当前位置:文档之家› 位置度公差测量方法

位置度公差测量方法

位置度公差测量方法
位置度公差测量方法

位置度公差

这是本人对于位置度公差的理解过程(或思维过程)的总结,如果大家觉得有价值就参考一下,如果大家觉得没意思,就一笑了之。还是按习惯分成七步来讲,如果不小心又把大家给讲晕了,那是我的无心之错,敬请谅解。举个例子也许能弥补一下表达能力的不足: [attachment=25911] 第一步:确定公差带的大小和形状。公差带大小及形状是由公差框格中的公差值来确定的,公差值的大小就是公差带的大小,其形状则由公差值有无直径符号来确定,如果公差值前有直径符号,它的公差带就是一个直径等于公差值的圆柱;如果公差值前没有直径符号,它的公差带就应该是相距公差值的两平行平面。从上面的例子中可以看出,6个φ8的孔的位置度公差带是直径为0.1的圆柱,而4个φ12的孔的位置度公差带是直径为0.2的圆柱。 第二步:根据公差带的实体状态修正符号确定补偿公差。公差带的实体状态由公差值后面的修正符号来确定。如果没有任何修正符号,则表示位置度公差带在RFS状态,即公差带的大小与被测孔的实际尺寸无关;如果带MMC符号,则表示公差带适用于被测孔在MMC时,当被测孔的实际尺寸从MMC向LMC偏离时,该偏离量将允许被补偿到位置度公差带上;如果带LMC符号,则表示公差带适用于被测孔在LMC 时,当被测孔的实际尺寸从LMC向MMC偏离时,该偏离量将允许被补偿到位置度公差带上。上图中两个位置度公差均是MMC状态,因此它们的公差带的大小与被测孔的实际尺寸相关。比如对φ8的孔来说,当它的实际尺寸在MMC时(φ8),它的位置度要求为φ0.1,当它的实际尺寸在LMC时(φ8.25),它的位置度公差带就变成了φ0.1+(φ8.25-φ8)=φ0.35。同样道理,对φ12的孔来说,当它的实际尺寸在LMC时,允许的最大位置度误差可以达到φ0.6。 第三步:参照基准体系的建立。参照基准体系是由形位公差框格内的参照基准按序指定基准形体来建立的。图中两个位置度的参照基准体系相同,均由基准A和B指定的基准形体建立,其中基准A的是由零件的端面建立的基准平面,它作为第一基准约束了零件的三个自由度(两个旋转自由度及一个平移自由度),基准B是由零件的外圆建立的基准轴线,它作为第二基准约束了零件的两个自由度。这样基准A和B定位后,零件就只剩下绕B轴旋转的一个自由度。由于这两组孔的位置与这个自由度没有关系,因此本例就没有对这个自由度作出限制。同时要注意的是,基准B是带MMB修正符的,因此它模拟基准就是基准形体B的MMB边界。当基准形体B的实际尺寸向它的LMB偏离时,将允许有基准的漂移。(至于基准漂移对位置度公差的影响,我们可以另行专题讨论) 第四步:确定位置度公差带在参照基准系统内的方向和位置。公差带位于是由基本尺寸定义的相对于参照基准的理论正确位置。例中6个φ8的孔的6个位置度公差带应与整体与A基准平面平行,并相距8mm,并沿B基准轴线径向均匀分布(60°夹角);而四个φ12的孔的四个位置度公差带绕B轴径向均匀分布,其中心线交于B轴,交点距A基准20mm,并与A基准平面成30°角。 第五步:确定被测形体的被测要素。形位公差框格的标注方式决定了被测形体的被测要素。另外如果形位公差框格下有BOUNDARY的注释,则被测要素是指形体的周边轮廓。例中的两个形位公差框格均标注在尺寸的下面,它表示被测形体的被测要素是孔的中心,因此它要求的是孔的中心线满足在理论位置的公差带的要求。 第六步:考虑同步要求。同步要求的条件是:1)参照基准相同,2)基准的顺序相同,3)基准的修正符号相同。当我们在评估图纸上的一个形位公差时,要考虑是否与其它形位公差符合同步要求的条件。本例中的两个位置度的参照基准,基准顺序及修正符号均相同,因此它们符合同步要求的条件,这就要求我们对这两个位置度公差同时评价,同时满足。如果用检具测量的话,就要求我们对这两个位置度在一次装夹后同时评判。 第七步:测量方法及评估依据的确定。经过前面六步的分析,我们对位置度具体要求已经很清晰了。最后一步的目的是找出一种合适的测量方法来评价这个位置度以能更深入地理解它。从设计的角度来说,如果我们用形位公差清晰地定义了一张图纸却找不到一种合适的测量方法来评价它,那这种设计也是失败的。从上面这个例子来说,我们已经了解了基准形体及其状态,公差带的大小形状及其修正符号,公差带的位

形位公差检测方法

一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度

平面度测量与评定形位公差之二

平面度测量与评定形位 公差之二 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

二)、平面度误差的测量和评定方法1、平面度公差: 被测平面对理想平面的允许变动量。 2、平面度公差带:距离为公差值t的两平行平面之间的区域。 3、平面度误差的测量方法 1)直接方法 (1)间隙法:刀口尺、平尺等 (2)指示表法: 调整被测表面与平板平行(即确定理想平面的位置),一般有两种方法: A、对角线法(四点法): 调整支撑使被测表面两端点等高,即1点与2点等高,3 点与4 B、三点法: 调整支撑使被测表面最远三点等高(结果不唯一且不符合 示表的最大读数与最小读数之差近似地做为被测平面的平面度误

差。必要时可根据记录的示值用计算法(图解法)按最小条件计算平面度误差。 (3)光轴法 :自准直仪 将反射镜放在被测表面上,并把自准值仪调整到与被测表 面平行,沿对角线按一定布点测量、重复上述方法分别测量另一条对角线和被测表面上其他各直线上的各布点。把各点示值换算成线值,记录在图表上,通过中心点建立参考平面,由计算法(图解法)按对角线法计算平面度误差。必要时按最小条件计算平面度误差。标准27页 (4)干涉法 :平晶 将平晶放在被测表面上,观测它们之间的干涉条纹。平面度误差为: 对于封闭环形:平面度误差等于干涉条 纹数×光波波 长之半(图a ), 即 2f n λ =? 对于不封闭图形:平面度误差等于条纹 的 弯曲度与相邻两条纹间距之比再乘以光波波 长之半(图b )2v f λ ω=?

2)间接方法 (1)布点形式 矩形平面的布点形式:网格布点、对角线布点 园形平面的布点形式:网格布点、对角线布点 园环形平面的布点形式:对于较宽的环形平面,其圆环测量线不得少于两圈,对于较窄的环形平面,可采用单圈测量线的形式。 3)水平仪法 4)斑点法 4、平面度误差的评定方法 1)最小包容区域法; 对被测平面的偏差进行旋转和平移,不改变被测平面的平面度评定 结果,是以构成平面度最小包容区域的两平行平面之一作为理想平面。 最小包容区域面的判定准则 A、三角形准则 有三个高极点(极点是实际被测平面与最小包容区域面的接触点)与一个极低点,或相反有三个低极点与一个高极

三坐标测量位置度的方法及注意事项

摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 关键词:三坐标;位置度;方法 一、位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。 ③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 二、三坐标测量位置度的注意事项

形位公差及其检测方法

形位公差及其检测方法 一、概念: 定义: 形状公差:单一实际要素形状所允许的变动全量。 位置公差:关联实际要素的位置对基准所允许的变动全量。 形位公差:形状公差与位置公差的总称。它控制着零件的实际要素在形状、位置及方向上的变化。 形位公差带:用以限制实际要素形状或位置变动的区域。由形状、大小、方向和位置四个要素所确定。 公差原则:形位公差与尺寸公差之间的相互关系。包括独立原则与相关要求。 独立原则:图样上给出的尺寸公差与形位公差各自独立,彼此无关,分别满足要求的公差原则。 相关要求:图样上给定的尺寸公差和形位公差相互有关的公差要求。具体可分为

形位公差带的形式: 二、形状误差与形状公差:

项目 公差带定义示 例说 明 公差带是距离为公差值t 的两平行直线之间的区域 在给定平面内 圆柱表面上的任一素线必须位于轴向平面内,距离为0.02的两平行线之间 0.02 在给定方向上、当给定一个方向 公差带是距 离为公差值t的两 平行平面之间的区域 棱线必须位于箭头所示方向距离为公差 值0.02的两平行平面内 0.02 、当给定两 个互相垂直的两个 方向 公差带为截面边长t1*t2的四 棱柱内的区域 棱线必须位于水平方向距离为公差值0.02,垂直方向距离为0.01的四棱柱内 0.01 0.02 3、在任意方向 公差带是直径为公差值t的圆柱面的区域 d 圆柱体的轴线必须位于直径为公差值0.02的圆柱面内 直 线 度平面度 公差带是距离为公差值t的两平行平面之间的区域 上表面必须位于距离为公差值0.1的两平行平面内 0.1 圆度 公差带是在同一正截面上半径差为公差值t的两同心圆之间的区域 在垂直于轴线的任一正截面上,该圆必须位于半径差为公差值0.02的两同心圆之间

位置度公差带

第一步:确定公差带的大小和形状。公差带大小及形状是由公差框格中的公差值来确定的,公差值的大小就是公差带的大小,其形状则由公差值有无直径符号来确定,如果公差值前有直径符号,它的公差带就是一个直径等于公差值的圆柱;如果公差值前没有直径符号,它的公差带就应该是相距公差值的两平行平面。从上面的例子中可以看出,6个φ8的孔的位置度公差带是直径为0.1的圆柱,而4个φ12的孔的位置度公差带是直径为0.2的圆柱。 第二步:根据公差带的实体状态修正符号确定补偿公差。公差带的实体状态由公差值后面的修正符号来确定。如果没有任何修正符号,则表示位置度公差带在RFS状态,即公差带的大小与被测孔的实际尺寸无关;如果带MMC符号,则表示公差带适用于被测孔在MMC时,当被测孔的实际尺寸从MMC向LMC偏离时,该偏离量将允许被补偿到位置度公差带上;如果带LMC 符号,则表示公差带适用于被测孔在LMC时,当被测孔的实际尺寸从LMC向MMC偏离时,该偏离量将允许被补偿到位置度公差带上。上图中两个位置度公差均是MMC状态,因此它们的公差带的大小与被测孔的实际尺寸相关。比如对φ8的孔来说,当它的实际尺寸在MMC时(φ8),它的位置度要求为φ0.1,当它的实际尺寸在LMC时(φ8.25),它的位置度公差带就变成了φ0.1+(φ8.25-φ8)=φ0.35。同样道理,对φ12的孔来说,当它的实际尺寸在LMC时,允许的最大位置度误差可以达到φ0.6。 第三步:参照基准体系的建立。参照基准体系是由形位公差框格内的参照基准按序指定基准形体来建立的。图中两个位置度的参照基准体系相同,均由基准A和B指定的基准形体建立,其中基准A的是由零件的端面建立的基准平面,它作为第一基准约束了零件的三个自由度(两个旋转自由度及一个平移自由度),基准B是由零件的外圆建立的基准轴线,它作为第二基准约束了零件的两个自由度。这样基准A和B定位后,零件就只剩下绕B轴旋转的一个自由度。由于这两组孔的位置与这个自由度没有关系,因此本例就没有对这个自由度作出限制。同时要注意的是,基准B是带MMB修正符的,因此它模拟基准就是基准形体B的MMB边界。当基准形体B的实际尺寸向它的LMB偏离时,将允许有基准的漂移。(至于基准漂移对位置度公差的影响,我们可以另行专题讨论) 第四步:确定位置度公差带在参照基准系统内的方向和位置。公差带位于是由基本尺寸定义的相对于参照基准的理论正确位置。例中6个φ8的孔的6个位置度公差带应与整体与A基准平面平行,并相距8mm,并沿B基准轴线径向均匀分布(60°夹角);而四个φ12的孔的四个位置度公差带绕B轴径向均匀分布,其中心线交于B轴,交点距A基准20mm,并与A基准平面成30°角。 第五步:确定被测形体的被测要素。形位公差框格的标注方式决定了被测形体的被测要素。另外如果形位公差框格下有BOUNDARY的注释,则被测要素是指形体的周边轮廓。例中的两个形位公差框格均标注在尺寸的下面,它表示被测形体的被测要素是孔的中心,因此它要求的是孔的中心线满足在理论位置的公差带的要求。 第六步:考虑同步要求。同步要求的条件是:1)参照基准相同,2)基准的顺序相同,3)基准的修正符号相同。当我们在评估图纸上的一个形位公差时,要考虑是否与其它形位公差符合同步要求的条件。本例中的两个位置度的参照基准,基准顺序及修正符号均相同,因此它们符合同步要求的条件,这就要求我们对这两个位置度公差同时评价,同时满足。如果用检具测量的话,就要求我们对这两个位置度在一次装夹后同时评判。 第七步:测量方法及评估依据的确定。经过前面六步的分析,我们对位置度具体要求已经很清晰了。最后一步的目的是找出一种合适的测量方法来评价这个位置度以能更深入地理解它。从设计的角度来说,如果我们用形位公差清晰地定义了一张图纸却找不到一种合适的测量方法来评价它,那这种设计也是失败的。从上面这个例子来说,我们已经了解了基准形体及其状态,公差带的大小形状及其修正符号,公差带的位置及被测要素;并且我们也知道了这两个位置度要满足同步要求,这样我们就可设计一个功能检具来同时测量这两个位置度。基准形体A可以用一平

形位公差的测量方法

在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

位置度公差测量方法

1.基准﹔ 2.理論位置值﹔ 3.位置度公差 三、位置度公差帶

四、位置度的標注與測量方法

3﹑以中心线左边第二根端子为例﹐测出实际尺寸D1(0.82)﹑D2(1.02)﹐根据位置度公差定义﹐ DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs[(0.85+1.00)/2-0.90}] =0.025<0.05 其中﹐DE表示实际偏差 abs表示绝对值 Da表示实际位置尺寸 Dt表示理论位置尺寸﹐对于不同的端子﹐它们的理论位置尺寸是不同的﹐测量时测量者须自行计算 ﹐因为下面这种方法多了一次置中归零﹐置中归零不仅测量繁琐﹐而且会增加测量误差。 DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} = abs{[(d1+ Dt) +( Dt-d2)]/2-Dt)} =abs[(d1-d2)/2] =abs[(0.12-0.08)/2] =0.02<0.05

(二)﹑IDE 44P垂直位置度的标注与测量 如图﹐IDE 44P端子在垂直方向上具有以下特点﹕排数少(只有两排)﹐每排端子数量多(达22PIN)﹐长度值为端子材厚值﹐对于不同的端子﹐其值差异极小﹐因此我们可把上排端子和下排端子分别看成两个整体。下面以下排端子为例介绍其测量方法。 一、测出角柱垂直方向上Φ1.70的实际尺寸﹐然后置中归零﹔ 二、往下偏移2.00﹐然后归零﹔ 三、分别找出位置向上和向下偏离最大的端子﹐测出其端子上下表面的距离﹐并测出端 子实际材厚值﹕ DE1=d1-T/2=0.15-0.20/2=0.05 DE2=d2-T/2=0.17-0.20/2=0.07 下排端子的位置度最大偏差为﹕max(DE1﹐DE2)=0.07<0.10

形位公差定义及检测方法

形位公差定义及检测方法 一、 直线度的定义及检测方法 定义:直线度是指零件被测的线要素直不直的程度。 检测方法概述: ㈠.将平尺(小零件可用刀口尺)与被测面直接接触并靠紧。此时平尺与被测面之间的最大间隙即为该检测面的直线度误差。一般公用检测器具-塞尺。(图片) 按此方法检测若干条素线,取其中最大误差值作为该件的直线度误差。 ㈡.将被测件放在平台上,并靠紧方箱或直角尺(或者将被测件放置在等高V 型铁上)。用杠杆表在被测素线的全长范围内测量,同时记录检测数值,最大数值与最小数值之差即为该条素线直线度误差。(简图): 按上述方法测量若干条素线,并计算,取其中最大的误差值,作为被测零部件的直线度误差。 ㈢将被测零部件用千斤顶支起,利用杠杆表将被测素线的两端点调整到与平台平行,在被测素线的全长范围内测量,同时记录,读数,最大值与最小值之差即为该素线的直线度误差,按同样方法测量若干条素线,取其中最大的误差值作为该被测件的直线度误差。 ㈣综合量规:综合量规的直径等于被测零件的实效尺寸,综合量规必须通过被测零件。 二、平面度定义及检验方法 平面度是指零件被测表面的要素平不平得程度。 ㈠将被测件用千斤顶支撑在平台上,调整被测表面最远的三点A,B,C ,(利用杠杆表或高度尺)使其与平台平行,然后用测头在整个实际表面上进行测量,同时记录读数,其最大与最小读数之差,即为被测件平面度误差。 ㈡用刀口尺(小型件)或平尺(较大型件)在整个被测平面上采用“米”字型或栅格型方法进行检测,用塞

尺进行检验,取其塞尺最大值为该被测零件得平面度误差。 ㈢环类垫圈类零件 将被测件的被测面放在平台上,压紧,然后用塞尺检测多处,其塞入的最大值即为该件的平面度误差。(或者将被测件的被测面用三块等高垫铁在平台上均分支撑,然后用杠杆表在被测面的多处进行检测,取其最大与最小读数的差作为该件的平面度误差。 三、圆度定义及测量方法 定义:圆度是指具有圆柱面(包括圆锥面)的零件在同一横剖面内的实际轮廓不圆的程度。 测量方法: ㈠轴类件:将被测件用偏摆仪顶紧,将杠杆表的测头压到被测面上,在被测件回转一周过程中指示表读数的最大差值之半,即为单个测量面上的圆度误差。按上述方法在被测件轴向上测量若干个截面,取各截面上测得的跳动量中的最大误差值(取各截上指示表的最大与最小读数差之半中的最大数值),作为该零件的圆度误差。 ㈡两点测量法也称直径法: 用千分尺(内径表)直接测量被测轴(孔)的直径,在被测件的同一截面内按多个方向测量直径的变化情况,寻求各个方向测得读数中的最大差值之半(最大值减最小值之半)即为该被测截面的单个圆度误差。按同样方法在轴向上测若干个截面,取各截面上测得差值中最大的差值之半,作为该零件的圆度误差。 四、圆柱度定义及测量方法 定义:圆柱度是控制圆柱的纵、横剖面及轴线等的圆度、直线度、和平行度的综合指标。 测量方法如下: ㈠将被测件放在平台上并靠紧在方箱根部,杠杆表测头压到被测件表面上,在被测零件回转一周过程中,测量一个横截面上的最大与最小读数,按上述方法在件的轴向上测量若干个横截面,然后取各截面内所测得的所有读数中的最大与最小读数的差值之半,作为该零件的圆柱度误差。

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 标签:三坐标;位置度 1 位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基準元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 2 三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径

螺栓螺钉连接位置度公差计算[4P][79.2KB]

螺栓、螺钉连接位置度公差计算 一、螺栓连接的计算公式 用螺栓连接丙个或两个以上的零件,且被连接零件均为光孔,其计算计算公式为: T≤KZ Z=D MIN-d MAX T——位置度公差值 Z——孔与紧固件之间的间隙 D MIN——最小孔径 d MAX——螺栓或螺钉的最大直径 K——间隙利用系数 推荐值:不需调整的固定连接K=1 需调整的固定连接K=0.8或0.6 若考虑结构、加工等因素,被连接零件采用不相等的位置度公差T a 、T b时,则必须满足: T a+T b≤2T 二、螺钉连接的计算公式 被螺钉连接的零件中有一个是螺孔(或其它不带间隙的过盈配合孔).而其它均为光孔,其计算公式为:

T≤0.5KZ Z=D MIN-d MAX 若考虑结构、加工等因素,被连接零件采用不相等的位置度公差T a 、T b时,螺孔(或过盈配合孔)与任一零件的位置度公差的组合必须满足: T a+T b≤2T 注:圆整后取标准公差值 摘自机械工业出版社《机械工业最新基础标准应用手册》1988年出版 位置度公差值的计算-形状和位置公差位置度公差GB 13319-1991 本章给出适用于呈任何分布形式的内、外相配要素,为保证装配互换而给定位置度公差的公差值计算方法。 1 代号 t--位置度公差值(公差带的直径或宽度) S--光孔与紧固件之间的间隙 --光孔的最小直径 D min

d max --螺栓、螺钉或销轴的最大直径 K--间隙利用系数 2 螺栓连接的计算方式 2.1 用螺栓连接两个或两个以上的零件,且被连接零件均为光孔,其孔径大于螺栓直径,如图45。 计算公 式: t=K*S ---------------------------(1) 式中:S=D min -d max K 的推荐值为: 不需调整的连接:K=1; 需要调整的连接:K=0.8或K=0.6。 注:K 值的选择应根据连接件之间所需要的调整间隙量确定。 例如:某个采用螺栓连接的部位,其光孔与紧固件之间的间隙为1mm : a. 若设计只要求装配时螺栓能顺利地穿入被被连接件的光孔,各被连接件不需作相互错动的调整;此时,选K=1,则t=1mm 。若被连接件光孔的位置度误差达到最大值1mm ,螺栓穿入后,被连接件之间无法相互错动调整。 b. 若设计要求在螺栓穿入被连接件的光孔后,为保证其他环节的调整需要,如边缘对齐等,各被连接件之间应能相互错动调整0.4mm ,此时,选K=0.8,则t=0.8mm 。若被连接件光孔的位置度误差均达到最大值0.8mm ,螺栓穿入后,两被连接件之间仍有0.4mm 的相互错动调整量。 2.2 若考虑结构,加工等因素,被连接零件采用不相等的位置度公差t a 、t b 时,则应满足:t a +t b ≤2t 。 若连接三个或更多个零件而采用不相等的位置度公差时,则任意两个零件的位置公差之和应满足:t a +t b ≤2t 。 3 螺钉(或螺柱)连接的计算公式 3.1 被螺钉(或螺柱)连接的零件中,有一个零件的孔是螺孔(或过盈配合孔),而其它零件的孔均为光孔,且孔径大于螺钉直径,如图46。 计算公 式: t=0.5K*s ------------------------(2) 式中:S=D min -d max K 的推荐值为: 不需调整的连接:K=1;

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 三坐标测量位置度的方法及注意事项 摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓"位置度";是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 关键词:三坐标;位置度;方法 一、位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。

1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。 ②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。 ④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 二、三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径为t的圆内的区域,圆心的位置由相对于基准A和B的理论值确定。(如图3) 如位置度公差值前加注Sφ,表示公差带是直径为t的球内的区域,球心的位置由相对于基准A、B和C的理论值确定。(如图4) 2.3 对于深度小于5mm的孔,可以直接计算测量其位置度。对于深度大于5mm的孔,必须采用先测量圆柱,然后与上、下端面求相交,再对交点求位置度的方法来控制测量误差,上、下端面一般是指整个孔的两端面。或者尽量取靠近两端面孔的截面位置,如果仅测量一个截面,求其位置度是不能保证此孔在整个长度范围上所有截面的位置度都合格的。因为交点是圆柱轴线与两端平面相交得到,不管轴线方向往哪个方向倾斜,如果两端交点位置度合格,中间各截面的位置度也应该是合格的。 2.4 对于有延伸公差带要求的,评价时要包含延伸的长度。 2.5 在位置度公差设置时,有时会出现[M] [L] 图标,它们的含义各不相同,其主要目的是为了尺寸公差和形状、位置度公差之间的相互补偿。 ①孔的最小实体位置度公差。

形位公差之定向定位公差详解

第四章形状和位置公差及检测(第二讲,2学时) ※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※本次课内容及时间分配: 1.位置公差及基准的概念; 2. 定向公差与公差带特点; 3. 典型的定向公差带的特征及其标注; 4. 定位公差与公差带特点; 5. 典型的定位公差带的特征及其标注; 6. 小结。 要求深刻理解与熟练掌握的重点内容: 本次课内容均要求深刻理解与熟练掌握。 本次课难点: 典型的定向和定位公差带的特征及其标注。 本次课教学方法: 本次课中,位置公差项目比较多,要有重点的进行讲解。定向公差以平行度公差带的特征及标注为讲解重点,定位公差带的公差带的特征及其标注要各举一例进行讲解。设置课堂问题,掌握学生理解情况 课外作业:习题:4-9、4-11、4-14 ※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※具体内容的详细教案如下:(加黑字表示板书内容或应有板书的地方) 注:首先对上次课的主要内容用2分钟进行小结。 第三节位置公差 注:首先对上次课的主要内容用2分钟进行小结,然后讲新内容。 位置公差——是指关联实际要素的位置对基准所允许的变动全量。 位置公差用以控制位置误差,用位置公差带表示,它是限制关联实际要素变动的区域,被测实际要素位于此区域内为合格,区域的大小由公差值决定。 一、基准 基准是确定被测要素的方向、位置的参考对象。 1) 单一基准——如右图所示(见课件)为由一个平面要素建立 的基准。 2) 组合基准(公共基准)——用下图(见课件)讲解 3) 基准体系(三基面体系)——由三个相互垂直的平面所构成的基准体系,称三基面体

位置度公差标注原理与方法

位置度公差标注原理与方法

位置度 是指被测实际要素对其具有理想位置的理想要素的变动量 位置度公差 是各实际要素相互之間或它們相对一个或多个基准位置允许的变动全量 沿圆周分布要素的位置度公差注法在生产实际中有的应用,由于其表现形式和反映的设计意图多种多样,相对来说比较复杂。本文将针对各种不同的组合形式,结合标注示例分别说明其反映的设计思想和标注的公差解释。 根据标注方法的不同形式,圆周分布要素的公差标注可分为单组和多组两大类。 1、单组圆周分布要素的公差注法 1)沿圆周分度方向均匀分布的要求较严,对径向变动误差要求较松。这种设计飘多用在有圆周分布要求的定位要素(分度定位销孔等)和圆周分度刻线等场合。其标注方法见图1。 图1中所示4个孔的实际轴线必须分别位于圆周方向宽0.01mm的4个两平行平面公差带内,各公差带的中心应均匀分布,公差带的宽度方向为指引线箭头所指示的圆周方向(见图1b)。轴线的径向位置由Φ50mm的未注公差控制。 2)对圆周分布的径向位置要求较严,圆周均匀分布的要求较松。多用于在径向起定位定心作用的场合,可分为有基准和无基准两种情况。图2为无基准标注的示例,图3为有基准标注的示例。

图2中所示4个孔的实际轴线必须分别位于宽0.01mm的4个径向公差带内,各公差带对称分布在Φ50mm的理想圆周上(见图2b)。Φ50mm的理想圆的圆心对外圆Φ80mm的轴线的同轴度公差按未注同轴度公差考虑。对经两孔中心边线之 间的角度应在89°30′~90°30′之间。 图3中所示4个孔的实际轴线分别位于宽0.01mm的4个径向公差带内,各 公差带对称分布在Φ50mm的圆周上。Φ50mm的理想圆的圆心对外圆Φ80mm的轴线(基准轴线)A同轴(见图3b)。对经两孔中心边线之间的角度应在89°30′~90°30′之间。 设计中是否选用有基准的标注,主要取决于给定位置度公差的成组要素是否对其它要素有定位(装配)关系。如有关系则应以标注基准的方式来表达。 3)对成组要素的方向均有位置要求,包括无基准标注和有基准标注。应用无基准标注时,只控制成组要素内各要素之间的要求。有基准要素则增加了相对其它要素(基准)的要求。图4为有基准的标注示例。 图4中所示4个孔的实际轴线必须分别位于直径为0.01mm的4个圆柱形公

实验报告 形位公差

目录实验一零件形状误差的测量与检验实验1—1直线度测量与检验 实验1—2平面度测量与检验 实验1—3圆度测量与检验 实验1—4圆柱度测量与检验 实验二零件位置误差的测量 实验2—1 平行度测量与检验 实验2—2 垂直度测量与检验 实验2—3 同轴度测量与检验 实验2—4圆柱跳动测量与检验 实验2—4—1圆柱径向跳动测量与检验 实验2—4—2圆柱全跳动测量与检验 实验2—5端面跳动测量与检验 实验2—5—1端面圆跳动测量与检验 实验2—5—1端面全跳动测量与检验 实验2—6 对称度测量与检验 实验三齿轮形位误差的测量与检验实验3—1齿圈径向跳动测量与检验 实验3—2齿轮齿向误差测量与检验

实验一零件形状误差的测量与检验 实验1—1直线度测量与检验 一、实验目的 1、通过测量与检验加深理解直线度误差与公差的定义; 2、熟练掌握直线度误差的测量及数据处理方法和技能; 3、掌握判断零件直线度误差是否合格的方法和技能。 二、实验内容 用百分表测量直线度误差。 三、测量工具及零件 平板、支承座、百分表(架)、测量块(图纸一)。 四、实验步骤 1、将测量块2组装在支承块3上,并用调整座4支承在平板上,再将测量块两端点调整到与平板等高(百分表示值为零),图1-1-1所示。 图1-1-1 用百分表测量直线度误差 2、在被测素线的全长范围内取8点测量(两端点为0和7点,示值为零),将测量数据填入表1-1-1中。 表1-1-1:单位:μm 3、按图1-1-1示例将测量数据绘成坐标图线,分别用两端点连线法和最小条件法计算测量块直线度误差。

图1-1-1 直线度误差数据处理方法 4、用计算出的测量块直线度误差与图纸直线度公差进行比较,判断该零件的直线度误差是否合格。并将结果填入表1-1-1中。 5、分析两端点连线法与最小条件法计算导轨直线度误差精度的高低。(法)精度高。

Quindos 形位公差测量技巧

1、
形位公差的测量技巧
零件形位公差有专门的指令计算,用户只需填写相应的参数即可计算出结果, 所以关键在于如何准确地测量出各个元素。这在于平时经验的积累。一些基础知识 很重要,如对称平面的矢量计算,ELE 掩码含义,APT、NPT、ACT、EVA、NOM 之间的关系,元素的构造、变换以及坐标系的建立方法等。 l 元素的构造
元素的构造在实际编程中用得很多。ELE 子类型 ACT(实际值)记录了元素的 所有信息,如中心坐标,方向等。要构造元素,必须先初始化一个元素,再赋值这 个元素实际值的掩码区域。 元素的构造方法主要有两种: (1)、直接编辑,指令 EDTACT 可以编辑元素的实际值,但是这种方法违背程 序编写“自动”原则。 (2)、PUTVALS、PUTVAL 可以在程序中自动加入元素的实际信息,这种方法 用得较多。 也可以利用已有的点、线、面构造如 CPL****,CAX****等。 l 元素的变换
变换种类分为两种:坐标系和元素的变换。 变换方法分为两种:平移和旋转 在方法上,坐标系和元素的变换没有区别,都是将元素或坐标系平移或旋转某 一数值,平移和旋转可以单独使用,也可以同时使用。只有一种情况不同,就是元 素在坐标系之间的转换。 指令 TRAOBJ,TRAELE,TRACSY 直接将元素变换,也可以先建立变换 (BLDTRA,FINDTRA,INVTRA ),再执行转换(EXETRA,TRAELE)。 l 坐标系的建立
一般来说,零件的检测步骤分为: 坐标系的建立; 根据零件的特点确定元素的测量步骤,并生成元素测量点;

相关主题
文本预览
相关文档 最新文档