当前位置:文档之家› 路易斯结构理论与路易斯结构式

路易斯结构理论与路易斯结构式

路易斯结构理论与路易斯结构式
路易斯结构理论与路易斯结构式

路易斯结构理论与路易斯结构式

由于对简单的非过渡元素分子或离子,通过观察即可写出其路易斯结构式,所以路易斯结构理论实际上是中学化学中最重要的结构理论。虽然人们因其不能解释PCl5等类物质的结构,而常对其加以质疑,但仍无法撼动其在化学中的地位。以至于现在有相当一部分大学化学教材和教学参考书,还是用路易斯结构来讨论分子中的成键情况和性质。

一、路易斯理论介绍

(一)路易斯理论

路易斯结构理论是一个关于共价键的理论。它认为分子中的原子都有形成稀有气体电子构型的趋势,以求得到自身的稳定。所以又称为八隅体理论。

分子达到稳定结构要通过原子共用电子对来实现。每种原子提供的价电子数,是按元素周期表的族数给出的。

它解释了大部分非过渡元素以共价键构成的化学物质的成键情况。并给出分子的路易斯结构式、进而给出有关分子结构的某些较详细的情况。

路易斯结构的表示方法为,在两原子间用一对“电子点”或短线,表示由共价键相联结。

(二)路易斯结构的推断

在中学化学教学的范围内,那些简单的分子或离子通常通过观察即可确定出路易斯结构式。所谓的“观察”,就是在确定出哪个原子是中心原子的基础上(当分子中无环时),再一个、个的从配原子的角度讨论是否达到了稳定结构。

对H2O分子,有6个价电子的O原子为中心原子。当它与一个配原子H结合时,与H要各提供1个电子用于成对。O原子与另一配原子H也是这样结合的。这样O原子享有的电子数为8,其中有2个孤电子对,有两个电子对分别与2个H原子共用、成σ键。两个H原子各用1个电子与O原子组成电子对。每个H原子享有的电子数为2。原子都达到了稀有气体的结构。如下左图。

如S O3分子中,电负性小的S为中心原子。S与第一个考虑的O原子间必须共用2对电子(其中1个是σ键、1个是π键),这时S原子的电子数达到了8个,且该O原子的电子数也得到了满足。这样,S原子只能单方面提供电子对与另外2个O原子以σ配键的形式结合。如下右图。

或、或

对于复杂的分子或离子,则必须通过计算。先知道分子中的键数和孤电子对数目。然后再按程序进行电子排布。较为完整、细致的程序为:

对复杂的分子或离子,必须首先计算其中σ键、π键、孤电子对的数目。

设n v为价电子对数(分子或离子中所有原子的价电子数、与离子的电荷数的总和被2除,单数也算一对)nσ,nπ、n l、分别表示σ、π、孤电子对数,q表示分子式中重原子数目,h表示轻原子(氢原子)数目,按八隅体规则有如下关系:n v = nσ+ nπ+ n l。

重原子成链时,应有nσ= q + h - 1,及nπ= 3q–n v + 1。

重原子成环时,应有nσ= q + h,及nπ= 3q + n v。

原子排布的方法为:

链状分子中,一般电负性较小的原子居中,而氢原子及电负性较大的原子(如氧原子、氯离子等)则处于端基的位置;在环状分子中,三元环不予考虑;

依次排好所有各个原子的相对位置后,两原子间以短线相连;

孤对电子用一对“电子点”先从每个端基的配原子排起,然后再填充到中心原子,使其达到所需的孤电子对数目(每个原子周围应有4对电子,氢原子不应再排)。

如中心原子的电子数未达到4对,应从邻近的原子上拿出一对或几对孤电子对,与中心原子共用(中心原子的电子对数相应增加)。

若电子的排列方式不止一种时,应将所有情况一一列出。对同一分子(或离子),在几种较稳定的排布中,各排列方式间互为共振体。

不难看出,用这一方法来写出路易斯结构式是相当麻烦的。这种例子在许多教材和教学参考资料中都可以找到,这里就不再重复。

二、由总配位数写路易斯结构式

既然总配位数是描述AB m型分子里中心原子杂化类型和成键情况的一个结构概念,那么用总配位数、不用计算分子(或离子)中的σ键、π键、孤电子对数目、也能写出路易斯结构式。

这一分析和判断的程序为:

由元素的电负性(电负性大的原子为配原子)、原子可能成键的个数(氧原子有可能成两个键、氢原子总成一个键总位于端基),确定中心原子和配原子。把中心原子和配原子用一根短线或一对“电子点”相连(这样的短线或电子点都是σ键)。

用总配位数式计算出中心原子的杂化类型。由杂化轨道数和配原子数,能直接算出中心原子的孤对电子数。标出这些孤电子对。

当中心原子为sp2杂化或sp杂化时,中心原子分别要成1个或2个π键。画出π键的位置(对配原子种类不只一种的sp2杂化,应优先考虑与成单电子数多的配原子成π键)。

最后根据与中心原子成键情况的不同,给每个配原子补齐它的孤电子对。

如对S O3分子。

从电负性看S原子的电负性小,它为中心原子,O为配原子。据此画出分子的骨架,S原子在中间、3个O原子在周围。再将S与每个O配原子间写出一对电子(为σ键。)

用总配位数式[a+(b– 6)m]/2=Σ可算出Σ=3,中心原子为sp2杂化。3个sp2杂化轨道正好结合3个O配原子,所以中心原子无孤电子对。

由于中心原子有一未杂化的p轨道,分子中有1个π键。任选出一个O原子(都是同种的O原子),将其与S原子间再加一对电子点,表示这里还有一个π键。

最后再考虑每个配原子所属的成键电子对数,把各配原子的孤电子对补齐(够8个)。

这一过程和每步分析的结果可图示如左下:

由于BF3分子与S O3分子同属于E (24/4)。在BF3分子中同样有一个π键。只不过这是一个由F单方面提供电子给B原子p空轨道的π配键。在其中B原子也享有8个电子(有2个是F提供的π配电子)。可见,说八偶体理论不能解释BF3分子结构,是因为他们所依据的路易斯结构式有误。BF3分子的路易斯电子式应该如右上。

总配位数法能首先确定出中心原子的所有信息,如是否有π键、是否有孤电子对。所以不但简便,还能更全面、本质地考虑问题。

三、八偶体理论的改进

八偶体理论是一个在化学发展过程中曾起过积极作用,至今在某些方面还有应用价值的理论。不应该被全盘否定。要改进就要先弄清它的实质。

(一)八偶体理论的适用范围

从等电子分子周期表可以看出Ⅱ线左面的区域为八偶体理论适用的范围。只有Ⅱ线右面的总配位数大于4的属于AB m型分子的9个等电子族的分子结构不能用八偶体理论来解释,其中心原子采取的是sp3d、或sp3d2、或sp3d3杂化。

八偶体理论适用的范围用数学式子来描述就是:[a +(b– 6)m] / 2 =Σ≤4即a+(b– 6)m≤ 8 (1)

而八偶体理论不能描述的化学物质则是

a+(b– 6)m> 8 (2)

从配原子种类来讨论八偶体理论的适用范围:即使当中心原子的价电子数为最大值8(如Xe)时,其配原子中如果没有卤族原子(其b= 7)(1)式也是成立的。所以八偶体理论可以描述所有的不含卤族元素的分子(当然包括XeO3)。

从中心原子种类来讨论八偶体理论的适用范围:中心原子价电子数a与ⅦA 元素原子数m间的关系为a+ m≤ 8或m≤ 8-a(当所讨论的是带有一个负电荷的离子时,上一关系变为:a+ m+1≤ 8或m≤ 7–a。这说明配卤原子的个数还受中心原子价电子数的制约。只要其和不大于8,该分子也可以用八偶体理论类描述(如POCl3、SO2Cl2)。而其和大于8的化合物(如PCl5、SF4、ClF3、XeF2、XeOF4、H5IO6),不能用八偶体理论类描述

而中心原子价电子数a与其最大配位数也有一定关系,即a= m。这样

有2m< 8、m< 4时八偶体理论适用。即所有以ⅣA元素为中心原子的化合物都在八偶体理论的适用范围内。

可见,只有ⅤA族及其右边元素的,中心原子价电子数与配卤原子数之大于8的含卤化合物分子,才不能被八偶体理论所解释。

总之,与八偶体理论能解释结构的化学物质相比较,其不能解释的还是极少数。要除掉稀有气体化合物,不能解释的则更是屈指可数了。为此,全盘否定八偶体理论是不合适的。

(二)改进的八偶体理论

既然不想否定,就可以考虑改进的方法。

由于在上面所述的不能用八偶体理论解释的分子中,其配重原子所拥有的价电子数无例外的还都是8。所以只要从中心原子方面来进行补救就可以了。

为此,可以在保留“分子中的原子都有形成稀有气体电子构型的趋势”的同时,特别补充“在某些卤化物中,中心原子会形成不多于其原有价电子数的化学键”。

即ⅤA族元素的原子可以生成5个σ键,有5对电子点;而ⅦA族元素的原子可以生成7个σ键,有7对电子点……。这种补充,很容易用价电子被激发成单后再成键来解释,不超出学生的认识范围。

课后练习本_八隅体与路易斯结构

19 2-1 八隅体与路易斯结构 一 單選題 ( B ) 1. 八隅体规则的定义为原子形成化合物时,倾向于与何种物质具有相同的电子 排列方式,而趋于安定? (A)卤素 (B)钝气 (C)碱金属 (D)氧族 (E)过渡金属 ( D ) 2. 下列各元素中,何者具有最多的价电子数? (A) S (B) N (C) O (D) F (E) He ( E ) 3. 下列何者为KH (氢化钾)的路易斯结构? (A) K:H (B) [K]+[H]- (C) [K]-[H]+ (D) [K:]-[H]+ (E) [K]+[:H]- ( C ) 4. 原子序15的磷元素得到三个电子形成离子后,其路易斯结构为何? (A) (B) (C) (D) P 3+ (E) P 5+ ( C ) 5. 原子形成化合物时需符合八隅体规则,所谓的八隅体规则是指: (A)化合物形成时,各原子均使用8个电子来键结 (B)化合物形成时,其电子数的总和为钝气的电子数 (C)形成化合物时,各原子倾向具有与钝气相同的8个价电子数 (D)化合物形成时,价电子数总和为8的倍数 (E)两原子间价电子数总和为8者才能形成化合物 ( A ) 6. 下列分子中何者两原子间共享三对电子? (A) N 2 (B) O 2 (C) H 2 (D) F 2 (E) CO 2 ( C ) 7. 一个氯化氢分子中有几对孤电子对? (A) 1对 (B) 2对 (C) 3对 (D) 4对 (E) 5对 二 多選題 第2章 物质的构造与特性 2-1 八隅体与路易斯结构 (2. (A) 6个;(B) 5个;(C) 6个;(D) 7个;(E) 2个。) (6. (A) 3对;(B) 2对;(C) 1对;(D) 1对;(E) 2对。) (7. H Cl 有3对弧电子对。) (1. (A)皆为2个;(B) 5B :3个,16S :6个; (C)皆为5个;(D) 9F :7个,18Ar :8个; (E) 3Li :1个,13Al :3个。)

路易斯结构式

路易斯结构式 在弗兰克兰结构式基础上,Lewis 提出了“共用电子对理论” “—”表示共用一对电子。H—H “=”表示共用两对电子。H—O—H O=O “≡”表示共用三对电子。N≡N 弗兰克兰的“化合价”=Lewis 的电子共用电子对数目。 ① 柯赛尔的“八隅律” 认为稀有气体的8e 外层是一种稳定构型。 其它原子倾向于共用电子而使其外层达到8e 外层。 如:H—O—H H—C≡N ② 成键电子与孤对电子的表示 成键电子=键合电子——指形成共价键的电子。孤 对电子——指没有参与化合键形成的电子。 ③ 结构式的表示: 键合电子——用线连 孤对电子——用小黑点 如:H—N—H N≡N ④ Lewis 电子结构式的局限性 按柯赛尔的“八隅律”规则,许多分子的中心原子周围超出8e 但仍然稳定。 如:PCl5 BCl3 B 周围5 个e 这些需要用现代价键理论来解释。 杂化轨道 杂化轨道理论(hybrid orbital theory)杂化轨道理论(hybrid orbital theory)是1931 年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。 要点 1.在成键的过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道(即波函数),可以进行线性组合,重新分配能量和确定空间方向,组成数目相等的新原子轨道,这种轨道重新组合的方式称为杂化(hybridization),杂化后形成的新轨道称为杂化轨道(hybrid orbital)。 2.杂化轨道的角度函数在某个方向的值比杂化前的大得多,更有利于原子轨道间最大程度地重叠,因而杂化轨道比原来轨道的成键能力强(轨道是在杂化之后再成键)。

富缺电子化合物路易斯结构式的书写

富缺電子化合物路易斯結構式の書寫 ①缺電子結構——價電子,包括形成共價鍵の共用電子對之內,少於8電子の,稱為缺電子結構。例如,第3主族の硼和鋁,中性原子只有3個價電子,若一個硼原子和其它原予形成3個共用電子對,也只有6個電子,這就是缺電子結構。典型の例子有BCl 3、AlCl 3(這些化學式是分子式,即代表一個分子の結構)。缺電子結構の分子有接受其它原子の孤對電予形成配價鍵の能力。例如:BCl 3+:NH 3=Cl 3B ←NH 3 能夠接受電子對の分子稱為“路易斯酸”,能夠給出電子對の分子稱為“路易斯堿”。路易斯酸和路易斯堿以配價鍵相互結合形成の化合物叫做“路易斯酸堿對”。 ②多電子結構例如,PCl 5裏の磷呈5價,氯呈1價。中性磷原予の價電子數為5。在PCl 5磷原子の周圍の電子數為10,超過8。這種例外只有第3周期或更高周期の元素の原子才有可能出現。 Lewis 結構式 1.書寫方法 2.共振 有時,一個分子在不改變其中の原子の排列の情況下,可以寫出一個以上合理の路易斯結構式,為解決這一問題,鮑林提出所謂の“共振”の概念,認為該分予の結構是所有該些正確の路易斯結構式の總和,真實の分子結構是這些結構式の“共振混合體”。 (1).Lewis 結構式穩定性の判據 ?? 形式電荷Q F 如何判斷路易斯結構式の穩定性:形式電荷 形式電荷Q F =價電子數-鍵數-孤電子數 ( 形式電荷=價電子數-成鍵電子數/2-反鍵電子數 ) Q F の絕對值盡可能小; Q F =0の結構式是最穩定の路易斯結構式;要避免相鄰兩原子間の形式電荷為同號; 如果一個共價分子有幾種可能のLewis 結構式,那麼通過Q F の判斷,應保留最穩定 和次穩定の幾種Lewis 結構式,它們互稱為共振結構。例如: H -N =N =N H -N -N ≡N, 互稱為HN 3の共振結構式。 (1) Q F の由來: 以CO 為例 n o = 2 ? 8 = 16 n v = 4 + 6 =10 n s / 2 = (16 - 10) / 2 = 3 n l / 2 = (10 - 6) / 2 = 2 為了形成三對平等の共價鍵,可以看作O 原子上の一個價電子轉移給C 原子, 即: ,所以氧原子のQ F 為+1,碳原子のQ F 為-1。 從這個實例中可以看出:形式電荷與元素性質沒有任何直接聯系,它是共價鍵形成の平等與否の標志。 (2) Q F の計算: Q F = 原子の價電子數 - 鍵數 - 孤電子數 在CO 中, Q F(C) = 4 - 3 - 2 = -1 Q F(O) = 6 - 3 - 2 = +1 C O x x x x e

基础无机:Lewis共价键理论和共振结构式

基础无机:Lewis共价键理论和共振结构式 作者:虹Rreflect_F 本文受众:高中以上 Lewis共价键理论是经典的共价键理论。当然,在MO,VB等面前可能不值一提。但是原始与简单也有它的好处,如果我们可以用一些更为简单的方法去解释一些分子结构给出的信息,何乐而不为呢?就如同在适合的时候没必要使用洛仑兹变换而使用伽利略变换一样。这个也是它在基础有机化学中应用十分广泛的原因。故在这里提及一些关于Lewis结构式的内容。 *注:在Lewis结构式里我们讨论的是分子或者是以共价键组成的离子,而且主要针对主族元素。副族元素的化合物置于配位化合物部分进行讨论。 一.Lewis结构式的书写 1.八隅律 中心原子通过电子共用达到周围8价电子的稳定结构(H为2电子)。 2. 几种Lewis结构的书写方法: 一种(左图)是高中所熟知的电子式,标准式(中间)是把电子式中共用电子对用短线代替,只需要标出孤对电子。还有一种(右图)是在孤对电子较多时可以弃去孤对电子来表示分子的结构。 3. 键数的计算: 有了八隅律作为规则就可以轻易的算出化合物中的键数n。 我们设分子中有a个重原子(除了氢原子以外的其他原子,在等电子体部分中有提及)b个氢原子,那么我们所拥有的价电子数可以通过计算得出设为c。那么我们达到理想结构每个原子都达到8电子的稳定结构,所总共的电子为8a+2b,很显然我们多算了电子,而这个多算的电子数目是8a+2b-c。 这些多的电子通过共用电子对来实现互补,2个电子一根键所以总键数就是4a+b-c/2。 以HCN为例n=4*2+1-(1+4+5)/2=4,所以共4根键。 4. 形式电荷 有时我们画出来的分子周围多了电子或者少了电子,这样就可以看作多了电子的原子丢掉一个(或

路易斯结构理论与路易斯结构式

路易斯结构理论与路易斯结构式 由于对简单的非过渡元素分子或离子,通过观察即可写出其路易斯结构式,所以路易斯结构理论实际上是中学化学中最重要的结构理论。虽然人们因其不能解释PCl5等类物质的结构,而常对其加以质疑,但仍无法撼动其在化学中的地位。以至于现在有相当一部分大学化学教材和教学参考书,还是用路易斯结构来讨论分子中的成键情况和性质。 一、路易斯理论介绍 (一)路易斯理论 路易斯结构理论是一个关于共价键的理论。它认为分子中的原子都有形成稀有气体电子构型的趋势,以求得到自身的稳定。所以又称为八隅体理论。 分子达到稳定结构要通过原子共用电子对来实现。每种原子提供的价电子数,是按元素周期表的族数给出的。 它解释了大部分非过渡元素以共价键构成的化学物质的成键情况。并给出分子的路易斯结构式、进而给出有关分子结构的某些较详细的情况。 路易斯结构的表示方法为,在两原子间用一对“电子点”或短线,表示由共价键相联结。 (二)路易斯结构的推断 在中学化学教学的围,那些简单的分子或离子通常通过观察即可确定出路易斯结构式。所谓的“观察”,就是在确定出哪个原子是中心原子的基础上(当分子中无环时),再一个、个的从配原子的角度讨论是否达到了稳定结构。 对H2O分子,有6个价电子的O原子为中心原子。当它与一个配原子H结合时,与H要各提供1个电子用于成对。O原子与另一配原子H也是这样结合的。这样O原子享有的电子数为8,其中有2个孤电子对,有两个电子对分别与2个H原子共用、成σ键。两个H原子各用1个电子与O原子组成电子对。每个H原子享有的电子数为2。原子都达到了稀有气体的结构。如下左图。 如S O3分子中,电负性小的S为中心原子。S与第一个考虑的O原子间必须共用2对电子(其中1个是σ键、1个是π键),这时S原子的电子数达到了8个,且该O原子的电子数也得到了满足。这样,S原子只能单方面提供电子对与另外2个O原子以σ配键的形式结合。如下右图。 或、或 对于复杂的分子或离子,则必须通过计算。先知道分子中的键数和孤电子对数目。然后再按程序进行电子排布。较为完整、细致的程序为: 对复杂的分子或离子,必须首先计算其中σ键、π键、孤电子对的数目。 设n v为价电子对数(分子或离子中所有原子的价电子数、与离子的电荷数的总和被2除,单数也算一对)nσ,nπ、n l、分别表示σ、π、孤电子对数,q表示分子式中重原子数目,h表示轻原子(氢原子)数目,按八隅体规则有如下关系:n v = nσ+ nπ+ n l。 重原子成链时,应有nσ= q+ h- 1,及nπ= 3q–n v + 1。 重原子成环时,应有nσ= q+ h,及nπ= 3q+ n v。

相关主题
文本预览
相关文档 最新文档