n +1} 有极限且等于黄金分割率 5 ?12

下面是一篇文章:

斐波那契数列通项公式 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、…… 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。) 有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 奇妙的属性 随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887…… 从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通) 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64

小学奥数 斐波那契数列典型例题

拓展目标: 一:周期问题的解决方法 (1)找出排列规律,确定排列周期。 (2)确定排列周期后,用总数除以周期。 ①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个 ②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 例1: (1)1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,1829 ÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少? 这个数列的周期是3,16351 ÷=???,所以第16个数是1.二:斐波那契数列 斐波那契是 的有关兔子的问题:

假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 斐波那契数列(兔子数列) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … 你看出是什么规律:。【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】 【巩固】 (1)2,2,4,6,10,16,(),() (2)34,21,13,8,5,(),2,() 例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?

【解析】120÷3=40 2004÷3=668 【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数? 例2:(10秒钟算出结果!) (1)1+1+2+3+5+8+13+21+34+55= (2)1+2+3+5+8+13+21+34+55+89= 数学家发现:连续10个斐波那契数之和,必定等于第7个数的11 倍! 巩固:34+55+89+144+233+377+610+987+1597+2584== 例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … (1)这列数中第2013个数的个位数字是几? 分析:相加,只管个位,发现60个数一循环

浅谈斐波那契数列的真善美

浅谈斐波那契数列的真善美 小七怪小组 摘要自斐波那契数列产生至今,人们对其研究的热情经久不衰。本文探究斐波那契数列的真、善、美,简单介绍斐波那契数列到底真在何处、善在何处、美在何处,并且得出斐波那契数列真、善、美三者之间的联系。 关键词斐波那契数列真善美 一、斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道著名的兔子繁殖问题。问题是这样的:如果每对兔子(一雄一雌) 每月能生殖一对小兔子( 也是一雄一雌,下同)每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12个月以后会有多少对兔子呢? 这个问题的解释如下:第一个月只有一对兔子;第二个月仍然只有一对兔子;第三个月这对兔子生了一对小兔子,共有1+l =2 对兔子;第四个月最初的一对兔子又生一对兔子,共有2+l =3对兔子;则由第一个月到第十二个月兔子的对数分别是: l , l , 2 , 3 , 5 , 8 ,13 , 21 , 34 , 55 ,89,144 , …… , 后人为了纪念提出兔子繁殖问题的斐波那契,将这个兔子数列称为斐波那契数列,学术界又称为黄金分割数列。 二、斐波那契数列与真 何为真?“真有两个含义, 一是指客观世界存在的客观物质, 二是指客观世界的本质规律。”[1]在自然界中,许多事物本身蕴含的规律都跟斐波那契数列有关。例如树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,之后才萌发新枝。因此,一株树苗在一 段时间间隔后,例如一年,会长出一条新枝; 第二年新枝“休息”,老枝依旧萌发;此后, 老枝与“休息”过一年的枝同时萌发,当年生 的新枝则次年“休息”。这样,一株树木各个 年份的枝桠数,便构成斐波那契数列。这就是 图1 树木生长与斐波那契数列

数列极限数学归纳法综合能力训练

1 mn 4(m n) mn 2(m n) 【综合能力训练】 一、选择题 1?数列{a n }是等比数列,下列结论中正确的是( ) A. a n ? a n+1 >0 B. a n ? a n+1 ? a n+2>0 C. a n ? a n+2 >0 D. a n ? a n+2 ? a n+4>0 2.在等比数列{a n }中,a 1=sec 0 ( B 为锐角),且前n 项和S n 满足lim S n = ,那么B 的 n a 1 取值范围是( ) A. (0, ) B. (0, ) C. (0, ) D. (0, 2 3 6 4 3.已知数列{a n }中,a n =p^ (n € N ),则数列{a n }的最大项是( ) n 156 A.第12项 B.第13项 C.第 项或13 . D.不存在 4.三个数成等差数列,如果将最小数乘 2,最大数加上 7,所得三数之积为 1000,且成 等比数列,则原等差数列的公差一定是( ) A.8 B.8 或—15 C. ± 8 D. ± 15 112 1 2 3 1 2 9 1 5.已知数列{a n }: , + , + +-, + + …+ ” , ... 那么数列{ 2 3 3 4 4 4 10 10 10 a n ?a n 1 的所有项的和为( ) A.2 B.4 C.3 D.5 n 1 | n n 1 . n 6.已知a 、b € —?a -> lim n ,贝V a 的取值范围是( ) n a n a A. a>1 B. — 11 D.a>1 或一1O ,且 |a 10|<|an|, S n 为其前 n 项之和, 则() A. S 1,S 2,…, S 10都小于零,S 11, S 12, …都大于零 B. S 1,S 2,…, S 5都小于零,S 6, S 7,… 都大于零 C. S 1,S 2,…, S 19都小于零,S 20, S 21 , …都大于零 D. S 1,S 2,…, S 20都小于零,S 21 , S 22 , …都大于零 9.将自然数1, 2, 3,…,n ,…按第k 组含k 个数的规则分组: (1), (2, 3), (4, 5, 6),…,那么1996所在的组是( ) A.第62组 B.第63组 C.第64组 D.第65组 10.在等差数列中,前 n 项的和为S n ,若 S m =2n,S n =2m,(m 、 n € N 且m ^ n ),则公差d 的 值为( )

(完整版)斐波那契数列、走台阶问题

走台阶问题 如: 总共100级台阶(任意级都行),小明每次可选择走1步、2步或者3步,问走完这100级台阶总共有多少种走法? 解析: 这个问题本质上是斐波那契数列,假设只有一个台阶,那么只有一种跳法,那就是一次跳一级,f(1)=1;如果有两个台阶,那么有两种跳法,第一种跳法是一次跳一级,第二种跳法是一次跳两 级,f(2)=2。如果有大于2级的n级台阶,那么假如第一次跳一级台阶,剩下还有n-1级台阶,有f(n-1)种跳法,假如第一次条2级台阶,剩下n-2级台阶,有f(n-2)种跳法。这就表示f(n)=f(n- 1)+f(n-2)。将上面的斐波那契数列代码稍微改一下就是本题的答案f(n)=f(n-1)+f(n+2) 斐波那契数列 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:F(n)=F(n-1)+F(n-2) 递推数列显然这是一个线性。 数学定义: 递归斐波纳契数列以如下被以的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 由兔子生殖问题引出、生物 (计算科学)

特性: 这个数列从第3项开始,每一项都等于前两项之和。 特别指出:第1项是0,第2项是第一个1。 代码: public class Test { static final int s = 100; //自定义的台阶数 static int compute(int stair){ if ( stair <= 0){ return0; } if (stair == 1){ return1; } if (stair == 2){ return2; } return compute(stair-1) + compute(stair-2); //return 递归进行计算 --->递归思想进行数据计算处理 在斐波那契数列中后一项的值等于前两项的和 } public static void main(String args[]) { System.out.println("共有" + compute(s) + "种走法"); } } return compute(stair-1) + compute(stair-2); 在return子句中调用调用compute函数 由斐波那契数列特性得到最后的值 分值拆分

斐波那契数列中的数学美

最美丽的数列------斐波那挈数列 数学科学院宋博文1100500163 在原理课上,我们了解了斐波那挈数列,在课余生活中,我再读小说<达芬奇密码>时,提到了斐波那挈数列,它是被一个艺术家当作线索留给他人的,当时不知道他为什么被艺术家这么看重,以至于可以上升到生命的高度,因此我对斐波那挈数列产生了浓厚的兴趣,所以我结合了老师上课讲的东西,以及自己课下的了解,对斐波那挈数列有了一些认识,现在总结在这里,展示自己学到了什么. 在课上老师讲了斐波那挈数列是由意大利数学家,斐波那挈发明的.当时他是用一个形象的故事为例子而引入的斐波那挈数列. 兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。 斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,2,3.....) 因此斐波那挈数列又叫做兔子数列,我想这个例子真的让我感到数学源于生活,生活的需要是我们不段地通过现象发现数学问题,而不是为了学习而学习,我想斐波那挈不可能真的是通过兔子来发现的这个问题,但他是伟大的数学家,他想告诉我们这种数学问题的本质. 回到正体,提到了斐波那挈的伟大,现在我们在了解一下斐波那挈,我再课下了解到他竟叫做列昂纳多斐波那挈,与列昂纳多达芬奇,并被誉为比萨的列昂纳多.我想数学家有艺术家的称号,并不是一件简单的事. 直观的讲斐波那挈数列1、1、2、3、5、8、13、21、……从第三项开始,每一项都等于前两项之和,有趣的是这样的完全是自然数的数列,竟然可以用无理数来表达的,我记得老师当时好像讲过这一点但是当时好像并不太在意这一点,因为觉得这没什么,但是当我了解到,随着数列项的增加,前一项与后一项之比愈来愈逼近黄金分割的数值0.618时我却是被震惊到了,因为数学可以表达美,我想这是我们不得不赞叹的地方,当数学创造了好多的奇迹时,我想可能会很少人注意到我们数学本质是可以回归到自然的,这样的事例还有很多, 在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的

数列、极限、数学归纳法 归纳、猜想、证明 教案

数列、极限、数学归纳法·归纳、猜想、证明·教案 张毅 教学目标 1.对数学归纳法的认识不断深化. 2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法. 3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点 用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明. 教学过程设计 (一)复习引入 师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明? 生:与连续自然数n有关的命题. 师:用数学归纳法证明的一般步骤是什么? 生:共有两个步骤: (1)证明当n取第一个值n0时结论正确; (2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确. 师:这两个步骤的作用是什么? 生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程. 师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么? 生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题. 今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1. (二)归纳、猜想、证明 1.问题的提出 a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式. 师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上) 师:正确.怎么推测an的计算公式呢?可以相互讨论一下.

斐波那契数列的来历

斐波那契是意大利的数学家.他是一个商人的儿子.儿童时代跟随父亲到了阿尔及利亚,在那里学到了许多阿拉伯的算术和代数知识,从而对数学产生了浓厚的兴趣. 长大以后,因为商业贸易关系,他走遍了许多国家,到过埃及,叙利亚,希腊,西西里和法兰西.每到一处他都留心搜集数学知识.回国后,他把搜集到的算术和代数材料,进行研究,整理,编写成一本书,取名为《算盘之书》,于1202年正式出版. 这本书是欧洲人从亚洲学来的算术和代数知识的整理和总结,它推动了欧洲数学的发展.其中有一道"兔子数目"的问题是这样的: 一个人到集市上买了一对小兔子,一个月后,这对小兔子长成一对大兔子.然后这对大兔子每过一个月就可以生一对小兔子,而每对小兔子也都是经过一个月可以长成大兔子,长成大兔后也是每经过一个月就可以生一对小兔子.那么,从此人在市场上买回那对小兔子算起,每个月后,他拥有多少对小兔子和多少对大兔子? 这是一个有趣的问题.当你将小兔子和大兔子的对数算出以后,你将发现这是一个很有规律的数列,而且这个数列与一些自然现象有关.人们为了纪念这位兔子问题的创始人,就把这个数列称为"斐波那契数列". 你能把兔子的对数计算出来吗? 解: 可以这么推算: 第一个月后,小兔子刚长成大兔子,还不能生小兔子,所以只有一对大兔子. 第二个月后,大兔子生了一对小兔子,他有了一对小兔子和一对大兔子. 第三个月后,原先的大兔子又生了一对小兔子,上月出生的小兔子也长成了大兔子,他共有一对小兔子和两对大兔子. 第四个月后,两对大兔子各生一对小兔子,上月出生的小兔子又长成了大兔子,他共有两对小兔子和三对大兔子.

第五个月后,三对大兔子各生一对小兔子,上月出生的两对小兔子也长成了大兔子,他共有三对小兔子和五对大兔子. …… 以此类推,可知: 每月的小兔子对数等于上月大兔子的对数,每月大兔子的对数等于上月大兔子与小兔子的对数之和. 我们把大小兔子的对数写成上下两行,从买回小兔子算起,每个月后他所拥有的兔子对数便是: 仔细观察两行数发现它们是很有规律的: 每行数,相邻的三项中,前两项的和便是第三项. 有趣的是: 雏菊花花蕊的蜗形小花,有21条向右转,有34条向左转,而21和34,恰是斐波那契数列中相邻的两项;松果树和菠萝表面的凸起,它们的排列也分别成5:8和8:13这样的比例,也是斐波契数列中相邻两项的比. 这个数列不仅在数学,生物学中,还在物理,化学中经常出现,而且它还具有很奇特的数学性质,真是令人叫绝!

浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用 发表时间:2019-07-29T11:38:49.093Z 来源:《基层建设》2019年第14期作者:孙烨赵倩[导读] 摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。 山东协和学院山东济南 250107摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活 多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:斐波那契数列应用黄金分割 1 引言 数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。 斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。 人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。 斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。 2 斐波那契数列的应用 (1)斐波那契数列和花瓣数花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。 (2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。 (3)斐波那契数列和向日葵种子排列向日葵种子的排列是典型的数学模型。仔细观察向日葵盘,你会发现两组螺旋,一组顺时针旋转,另一组螺旋逆时针旋转,彼此嵌套。虽然不同向日葵品种的种子选装方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契序列中的两个相邻数字。前一个数字是顺时针旋转的线数,后一个数字是逆时针旋转的线数。回想起向日葵。种子全都紧密排列在花盘当中,每个种子都保证按照适合的角度生长大小还基本保持一致又疏密得当,与此同时,螺旋的数目也是斐波那契序列中的数字,世界如此繁琐,却又如此的井然有序。 (4)斐波那契数列与台阶问题当只有一个台阶时,只有一种移动方式,F1=1两个台阶,有2种走法,一步上两个台阶或者一阶一阶的上,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(0,2,2),共5种方法,所以F4=5依此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然,生活和科学上有很多联系,但是从这几个例子中,我们可以看到斐波那契数列的应用的广泛性,我们可以看到数学之美无处不在。它是一门科学,同时也是一种艺术,一种语言,它就像一朵盛开的茉莉花,白皙而优雅,简言而之,数学伴随着自然生活共同发展。 (5)斐波那契数列与蜜蜂的家谱蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有一个母亲,没有父亲,因为蜂后所产的卵,未受精的孵化为雄蜂,受精的孵化为雌蜂(即工蜂或蜂后)。人们在追踪雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是斐波那契数列的第n项f(n)。 (6)黄金分割与斐波那契的联系斐波那契和黄金比例(也称黄金分割,Φ,取三位小数1.618)密切相关。黄金法则,也称为黄金比率,是指将直线分成两部分,使得一部分与整体的比率等于剩余部分与该部分的比率,即0.618/1=0.382/0.618。0.618是斐波那契数列相邻两项之比的近似值,一般称之为黄金分割数。这是古希腊哲学家、数学家毕达哥拉斯于公元前6世纪由提出,后被著名的希腊美学家柏拉图称为“黄金比例率”。 (7)斐波那契数列和鳞片的关系菠萝果实上的菱形鳞片排成一列,8排向左倾斜,13排向右倾斜;挪威云杉的球果在一个方向上有3排鳞片,在另一个方向上有5排鳞片;常见的落叶松是一种针叶树,松果上有鳞片,两个方向也排成5行8行;美国松树松鳞片在两个方向上排成3行和5行。 (8)影视作品中的斐波那契数列斐波那契数列在欧美可以说是是每个人都知道,在电影这种通俗艺术中也经常的出现,例如在风靡一时的《达芬奇密码》当中它就作为一个重要的符号和情节线索出现,在《魔法玩具城》当中也出现过。由此可见此数列就像黄金分割那样的流行。可是虽说叫得上名,大多数人并没有深入理解研究。在电视剧中也经常看到斐波那契数列的影子,比如:日剧《考试之神》的第五回,义嗣做全国模拟考试题中的最后一道数学题。还在FOX热播美剧《Fringe》中也是多次引用,甚至被当做全剧宣传海报的主要设计元素。 3 结束语 除了上文中涉及的几个方面外,斐波那契数列在生活的其他领域当中例如现代物理、准晶体结构、化学等领域,斐波纳契数列都有着广泛的应用。这个奥秘神奇的序列就在我们生活中任何常见的事物中隐藏,植被如一朵向日葵,一棵花菜,宏观如飓风以及星系,微观小至细胞的分裂,斐波那契数列都有存在。而且,通过对上文数列在生活中应用的几个方面的分析,也希望能激发大家对斐波那契数列的兴趣,感受数学的魅力。

课时考点数列极限数学归纳法

课时考点数列极限数学 归纳法 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

课时考点6 数列、极限、数学归纳法 考纲透析 考试大纲: 数学归纳法,数列的极限,函数的极限,极限的四则运算,函数的连续性。 高考热点: 数学归纳法,数列的极限 1专题知识整合 1.无穷递缩等比数列(q ?0,|q |<1)各项和1 1a S q = - 2.归纳法证猜想的结论,用数学归纳法证等式和不等式。 3.含有n 的无理式,如lim n →∞ 需分子有理化,转化为 0n = 4.指数型,如111lim n n n n n a b a b +++→∞-+,分子、分母同除以|a|n +1或|b|n +1转化为求lim n n q →∞ 热点题型1:数列与极限 样题1: (05全国卷II)已知{a n }是各项均为正数的等差数列,lga 1、lga 2、lga 4成等差数列.又21 n n b a = ,n=1,2,3,…. (Ⅰ)证明{b n }为等比数列; (Ⅱ)如果无穷等比数列{b n }各项的和1 3 S =,求数列{a n }的首项a 1和公差d . (注:无穷数列各项的和即当n ??时数列前n 项和的极限) 解:(Ⅰ)设数列{a n }的公差为d ,依题意,由 2142lg lg lg a a a =+ 得 2214a a a =

即)3()(1121d a a d a +=+,得d =0 或 d =a 1 因 1 221 +=+n n a a b b n n ∴ 当d =0时,{a n }为正的常数列 就有 11 221 ==++n n a a b b n n 当d =a 1时,1112112)12(,)12(1a a a a a a n n n n -+=-+=++,就有 1221+= +n n a a b b n n 2 1 = 于是数列{b n }是公比为1或 2 1 的等比数列 (Ⅱ)如果无穷等比数列{b n }的公比q =1,则当n →∞时其前n 项和的极限不存在。 因而d =a 1≠0,这时公比q =21,11 2b d = 这样{b n }的前n 项和为11[1()] 22112 n n d S -=- 则S=11[1()] 122lim lim 112 n n n n d S d →+∞→+∞-==- 由1 3 S =,得公差d =3,首项a 1=d =3 变式题型1 设数列{a n }是等差数列,a 1=1,其前n 项和为S n ,数列{b n }是等比数列,b 2=4, 其前n 项和为T n . 又已知lim n →∞ T n =16,S 5=2T 2+1.求数列{a n }、{b n }的通项公式。 样题2: (05天津)已知:u n =a n +a n -1b+a n -2b 2+…+ab n -1+b n (n ?N*,a >0,b >0)。 (Ⅰ)当a = b 时,求数列{a n }的前n 项和S n ; (Ⅱ)求1 lim n n n u u →∞-。 解:(I )当a = b 时,u n =(n+1)a n ,它的前n 项和 ()232341n n S a a a n a =+++++ ① ①两边同时乘以a ,得 ()23412341n n aS a a a n a +=+++ ++ ②

最新10.数学归纳法,数列极限

10.数学归纳法,数列 极限

第10讲数学归纳法、数列极限 一、知识要点 1.数学归纳法及其证明步骤 2.数列极限 3.数列极限的四则运算性质 4.无穷数列的各项和 二、经典例题 1.数学归纳法 例1.用数学归纳法证明: (1)?Skip Record If...? (2)设?Skip Record If...?,证明对一切?Skip Record If...?的自然数,等式 ?Skip Record If...?均成立 例2.?Skip Record If...?,用数学归纳法证明: (1)?Skip Record If...?能被13整除 (2)?Skip Record If...?能被9整除 例3.(1)数列?Skip Record If...?满足?Skip Record If...?,猜想并证明?Skip Record If...?的一个通项公式 (2)数列?Skip Record If...?的前?Skip Record If...?项和为?Skip Record If...?, 当?Skip Record If...?时,?Skip Record If...?,求?Skip Record If...?,并求证 ?Skip Record If...?是等比数列

2.数列的极限 例4.求下列各个数列极限 (1)?Skip Record If...? (2)?Skip Record If...? (3)?Skip Record If...? 例5.求下列各个数列极限 (1)?Skip Record If...? (2)?Skip Record If...? 例6.求下列各个数列极限: (1)?Skip Record If...? (2)?Skip Record If...? 例7.计算:(1)?Skip Record If...? (2)?Skip Record If...? (3)?Skip Record If...? (4)?Skip Record If...?

相关主题
文本预览
相关文档 最新文档