当前位置:文档之家› 《新编基础物理学》 第四章习题解答和分析

《新编基础物理学》 第四章习题解答和分析

《新编基础物理学》 第四章习题解答和分析
《新编基础物理学》 第四章习题解答和分析

习题四

4-1 观察者A 测得与他相对静止的Oxy 平面上一个圆的面积是12 cm 2

,另一观察者B 相对于A 以 0.8 c (c 为真空中光速)平行于Oxy 平面作匀速直线运动,B 测得这一图形为一椭圆,其面积是多少?

分析:本题考察的是长度收缩效应。

解:由于B 相对于A 以0.8v c =匀速运动,因此B 观测此图形时与v 平行方向上的线度将收缩为b c R 2)/(122

=-v ,即是椭圆的短轴.

而与v 垂直方向上的线度不变,仍为2 2 R a =,即是椭圆的长轴. 所以测得的面积为(椭

圆形面积)

R c R ab S ?-π=π=2

)/(1v 2

2

)

/(1c R

v -π==7.2cm 2

4-2 长度为1m 的米尺L 静止于'K 中,与x 轴的夹角'30,'K θ=?系相对K 系沿x 轴运动,在K 系中观察得到的米尺与x 轴的夹角为45θ=?,试求:(1)'K 系相对K 系的速度是多少?(2)K 系中测得的米尺的长度?

分析:本题考察的是长度收缩效应。根据两个参考系下米尺的不同长度再结合长度收缩效应我们可以很方便的得到两个参考系之间的相对速度

解:(1)米尺相对'S 系静止,它在''x y 和轴的投影分别为:

00'cos '0.866'sin '0.5x y L L m L L m

θθ====

米尺相对S 系沿x 方向运动,设运动速度为v ,为S 系中的观察者,米尺在x 方向将产生长度收缩,而y 方向的长度不变,即

x x L L ='y y L L =

故米尺与x 轴的夹角满足

'y x

L L tg L θ=

=

将θ与'x L 、'y L 的值代入可得: 0.816v c =

(2)在S 系中测得米尺的长度为:

0.707()sin 45y L L m =

=?

4-3 已知x 介子在其静止系中的半衰期为8

1.810s -?。今有一束π介子以0.8c υ=的速度离开加速器,试问,从实验室参考系看来,当π介子衰变一半时飞越了多长的距离? 分析:本题考察的是时间膨胀效应。根据静止系中的半衰期加上时间膨胀效应我们可以求出在实验室参考系中的半衰期,然后根据该半衰期求出飞行距离。

解:在π介子的静止系中,半衰期8

0 1.810t s -?=?是本征时间。由时间膨胀效应,实验室

参系中的观察者测得的同一过程所经历的时间为:

8

310()

t s

-

?==?

因而飞行距离为:

7.2

d v t m

=?=

4-4 在某惯性系K中,两事件发生在同一地点而时间相隔为4s。已知在另一惯性系'

K中,该两事件的时间间隔为6s,试问它们的空间间隔是多少?

分析:本题考察的是时间膨胀效应以及洛伦兹变换。根据时间膨胀效应我们可以求出两参考系的相对速度,继而根据洛伦兹变换演化出空间间隔变换的公式求出该两事件在S系中的空间间隔。

解:在k系中,

4

t s

?=为本征时间,在'

K系中的时间间隔为6

t s

?=两者的关系为:

t t

t

??

?==

2

5

9

β

∴=

故两惯性系的相对速度为:

8

10(/)

v c m s

β

==

由洛伦兹变换,'

K系中两事件的空间间隔为:

)

k k

x x v t

'

?=?+?

两件事在K系中发生在同一地点,因此有0

k

x

?=,故

8

10()

k

v t

x m

'

?

?==

4-5 惯性系'

K相对另一惯性系K沿x轴作匀速运动,取两坐标原点重合的时刻作为计时

起点。在K系中测得两事件的时空坐标分别为44

11

610,210

x m t s

-

=?=?以及

44

22

1210,110

x m t s

-

=?=?,已知在'

K系中测得该两事件同时发生。试问:(1)'

K系相对K系的速度是多少?(2)'

K系中测得的两事件的空间间隔是多少?

分析:本题所考察的是洛伦兹变换的应用问题。根据洛伦兹变换在不同参考系下两个事件的时间变换关系,我们可以很方便的得到两个参考系之间的相对速度。有了相对速度以后,再根据洛伦兹变换的空间变换关系,我们可以得到两事件的空间间隔。

解:(1)设'S系相对S系的速度为v,由洛伦兹变换,'S系中测得两事件的时间为:

1112

2222

''v t t x c v t t x c ?=

-??

?=

-??

由题意,

12''0t t -= 21212

()v t t x x c

∴-=

-

因此有

2

8

2121

1.510()2

t t c

m v c

s x x -==-

=-?-

其中负号表示'S 系沿S 系的x -方向运动。

(2)由洛伦兹变换,'S 系中测得的两事件的空间位置为:

111222')')

x x vt x x vt =

-=

-

故空间间隔为:

]42121211''()() 5.210()x x x x v t t m -=

---=?

4-6 (1)火箭A 和B 分别以0.80.5c c 和的速度相对于地球向x x +-和方向飞行,试求由火箭B 测得的A 的速度。(2)若火箭A 相对地球以0.8c 的速度向y +方向运动,火箭B 的速度不变,试问A 相对B 的速度是多少?

分析:本题考察的是洛伦兹速度变换。在火箭B 为静止的参考系中,先求出地面参考系相对此参考系的运动速度(此即为两个参考系之间的相对速度),然后由火箭A 相对地面的运动速度以及洛伦兹速度变换公式求出火箭A 相对火箭B 的速度。

解:(1)设火箭B 的静止系为S ,则地面参考系相对S 的运动速度为0.5u c =。在地面参考系中,火箭A 的运动速度为'0.8v c =,由洛伦兹速度变换公式可得火箭A 相对火箭B 的运动速度为:

2

'0.80.5 1.30.931'/10.80.5

1.4

v u c c v c c uv c

++=

=

=

=++?

(2)由于S 系相对地面参考系以1u u x =-+沿方向飞行,而在地面参考系中火箭A 的运动速度为0,0.8,0x y z v v c v ===。则根据洛伦兹速度变换公式在S 系中火箭A 的运动速度为:

112

1

2

1

2

'0.51'0.71'0

1x x x y x

z x

v u v c

u v c

v c v c

v v v

-=

=-

=

=-

=

=-

所以火箭A 相对火箭B 的速度为:

'0.86v c =

=

4-7 静止在K 系中的观察者测得一光子沿与x 轴成60°角的方向飞行,另一观察者静止于'K 系中,'K 系相对K 系为0.6c 的速度沿x 轴方向运动,试问'K 系中的观察者测得的光子运动方向是怎样的?

分析:本题考察的是洛伦兹速度变换。根据两个参考系的相对速度以及光子在K 系的速度,由洛伦速度变换可以求出光子在S 系中的运动速度。

解:已知'K 系相对K 系的速度为0.6u c =,光子速度为c ,在K 系中的运动方向为与x 轴成60°角,因此该光子在K

系中的速度为0.5,/2,0x y z v c v v ===。所以在'K 系中

光子的运动速度为:

2

2

2

1'7

1'7

1'0

1x x x

y x

z x

v u v c

u v c

v v c

v v c

-=

=-

-

=

=

-

=

=-

令该光子在'K 系中的运动方向与X 轴成θ角,则有:

''y x

v tg v θ=

=-98.2θ∴≈?

4-8 μ子的静止质量是电子静止质量的207倍,静止时的平均寿命8

0210s τ-=?,若它在实验室参考系中的平均寿命8

710s τ-=?,试问其质量是电子静止质量的多少倍? 分析:本题考察的是时间膨胀效应和相对论质量问题。根据时间膨胀效应我们可以求出该粒子在实验室参考系中的运动速度,然后根据该速度可以求出速度下的相对论质量。

解:设μ子在实验室参考系中的速度为u 、质量为m ,依题意有:

τ=

将ττ0和的值代入得:

027

ττ

=

=

当μ子速度为u 时其质量为:

077207724.52

2

e e m m m m =

==

?=

4-9 一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之多少? 分析:本题涉及的是相对论质量和长度以收缩问题。根据质量与静止质量之比可以求出该物体的运动速度,然后根据速度可以求出该物体在运动速度方向上的长度收缩。

解:设物体速度为u 、质量为m 、长度为L ,静止质量和长度分别为0m 和0L ,依题意有:

001.111.1m m m m m =

=∴=

=

因此,根据长度收缩效应有:

000190.9%1.1

L L L L ==

=

所以在运动方向上缩短了:

09.1%L L ?=

4-10 一电子在电场中从静止开始加速,试问它应通过多大的电位差才能使其质量增加0.4%?此时电子速度是多少?(电子的静能为0.511MeV.)

分析:此题考察的是相对论质量与速度之间的关系。根据相对论质量公式可以很方便的求出电子的运动速度,再根据能量守恒,求出加速所需的电位差。

解:设电子速度为u 、质量为m ,静止质量为0m ,所加的电位差为U 。依题意有:

01.04m m m =

= 所以此时电子的速度为: 0.275u c =

根据能量守恒,有:

2

2

0m c eU m c +=

4

2.04410(V )U ∴=?

4-11 已知一粒子的动能等于其静止能量的n 倍,试求该粒子的速率。

分析:该题考察的是相对论的质能关系式。根据粒子的动能和静能比可以求出该粒子总能量和静能之比,这个比值也就是该粒子的质量与静止质量之比,根据相对论质量与速度的关系式,我们可以求出该粒子的速率,从而求出该粒子的动量。 解:依题意有:0k E nE = 所以其质量与静止质量之比为:

20

2

00

1k E E m m c

n m m c

E +==

=+

根据相对论质量与速度的关系有:

m m =

所以该粒子的速度为:

1

u c n =

+

4-12 一静止的粒子(质量为0m ),裂变成两个粒子,速度分别为0.60.8c c 和。求裂变过程的静质量亏损和释放出的能量。

分析:该题涉及到质量亏损的概念和动量守恒定律。由于反应后的两个粒子的质量未知,因此我们可以根据两个粒子之间的速度关系推导出二者的质量比,又由于该两个粒子的总动能来源于该反应的静质量亏损,因此结合反应后两个粒子的质量比以及各自的速度大小,我们可以求出该反应的质量亏损,从而求出该反应所释放的能量。

解:设反应后两粒子的质量分别为1m 、2m ,则根据动量守恒定律有:

120.60.8m c m c ?=? 12/4/3m m ∴= (1)

反应前后总的能量守恒,所以有:

2

2

22

2

0112211(0.6)(0.8)2

2

m c m c m c m c m c =+

?++

? (2)

将(1)式代入(2)式,得:

012.17m m =

所以反应前后的静质量亏损为:

01200.19m m m m m ?=--≈

释放出的能量为:

2

2

00.19E m c m c =?=

4-13 试求静止质量为0m 的质点在恒力F 作用下的运动速度和位移。在时间很短(0/t m c F <<)和时间很长(0/t m c F >>)的两种极限情况下,速度和位移值又各是多少?

分析:根据力和动量的关系,经过积分后我们可以求解在恒力作用下的力与速度之间的关系,

经过再次积分,可以得到位移和力的关系。 解:由于力代表的是动量的变化率,因此有:

())m dp d d F m v dt dt dt =

==

将上式积分,由于力为恒力与时间无关,再代入初始条件(起始时为静止,即初速度为零)可得:

m F t =

因此可得速度与力之间的关系式:

dx v dt =

=

将上式再积分,并假定起始时所处位置为坐标原点,可得位移与力之间的关系:

2

224

22002

1/2

220011m c m c X c t F F m c

F t x m c F ??+-= ??

???????????∴=+-??

???????????

当0/t m c F <<时,有:

2

,2t Ft Ft

v x vdt m m =

=

=

=

?

当0/t m c F >>

时,有:0

,

t v c x vdt ct =

==

=?

4-14 在原子核聚变中,两个2

H 原子结合而产生4

H e 原子。试求:(1)该反应中的质量

亏损为多少?(2)在这一反应中释放的能量是多少?(3)这种反应每秒必须发生多少次才能产生1W 的功率?已知2H 原子的静止质量为27

4

3.3436510

,kg He -?原子的静止质量为

27

6.642510

kg -?。

分析:已知反应前后各种反应物和生成物的质量,我们可以很方便的求出反应前后的质量亏损,并据此求出反应所释放的能量。 解:反应的质量亏损为:

27

27

27

22 3.3436510

6.642510

0.044810

()H H e m m m kg ---?=-=??-?=?

该反应所释放的能量为:

2

27

16

12

0.044810

910

4.0310

()E mc J --?=?=???=?

要达到1W 的功率需要每秒钟反应的次数为:

12

11

1/4.0310

2.4810n -=?=?

4-15 当一个粒子所具有的动能恰好等于它的静能时,试问这个粒子的速度有多大?当动能为其静能的400倍时,速度有多大?

分析:粒子的总能量可以用粒子的动质量与光速的平方的乘积来表示,而粒子的静能则等于粒子的静质量与光速的平方的乘积,因上我们可以很方便的把粒子的动能和静能之比用粒子的速度表示出来。

解:根据粒子的质量和速度之间的关系可得:

()m v =

所以粒子的总能与静能之比为:

E m E m ==

又该粒子的总能等于动能与静能之和,所以该粒子的动能与静能之比为:

11k E E E m E E m -==-=

所以当动能等于静能时,有:

111=

2

v c ∴=

当动能等于静能的400倍时,有:

1400= 0.9999969v c ∴=

4-16同位素

3

H e 核由两个质子和一个中子组成,它的静质量为

27

3.01440u (1u 1.60010

)kg -=?。

(1)以MeV 为单位,3

H e 的静能为多少?(2)取出一个质子使3

H e 成为2

H (静质量为2.0135u )加一个质子(静质量为1.0073u ),试问需要

多少能量?

分析:本题涉及的是静能以及质量亏损的概念。粒子的静能由粒子的静质量与光速的平方的乘积表示;而反应前后总能量守恒的要求指明反应进行需要的能量由反应前后的质量亏损所决定。 解:静能为:

2

27

16

10

3

00 3.01440 1.60010

910

4.3410

() 2.7110()E m c J M ev --==????=?=?

当从同位素氦核中取出一个质子时,此时质量亏损为:

29

2.0135 1.0073

3.01440.0064() 1.02410

()D H H e m m m m u kg -?=+-=+-==?

所以反应需要能量为:

2

29

16

13

1.02410

910

9.21610

()E mc J --=?=???=?

4-17 把一个静止质量为0m 的粒子由静止加速到0.1c 所需的功是多少?由速率0.89c 加速到0.99c 所需的功又是多少?

分析:此题涉及到的是粒子的总能量与速度之间的关系。根据能量守恒定律,通过计算任一速度下的总能量即可求出从该速度下再增加0.1c 的速度所需要做的功。 解:粒子的静能量为:

2

00E m c =

速度为0.1c 时,该粒子的总能量为:

2

2

2

1101.005E m c m c ==

=

因此将粒子由静止加速到0.1c 所需要做的功为:

2

1000.005E E E m c ?=-=

同理粒子在速度为0.89c 和0.99c 时的总能量分别为:

2

2

2

2202

22

3302.1937.089m c E m c m c m c

E m c m c

=====

=

所以将粒子由0.89c 加事到0.99c 时所需做的功为

2

3204.896E E E m c '?=-=

4-18 两个静止质量都是0m 的小球,其中,一个静止,另一个以0.8c υ=运动,在它们做对心碰撞后粘在一起,求碰后合成小球的静止质量。

分析:由于碰撞前后,体系的总能量不变,所以可以得出碰后合成小球的动质量与0m 的关系;再根据碰撞前后动量守恒,加上已求出的合成小球的动质量,可以求出合成小球的速度;最后根据合成小球的速度和相应的动质量可以求出合成小球的静质量。

解:设碰撞前运动小球的质量为1m ,碰撞后合成小球的质量和速度分别为M 和u ,根据题意,显然有:

1053

m m m m =

=

=

(1)

由能量守恒,有:

2

2

2

01m c m c M c +=

083

M m ∴=

(2)

碰撞前后动量守恒,

1m v M u =

(3)

由(1)、(2)和(3)式可得:

50.58

u v c =

=

所以合成小球的静质量为:

0083

3

M M

m m ==

=

电路分析基础习题集与答案解析

电路分析基础练习题 @ 复刻回忆 1-1 在图题1-1 所示电路中。元件 A 吸收功率30W ,元件 B 吸收功率15W ,元件 C 产生功率30W ,分别求出三个元件中的电流I 1、I 2、I 3。 5V A I 15V B I 2 5V C I 3 图题1-1 解I 1 6 A,I 2 3 A ,I 3 6 A 1-5 在图题1-5 所示电路中,求电流I 和电压U AB 。 解I 4 1 2 1 A,U AB 3 10 2 4 4 39 V 1-6 在图题1-6 所示电路中,求电压U。 30V 5 U 2A 50V 1 I 2 5V 3 I 1 2 4V 图题1-6 图题1-7解50 30 5 2 U ,即有U30V 1-8 在图题1-8 所示电路中,求各元件的功率。 解电阻功率:P 3 P22 2 3 42 / 2 12 W, 3 8 W 2A 电流源功率:P2A 2(10 4 6) 0 ,2 P1 A 4 1 4 W 10V 4V 1A

电压源功率:P 10V 10 2 20 W, P 4V 4(1 2 2) 4 W 2-7 电路如图题2-7 所示。求电路中的未知量。 解U S 2 6 I 12 4 A 2 9 3 12 V I 0 2A I 2 I 3 I 3 P3/ U S12 / 12 1 A U S R eq 6 9 R3 I 0 2 R 4 / 3 1 12 12 13 / 3 A P312W 1 U S R eq I 12 36 13/ 3 13 图题2-7 2-9 电路如图题2-9 所示。求电路中的电流解从图中可知, 2 与3 并联,I 1 。 1 2 由分流公式,得 I 2 I 33 5 I1 5 1 1 A 1 3I 1 I 3 I 2 1V I 1 5I 1 3 所以,有 I 1 I 2I 3 3I 1 1 图题2-9 解得I 1 0.5 A 2-8 电路如图题2-8 所示。已知I1 3I 2 ,求电路中的电阻R 。 解KCL :I 1 I 2 60 I1 3I 260mA I 1 2.2k 解得I 1 R 为45 mA, I 215 mA. I 2R R 2.2 45 15 6.6 k图题2-8 解(a) 由于有短路线, (b) 等效电阻为 R AB 6 , R AB 1// 1 (1 1// 1) // 1 0.5 1.5 2.5 1.1 2-12 电路如图题2-12 所示。求电路AB 间的等效电阻R AB 。 3

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

(精品)精品1电路分析基础试题答案

练习一、1.分别计算图示电路中各电源的端电压和它们的功率。 (5分) 解:(a ) …………2分 (b ) 电流源: ……….1.5分 电压源: …………1.5分 2.利用电源等效变换化简各二端网络。 (6分) 解: (a) 3 .计算图示电路在开关S 打开和闭合时a 点的电位?=a U (5分) 解:开关S 打开:mA I 25.11 121 6=++-= ……..1分 V U a 25.225.111=?+= …………………1.5分 开关S 闭合:V U 8.22 141212 131=+++ = ….1分 V U U a 9.11 11 111=+-? += ….1.5分 4.求图示电路中的电流1I 和电压ab U 。 (5分) 解:A I 25 10 9.01== A A I 222.29 20 1== ……….2.5分 (a ) (b ) W U P V U 5051052=?==?=发W U P V U 1052=?==发 W P A I V U 6323252=?==-==吸,方向向下 a b a b b b b a U b

A A I I U ab 889.09 8 4)9.0(11== ?-= ……..2.5分 5.电路如图所示,求X I 。(5分) 解: 电压源单独作用:4)42(-='+X I A I X 3 2 - ='? ……..1.5分 电流源单独作用:A I X 3 2 2422=?+= '' ……..1.5分 故原图中的03 2 32=+- =''+'=X X X I I I ………..2分 6、计算图四(4)所示二端网络吸收的有功功率、无功功率,并计算其视在功率和功率因数。其中,())(2sin 25V t t u =, R 1=1Ω, R 2=2Ω。 解:端口电压为?∠=05U & . 对于2=ω, X C = - 2j , X L =1j . 端口阻抗为 ()()()()() Ω-=-++-+= j j j j j Z 34221221 (2分) 端口电流: ?-∠=-=4.18953.3345 j I & A (2分) 有功功率:()W P 75.18]4.180cos[953.35=?--??= (2分) 无功功率:VA Q 24.64.18sin 953.35=??= (2分) 视在功率:VA Q P S 764.1922=+=(1分) 功率因数:95.0cos == S P ?(1分) Ω4X I '- V 4 +Ω 2Ω 4A 2X I ''Ω 2Ω 4A 2X I - V 4 +Ω 2

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

电路分析基础习题及参考答案

电路分析基础练习题 @复刻回忆 1-1在图题1-1所示电路中。元件A 吸收功率30W ,元件B 吸收功率15W ,元件C 产生功率30W ,分别求出三个元件中的电流I 1、I 2、I 3。 解61=I A ,32-=I A ,63=I A 1-5在图题1-5所示电路中,求电流I 和电压U AB 。 解1214=--=I A ,39442103=?+?+=AB U V 1-6在图题1-6所示电路中,求电压U 。 解U +?-=253050 V 1-8在图题1-8所示电路中,求各元件的功率。 解电阻功率:123223=?=ΩP W , 82/422= =Ω P W 电流源功率: 电压源功率: 1(44=V P W 2-7电路如图题2-7所示。求电路中的未知量。 解1262=?=S U V 2-9电路如图题2-9 3 I 解得2-8电路如图题2-8所示。已知213I I =解KCL :6021=+I I 解得451=I mA,152=I mA. R 为 6.615452.2=?=R k ? 解(a)由于有短路线,R (b)等效电阻为 2-12电路如图题2-12所示。求电路AB 间的等效电阻AB R 。 A 3R U 3W 123=P Ω

解(a)Ω=+=++=75210//10)8//82//(6//6AB R (b)Ω=+=++=612//62)104//4//(64//4AB R 3-4用电源变换的方法求如图题3-4所示电路中的电流I 。 、(c) 解ab U 3-144-2用网孔电流法求如图题4-2?????=-++=-+-+=-+0)(31580 0)(4 )(32100)(4823312322211I I I I I I I I I I I 解得: 26.91=I A ,79.22=I A , 98.33-=I A 所以79.22==I I x A 4-3用网孔电流法求如图题4-3所示电路中的功率损耗。 解显然,有一个超网孔,应用KVL 即11015521=+I I 电流源与网孔电流的关系 解得:101=I A ,42=I A 电路中各元件的功率为 200102020-=?-=V P W ,36049090-=?-=V P 1806)10520(6-=??-=A P W ,5102+?=电阻P W 显然,功率平衡。电路中的损耗功率为740W 。 4-10用节点电压法求如图题4-10所示电路中的电压0U 。 解只需列两个节点方程 解得 501=U V ,802=U V 所以 1040500=-=U V 4-13电路如图题4-13解由弥尔曼定理求解 开关S 打开时: 20/140/120/30040/300-=+-=U 1Ω4I 6I 12I 2I 0V

电路分析基础试题大全及答案

训练一 “电路分析基础”试题(120分钟)—III 一、单项选择题(在每个小题的四个备选答案中,选出一个正确答案,并将正确答 案的号码填入提干的括号内。每小题2分,共40分) 1、图示电路中电流i等于() 1)1A 2)2A 3)3A 4)4A 2、图示单口网络的短路电流sc i等于()1)1A 2)1.5A 3)3A 4)-1A 3、图示电路中电压u等于() 1)4V 2)-4V 3)6V 4)-6V 4、图示单口网络的开路电压oc u等于()1)3V 2)4V 3)5V 4)9V 7AΩ 2Ω 1 Ω 4 i 6V Ω 2 Ω 4 sc i Ω 2 Ω 4 + _ Ω 2 Ω 2 - 2V + - 10V + u - + Ω 1Ω 2 6V + _ 3V + _ + - oc u

5、图示电路中电阻R 吸收的功率P 等于( ) 1)3W 2)4W 3)9W 4)12W 6、图示电路中负载电阻 L R 吸收的最大功率等于( ) 1)0W 2)6W 3)3W 4)12W 7、图示单口网络的等效电阻等于( ) 1)2Ω 2)4Ω 3)6Ω 4)-2Ω 8、图示电路中开关断开时的电容电压)0(+c u 等于( ) 1)2V 2)3V 3)4V 4)0V 3V Ω 2+_ R Ω 1A 3Ω 3+ _ 6V 5:1 L R Ω 4- + i 2a b 4V Ω 2+ _ Ω 2+ - c u +_ 2V =t F 1

9、图示电路开关闭合后的电压)(∞c u 等于( ) 1)2V 2)4V 3)6V 4)8V 10、图示电路在开关断开后电路的时间常数等于( ) 1)2S 2)3S 3)4S 4)7S 11、图示电路的开关闭合后,电感电流)(t i 等于() 1)t e 25- A 2)t e 5.05- A 3))1(52t e -- A 4) )1(55.0t e -- A 12、图示正弦电流电路中电压)(t u 的振幅等于() 1)1V 2)4V 3)10V 4)20V Ω46V Ω 2+ _ Ω 2+ - c u 0=t F 1- +1u 1 2u + - Ω 2+ _ Ω2+ - =t F 1F 25A Ω 20=t i 1H s 10+ _ + _ u 1H s u F 25.0V t t u s )2cos()(=

泛函分析习题解答

第一章 练习题 1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下: (,)|()()|,,([,])b a f g f x g x dx f g C a b ρ=-?∈?, (1)([,])C a b 按ρ是否完备? (2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2, n =,定义 ,01, ():1,1 2. n n x x f x x ?≤<=? ≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为 1 11 (,)|()()|110,(,).11 n m n m n m f f f x f x dx x dx x dx m n n m ρ=-≤+= +→→∞++??? 另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有 0,[0,1) ()()1,[1,2].n x f x g x x ∈?→=? ∈? 因此, 根据Lebesgue 有界收敛定理, 可以得到 1 1 1 00(,)|()()|1 |0|0.1 n n n n f g f x g x dx x dx x dx n ρ=-=-==→+??? 但()([0,2])g x C ?. (2) ([,])C a b 的完备化空间是1 ([,])L a b . 因为 (i) 在距离ρ的意义下, ([,])C a b 是1 ([,])L a b 的稠密子集. 事实上, 任意取定一个 1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得 [,] (,)|()()|a b f g f x g x dx ρε=-, 使得当[,]E a b ?, 只要mE δ<, 就有

电路分析基础_期末考试试题与答案

命题人: 审批人: 试卷分类(A 卷或B 卷) A 大学 试 卷 学期: 2006 至 2007 学年度 第 1 学期 课程: 电路分析基础I 专业: 信息学院05级 班级: 姓名: 学号: (本小题5分) 求图示电路中a 、b 端的等效电阻R ab 。 1 R R ab =R 2 (本小题6分) 图示电路原已处于稳态,在t =0时开关打开, 求则()i 0+。 Ω

i(0+)=20/13=1.54A ( 本 大 题6分 ) 求图示二端网络的戴维南等效电路。 1A a b u ab =10v, R 0=3Ω (本小题5分) 图示电路中, 电流I =0,求U S 。 Us=6v

(本小题5分) 已知某二阶电路的微分方程为 d d d d 22 81210u t u t u ++= 则该电路的固有频率(特征根)为____-2________和___-6______。该电路处于___过_____阻 尼工作状态。 (本小题5分) 电路如图示, 求a 、b 点对地的电压U a 、U b 及电流I 。 U a =U b =2v, I=0A. ( 本 大 题10分 ) 试用网孔分析法求解图示电路的电流I 1、I 2、I 3。 I 1=4A, I 2=6A, I 3=I 1-I 2=-2A (本小题10分) 用节点分析法求电压U 。

U U=4.8V ( 本 大 题12分 ) 试用叠加定理求解图示电路中电流源的电压。 3V 4A 单独作用时,u ’=8/3V; 3V 单独作用时,u ’’=-2V; 共同作用时,u=u ’+u ’’=2/3V 。 十、 ( 本 大 题12分 ) 试求图示电路中L R 为何值时能获得最大功率,并计算此时该电路效率

习题 第九章 领导

一、填空题 1.通过精神或物质上的威胁来强迫服从的一种权力是。 2.领导行为二元四分图的纵轴与横轴分别代表与。 3.领导集体的结构包括年龄结构、、与性格结构。 4.领导者的权力来源有法定权力、、、专家权力与五种。 5.管理方格图的纵坐标和横坐标分别是和。 6.通过描述最难与之共事的人来测定领导风格的方法是。 7.双因素理论把影响人的行为与动机的因素分为两类与。 8. 理论认为通过奖励等手段对员工的某一行为进行鼓励和肯定,可使该行为重复出现和加强。 9.、增加报酬以增强所希望的行为的强化方式为,按周给付薪金的强化方式属于,对销售员每做成一笔交易就给予一定奖励属于。 10.路径——目标理论区分了四种基本的领导风格类型,分别、参与型 和。 11.麦克利兰把人的需要分为、友谊需要和三种。 12.菲德勒区分的三种领导情景因素分别是、和。 二、单项选择题 1.通过组织中等级制度所赋予的权力是() A.专家权力B.感召权力C.表率权力D.法定权力 2.领导者和非领导者的差异在于领导者具有一些可以被确认的基本特质,持有这种观点的理论被称为() A.领导特质理论B.管理方格理论C.领导权变理论D.领导行为理论 3.以信息或知识为基础的权力是() A.法定权力B.奖励权力C.专家权力D.强制权力 4.假设领导者不能改变领导风格来适应情景的理论是() A.路径——目标理论B.期望理论 C.领导生命周期理论D.双因素理论 5.根据领导生命周期理论,领导风格随着下属成熟程度不同而不同,对于高度成熟的下属,领导者应当采取以下哪种领导同风格() A.高工作,高关系B.低工作,低关系 C.高工作,低关系D.低工作,低关系 6.强调下属的领导理论是() A.路径——目标理论B.菲德勒权变理论 C.领导生命周期理论D.领导特质理论 7.任务导向型的领导行为在下述因素中最关心的是() A.下属的意见、感情B.下属的满意程度

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

电路分析基础ch6习题解答(周围修改)

1211 di di u L M dt dt =-122 2 di di u M L dt dt =-+习题: 6-1:试确定题图6-1所示耦合线圈的同名端。 解: 6-2:写出题图6-2所示各耦合电感的伏安特性。 解: 6-3:电路如题图6-3所示,试求电压2u 。 1211di di u L M dt dt =+1222di di u M L dt dt =+12 11di di u L M dt dt =+1222 di di u M L dt dt =--(a) (c) (b)

解:dt di M u 12- =)1(32t e dt d M ---=)2(32t e M -?-==t e 212--V 由向量模型得:ο&&0105511∠=+m m I j I m m U I j 213&&= οοο &45245 250101-∠=∠∠=m I οο&452345232∠=-∠=j U m ,()()ο45cos 232+=t t u 6-4:题图6-4所示是初始状态为零的互感电路,电源在t =0是施加于电路。试求电流 )(1t i 和)(2t i 。 解: dt di L dt di M u 2212+= dt di M dt di L u 2111+==0 dt di L dt di 1 11M -= ()A i L t i +M -=211 舍去直流影响产生的A ,则()()t i L t i 21 1M - = ()1211 1???+=dt di M dt di L u ()22212???+=dt di L dt di M u 由()()212?M -?L 得: dt di dt di L L u u L 1 2121212M -=M - (V)

电路分析基础试题库汇编及答案

《电路》试题六及参考答案 问题1、叠加定理、置换定理结合应用的典型例。 在图示电路中,若要求输出电压)(t u o 不受电压源2s u 的影响,问受控源的控制系数α应为何值? 解:据叠加定理作出)(2t u s 单独作用时的分解电路图 (注意要将受控源保留),解出)(t u o '并令)(t u o '=0即解得满足不受)(2t u s 影响的α的值。这样的思路求解虽然概念正确,方法也无问题,但因α,L R 是字符表示均未 给出具体数值,中间过程不便合并只能代数式表示,又加之电路中含有受控源, 致使这种思路的求解过程非常繁琐。 根据基本概念再做进一步分析可找到比较简单的方法。因求出的α值应使 0)(='t u o ,那么根据欧姆定律知L R 上的电流为0,应用置换定理将之断开,如解1图所示。(这是能简化运算的关键步骤!) 电流 22 1.06 26//3s s u u i =++=' 电压 21 2.02s u i u -='-=' 由KVL 得 2 22221)2.04.0(1.062.06s s s s s o u u u u i u u u ααα-=?-+-='-+'=' 令上式系数等于零解得 2=α 点评:倘若该题不是首先想到应用叠加定理作分解图,再用置换定理并考虑欧姆定律将L R 作断开置换处理,而是选用网孔法或节点法或等效电源定理求解出 o u 表达式,这时再令表达式中与2s u 有关的分量部分等于零解得α的值,其解算 过程更是麻烦。灵活运用基本概念对问题做透彻分析,寻求解决该问题最简便的方法,这是“能力”训练的重要环节。 1 s u Ω 3Ω 6Ω21u 1 u αo u 2 s u Ω 6s i L R 图1Ω3Ω 6Ω 22 s u Ω 61 u '1u 'α解1图 i ' o u '

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n 维扩展。适合初学者。国家精品课程的课本。

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

电路分析基础试题库(答案)

试题库 一、填空题(建议较易填空每空0.5分,较难填空每空1分) 1、电流所经过的路径叫做电路,通常由电源、负载和中间环节三部分组成。 2、实际电路按功能可分为电力系统的电路和电子技术的电路两大类,其中电力系统的电路其主要功能是对发电厂发出的电能进行传输、分配和转换;电子技术的电路主要功能则是对电信号进行传递、变换、存储和处理。 3、实际电路元件的电特性单一而确切,理想电路元件的电特性则多元和复杂。无源二端理想电路元件包括电阻元件、电感元件和电容元件。 4、由理想电路元件构成的、与实际电路相对应的电路称为电路模型,这类电路只适用集总参数元件构成的低、中频电路的分析。 5、大小和方向均不随时间变化的电压和电流称为稳恒直流电,大小和方向均随时间变化的电压和电流称为交流电,大小和方向均随时间按照正弦规律变化的电压和电流被称为正弦交流电。 6、电压是电路中产生电流的根本原因,数值上等于电路中两

点电位的差值。 7、电位具有相对性,其大小正负相对于电路参考点而言。 8、衡量电源力作功本领的物理量称为电动势,它只存在于电源内部,其参考方向规定由电源正极高电位指向电源负极低电位,与电源端电压的参考方向相反。 9、电流所做的功称为电功,其单位有焦耳和度;单位时间内电流所做的功称为电功率,其单位有瓦特和千瓦。10、通常我们把负载上的电压、电流方向称作关联方向;而把电源上的电压和电流方向称为非关联方向。 11、欧姆定律体现了线性电路元件上电压、电流的约束关系,与电路的连接方式无关;基尔霍夫定律则是反映了电路的整体规律,其中KCL定律体现了电路中任意结点上汇集的所有支路电流的约束关系,KVL定律体现了电路中任意回路上所有元件上电压的约束关系,具有普遍性。 12、理想电压源输出的电压值恒定,输出的电流值由它本身和外电路共同决定;理想电流源输出的电流值恒定,输出的电压由它本身和外电路共同决定。 13、电阻均为9Ω的Δ形电阻网络,若等效为Y形网络,各电阻的阻值应为3Ω。

泛函分析第4章 内积空间

第四章 内积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋范线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋范线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的内积描述的,因此在本章我们引入了一般的内积空间的概念。 4.1 内积空间的基本概念 首先回忆几何空间3R 中向量内积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 2 2 1 ()k k x t ==∑,13 22 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的内积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 内积我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的内积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

泛函分析试题

1. 对于积分方程 ()()() 1 t s x t e x t ds y t λ--=?为一给定的函数,λ为 常数,1λ<,求证存在唯一解()[]0,1x t ∈。 2. 设s 为一切实(或复)数列组成的集合,在s 中定义距离为 ()11,21+k k k k k k x y ξηρξη=-=-∑,其中, ()() 11,,,=,,n n x y ξξηη=??????。求证s 为 一完备的距离空间。 3. 在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>, 存在基本列{}n y ,使(),0n n x y ρ<。求证{}n x 收敛。 4. 证明内积空间()(),,x 是严格凸的* B 空间 5. 为了()F C M ?使一个列紧集,必须且仅需F 是一致有界的 且等度连续的函数族。 6. 设 () ,A x y ?∈,求证(1). 1 sup x A AX ≤=,(2 ) 1 sup x A AX <=。 7. 设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数, 并存在0M >,使得( ),a x y M x y ≤,则存在唯一的()A x ?∈, 使得 ()() ,,a x y x Ay =且 ()(),0,0 ,sup x y X X x y a x y A x y ∈?≠≠=。 8. 求证()2f L ?∈Ω,方程() 0u f u ?Ω?-?=Ω?? =??在内若解存在唯一。 9. 设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ?∈≠。求 证存在X 上的线性泛函f 满足()()01.1f x =,()()() ()02.x f x x ρρ≤ 。 10. 叙述开映象定理并给出证明。 11. 叙述共鸣定理并给出证明。

《电路分析基础》作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。

题1-19图 补充题: 1. 如图1所示电路,已知 , ,求电阻R 。 图1 解:由题得 因为 所以 2. 如图2所示电路,求电路中的I 、R 和s U 。 图2 解:用KCL 标注各支路电流且标注回路绕行方向如图2所示。 由KVL 有 解得A I 5.0=,Ω=34R 。 故 第二章(P47-51) 2-4 求题2-4图所示各电路的等效电阻ab R ,其中Ω==121R R ,Ω==243R R ,Ω=45R ,S G G 121==, Ω=2R 。 解:如图(a )所示。显然,4R 被短路,1R 、2R 和3R 形成并联,再与5R 串联。 如图(c )所示。 将原电路改画成右边的电桥电路。由于Ω==23241R R R R ,所以该电路是一个平衡电桥,不管开关S 是否闭合,其所在支路均无电流流过,该支路既可开路也可短路。 故 或 如图(f )所示。 将原电路中上边和中间的两个Y 形电路变换为?形电路,其结果如下图所示。 由此可得 2-8 求题2-8图所示各电路中对角线电压U 及总电压ab U 。 题2-8图 解:方法1。将原电路中左边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 14 12441=+?=,A I I 314412=-=-= 故 方法2。将原电路中右边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 2.16 14461=+?=,A I I 8.22.14412=-=-= 故 2-11 利用电源的等效变换,求题2-11图所示各电路的电流i 。 题2-11图 解:电源等效变换的结果如上图所示。 由此可得 V U AB 16=A I 3 2=

电路分析基础练习及答案

电路分析基础练习及答 案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

电路分析基础试题库汇编及答案一.填空题(每空1分) 1-1.所谓电路,是由电的器件相互连接而构成的电流的通路。 1-2.实现电能输送和变换的电路称为电工电路;实现信息的传输和处理的电路称为电子电路。 1-3. 信号是消息或信息的表现形式,通常是时间的函数。 2-1.通常,把单位时间内通过导体横截面的电荷量定义为电流。 2-2.习惯上把正电荷运动方向规定为电流的方向。 2-3.单位正电荷从a点移动到b点能量的得失量定义为这两点间的电压。 2-4.电压和电流的参考方向一致,称为关联参考方向。 2-5.电压和电流的参考方向相反,称为非关联参考方向。 2-6.若P>0(正值),说明该元件消耗(或吸收)功率,该元件为负载。 2-7.若P<0(负值),说明该元件产生(或发出)功率,该元件为电源。 2-8.任一电路中,产生的功率和消耗的功率应该相等,称为功率平衡定律。 2-9.基尔霍夫电流定律(KCL)说明在集总参数电路中,在任一时刻,流出(或流出)任一节点或封闭面的各支路电流的代数和为零。 2-11.基尔霍夫电压定律(KVL)说明在集总参数电路中,在任一时刻,沿任一回路巡行一周,各元件的电压代数和为零。 2-12.用u—i平面的曲线表示其特性的二端元件称为电阻元件。 2-13.用u—q平面的曲线表示其特性的二端元件称为电容元件。 2-14.用i— 平面的曲线表示其特性的二端元件称为电感元件。

2-15.端电压恒为 u(t),与流过它的电流i无关的二端元件称为电压源。 S i(t),与其端电压u无关的二端元件称为电流源。 2-16.输出电流恒为 S 2-17.几个电压源串联的等效电压等于所有电压源的电压代数和。 2-18.几个同极性的电压源并联,其等效电压等于其中之一。 2-19.几个电流源并联的等效电流等于所有电流源的电流代数和。 2-20.几个同极性电流源串联,其等效电流等于其中之一。 2-21.某元件与理想电压源并联,其等效关系为该理想电压源。 2-22.某元件与理想电流源串联,其等效关系为该理想电流源。 2-23.两个电路的等效是指对外部而言,即保证端口的伏安特性(VCR)关系相同。3-1.有n个节点,b条支路的电路图,必有n-1 条树枝和b-n+1条连枝。 3-2.有n个节点,b条支路的电路图,其独立的KCL方程为n-1个,独立的KVL方程数为b-n+1。 3-3.平面图的回路内再无任何支路的闭合回路称为网孔。 3-4.在网孔分析法中,若在非公共支路有已知电流源,可作为已知网孔电流。 3-5.在节点分析法中,若已知电压源接地,可作为已知节点电压。 4-1.叠加定理只适用线性电路的分析。 4-2.受控源在叠加定理时,不能单独作用,也不能削去,其大小和方向都随控制量变化。 4-3.在应用叠加定理分析时,各个独立电源单独作用时,而其他独立电源为零,即其他电压源短路,而电流源开路。 4-4.戴维宁定理说明任何一个线性有源二端网络N,都可以用一个等效电压源即N二端子的开路电压和内阻R0串联来代替。

相关主题
相关文档 最新文档