当前位置:文档之家› 二倍角的三角函数练习(包含答案)

二倍角的三角函数练习(包含答案)

二倍角的三角函数练习(包含答案)
二倍角的三角函数练习(包含答案)

一、选择题

1.已知cos(α+β)=,cos(a﹣β)=﹣,则cosαcosβ的值为()

C

2.如果,那么等于()

.C D.

=,

,变形得=

==.

3.已知α,β,γ均为锐角,且tanα=,tanβ=,,则α,β,γ的和为().C D.

=

=

cos=2cos cos cos=2sin cos

sin cos(sin cos

根据正弦定理得到,因为

5.化简:的值为()

>;即:

二、填空题

7.(2008?浙江)若,则cos2θ=.

可知,

8.若cosαcosβ=,则sinαsinβ的取值范围是______.

,设

﹣+x

解得:﹣≤

,]

三、解答题

9.在△ABC中,∠B=60°,且tanAtanC=2+,求角A,C的度数.

tanA+tanC=3+

3+)

=2+

时,

tanA=2+时,

10.若已知方程x2﹣(tanθ+cotθ)x+1=0有两个实根,且其中一个根是2﹣,求cos4θ的值.

),于是

(满足

11.已知函数y=,求函数的最大值及对应自变量x的集合.

,然后求出最大值,及其相应的

取最大值,只需

取最大值

12.如图,在某点B处测得建筑物AE的项点A的仰角为θ,沿B前进30米至C点处测得顶点A的仰角为2θ,再继续前进10米至D点,测得顶点A的仰角为4θ,求θ的大小及建筑物AE的高.

米,∠

∴=2cos2

,结合题意可知:

AE=

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

二倍角的三角函数的化简与证明

课题:二倍角的三角函数 本节考试要求为B 级 一、知识梳理 1、二倍角公式 =α2sin ;=α2cos ;=α2tan . 2、公式变形 =α2sin ;=α2cos ;=-αcos 1 ; =+αcos 1 ;=-α2sin 1 ;=+α2sin 1 . 3、技巧:(1)巧变角;(2)切化弦;(3)变逆用;(4)幂升降;(5)变结构;(6)1代换;(7)三兄妹. 二、三基能力强化 1、已知5 3 )4sin( = -x π ,则=x 2sin . 2、已知θ是第三象限角,且9 5cos sin 4 4=+θθ,那么θ2sin = . 3、在ABC ?中,6cos 4sin 3=+B A ,1cos 3sin 4=+A B ,则C sin 的值为 . 4、教材习题改编)已知1tan 2tan 1=+-θθ,则=++)4 tan(42tan π θθ . 5、已知βα,均为锐角,且α αα αβsin cos sin cos tan +-=,则=+)tan(βα . 三、典例互动 三角函数式的化简:化简的要求 例1:(1)化简)4 cos(6)4sin( 2x x -+-π π ; (2)α αααα2sin ) 1cos )(sin 1sin (cos +--+ 规律总结: 三角函数式的求值:求值的方法 例2:求值:0 01000 1cos 20sin10(tan 5tan 5)2sin 20-+-- 又如: 78sin 66sin 42sin 6sin =

例3:已知),43(ππα∈,3 10 tan 1tan =+αα,求 ) 2 sin(28 2 cos 112 cos 2 sin 82 sin 52 2 π αα α α α --++的 值。 变题:本题条件不变,求 ) 3 sin(cos 22sin 2π ααα- -的值。 例4:已知ββαsin 3)2sin(=+,设x =αtan ,y =βtan ,记)(x f y = (1)求)(x f 的解析式;(2)若角α是一个三角形的最小内角,试求函数)(x f 的值域 四、课堂反馈 1.已知cos2α=1 4 ,则sin 2α=________. 2.2sin2α1+cos2α·cos 2αcos2α 等于________. 3.已知α,β,γ∈(0,π 2),且sin α+sin γ=sin β,cos β+cos γ=cos α,则α-β的值等于________. 4.定义运算a b =ab 2+a 2b ,则sin15°cos15°的值是________. 5.(原创题)已知sin θ=4 5 ,且cos θ-sin θ+1<0,则sin2θ=________. 6.化简:2cos 4x -2cos 2x + 1 2 2tan(π4-x )·sin 2(π 4+x ) .

1.2.2同角的三角函数的基本关系 教案

1. 2.2同角的三角函数的基本关系 一、教学目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 二、教学重、难点 重点:公式1cos sin 2 2=+αα及 αα α tan cos sin =的推导及运用: (1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 2 2 =+αα及 αα α tan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由2 2 1MP OM +=, 因此2 2 1x y +=,即22 sin cos 1αα+=. 根据三角函数的定义,当()2a k k Z π π≠+ ∈时,有 sin tan cos α αα =. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 解:原式 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

【高中数学教学设计】二倍角教案

3.1.3 二倍角的正弦、余弦、正切公式 教学分析 “二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义. 本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”. 在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神. 三维目标 1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力. 2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力. 3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神. 重点难点 教学重点:二倍角公式推导及其应用. 教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 课时安排 1课时 教学过程 导入新课 (问题导入)出示问题,让学生计算,若sinα=53,α∈(2 ,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式. 推进新课 新知探究 提出问题 ①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?

同角三角函数与诱导公式

同角三角函数基本关系 1,平方关系:sin 2α+cos 2α=1; 2,商数关系:tan α=α αcos sin 3,同角三角函数的关系式的基本用途: 根据一个角的某一个三角函数值,求出该角的其他三角函数值;化简同角三角函数式;证明同角的三角恒等式. 题型一,同角间的计算 利用基本关系计算,开方时注意正负 1,若sin α=45 ,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2,化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3,若cos α=-817 ,则sin α=________,tan α=________ 4,若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 5,若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 6,计算1-2sin40°·cos40°sin40°-1-sin 240° =________。 7,已知8 1cos sin =?αα,则ααsin cos -的值等于( ) A .±34 B .±23 C .23 D .-2 3

8,已知 2cos sin cos sin =-+θθθθ,求θθcos sin ?的值。 9,已知sin α·cos α= 81,且24παπ<<,则cos α-sin α的值是多少? 10,已知sin θ +cos θ=51,θ∈(0,π),求值: (1)tan θ; (2)sin θ-cos θ;(3)sin 3θ+cos 3θ。 11,求证: ()x x x x x x x x cos sin 1sin cos 2cos 1sin sin 1cos ++-=+-+。

三角函数公式及证明

三角函数公式及证明 ( 编辑整理 2013.5.3) 基本定义 1.任意角的三角函数值: 在此单位圆中,弧AB 的长度等于α; B 点的横坐标αcos =x ,纵坐标 αsin =y ; (由 三角形OBC 面积<弧形OAB 的面积<三角形OMA 的面积 可得: a a tan sin <<α (2 0πα<<)) 2.正切: α α αcos sin tan = 基本定理 1.勾股定理: 1cos sin 22=+αα 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2 =b 2 +c 2 -2bc A cos bc a c b A 2cos 2 22-+=? 3.诱导公试: απ ±k 2

cot tan cos sin ?? 奇变偶不变,符号看相线 4.正余弦和差公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± 推导结论 1. 基本结论 ααα2sin 1)cos (sin 2+=+ α α2 2cos 1 1tan = + 2. 正切和差公式: β αβ αβαβαβ αβαβαβαβαtan tan 1tan tan sin sin cos cos sin cos cos sin )cos()sin() tan(μμ±= ??? ? ??±=±±=± 3.二倍角公式(包含万能公式): θ θθθθθθθθ2 22tan 1tan 2cos sin cos sin 2cos sin 22sin +=??? ??+== θθ θθθθθθθθθ2222222 2 2 2 tan 1tan 1cos sin sin cos sin 211cos 2sin cos 2cos +-=??? ? ??+-=-=-=-= θ θ θθθ2tan 1tan 22cos 2sin 2tan -= = θ θ θθ222 tan 1tan 22cos 1sin +=-= 22cos 1cos 2θθ+= 4.半角公式:(符号的选择由2θ 所在的象限确定)

任意角三角函数练习题

1-2-1任意角的三角函数 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6 π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .22 B .-22 C .±22 D .1 4.α是第二象限角,其终边上一点( P x ,且cos 4x α= ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且cos cos 22αα=- ,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.若α是第四象限角,则 2α 是( ) A.第二象限角 B.第三象限角 C.第一或第三象限角 D.第二或第四象限角 8.若α 为第二象限角,则下列各式恒小于0的是( ) A.sin cos αα+ B.tan sin αα+ C cos tan αα- D sin tan αα- 9.已知角α的终边落在直线y =3x 上,则sin α=________. 10.已知P (-3,y )为角α的终边上一点,且sin α=1313 ,那么y 的值等于________. 11.已知锐角α终边上一点P (1,3),则α的弧度数为________.

三角函数和差及倍角公式讲义.docx

教育学科教师辅导讲义 教学内容 一、 上次作业检查与讲解; 二、 学习要求及方法的培养: 三、 知识点分析、讲解与训练: Mite 一、两角和与差的正弦、余弦、正切公式及倍角公式: sin (° ± 0) = sin QCOS 0 土 cos osin 0 —令空?》sin 2a = 2 sin a cos a (o±0) = cosfzcos^ + sinc^sin p — cos2a = cos?(7-sin 2 a -2cos 2 a-\ = l-2sin 2 a 7 1+COS 2Q n cos 「a= ---------- 2 .9 l — cos2o sirr a= ---------- 2 r 2 tan a tan 2a = ------- - l-tarr a 二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系, 注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三 观察代数式的结构特点。基本的技巧有: (1) 巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变 换.如 G = (Q + 0)-0 = (Q -0) + 0, 2Q = (G + 0) + (Q -0) , 2a = (0 + a)-(0-a), 心=2?呼,呼十号俘") ⑵三角函数名互化(切割化弦), ⑶公式变形使用(tana 土tan0 = tan (仅±0)(1^tanotan")。 1 I y zy I / cos 等),

(4)三角函数次数的降升(降幕公式:cos2 6Z = —-—, sin%= —与升幕公式: 2 2 1+ cos 2a = 2 cos2a , 1-cos 2a = 2 sin2a)。

同角三角函数公式的转化

同角三角函数公式的转化 同角三角函数的基本关系式十分重要,主要运用于三角函数的求值和恒等变形中各函数间的相互转化.在解答时,若能根据函数式的结构特点,适时灵活地选用公式,往往能获得简捷、迅速的解答. 一、“1”的代换 例1 证明:66441sin cos 31sin cos 2 x x x x --=--. 证明:∵22sin cos 1x x +=, ∴2231(sin cos )x x =+,2221(sin cos )x x =+, ∴662236644222441sin cos (sin cos )sin cos 1sin cos (sin cos )sin cos x x x x x x x x x x x x --+--=--+-- 424222223sin cos 3cos sin 3(sin cos )32sin cos 22 x x x x x x x x ++===··. 评注:本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.同学们要注意掌握和灵活运用“1”的代换. 二、化切为弦 例2 化简:tan (cos sin )sin (tan cot )θ θθθθθ-++··. 解:原式sin sin cos (cos sin )sin cos cos sin θθθθθθθθθ??=-++ ??? ·· 22sin sin sin cos sin cos cos cos θθθθθθθθ =-++=+ 例3 求证:2212sin 2cos21tan 2cos 2sin 21tan 2x x x x x x --=-+. 证明:右边sin 211tan 2cos 2sin 2cos 2sin 21tan 2cos 2sin 2cos 2x x x x x x x x x x - --===++ 2 (cos 2sin 2)(cos 2sin 2)(cos 2sin 2) x x x x x x -=+- 2222cos 2sin 22cos sin cos 2sin 2x x x x x x +-=- 2212sin cos2cos 2sin 2x x x x -==-左边.故原式成立. 评注:三角中的化简及三角恒等式的证明问题常常采用“化切为弦”,即利用商数关系把切函数化为弦函数,以达到统一名称之目的. 三、化弦为切 例3 已知tan 2α=,求下列各式的值: (1)sin 3cos sin cos αααα -+; (2)222sin sin cos cos αααα-+. 解:由已知tan 2α=.

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

任意角的三角函数复习

任意角的三角函数复习 一 选择题 1.-1120°角所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.半径为πcm ,中心角为120°的弧长为( ) A .3 π cm B .23πcm C .23πcm D .223π cm 3.已知4sin 5α= ,并且α是第二象限的角,那么tan α的值等于( ) A.43- B.34 - C.43 D.34 4.已知αβπ+=-,下列等式中正确的是( ) A .cos sin αβ=- B .cos cos αβ= C .sin sin αβ=- D .sin sin αβ= 5.已知5sin cos 4 αα-=-,则sin cos αα等于( ) A .4 B .916- C .932- D .932 6.下列不等式中,不成立的是( ) A .sin130sin140> B .cos130cos140> C .tan130tan140> D .cos130sin140> 7.函数x x x x x x y tan tan cos cos sin sin ++=的值域是( ) A .{}3,1,0,1- B .{}3,0,1- C .{}3,1- D .{}1,1- 8.α是第二象限角,其终边上有一点(P x ,且cos 4 x α=,则sin α的值为( ) A B C .4 D . 9cos(2)π- ) A .sin 2cos2+ B .cos2sin 2- C .sin 2cos2- D .(cos 2sin 2)±- 10.下列三角函数○14sin()3n ππ+○2cos(2)6n ππ+○3sin(2)3n ππ+○4cos[(21)]6n ππ+-○5sin[(21)]()3n n Z ππ+-∈,其中函数值与sin 3π 相同的是( )

同角三角函数基本关系式与诱导公式

第2节同角三角函数基本关系式与诱导公式 最新考纲 1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sin α cos α =tan α;2.能利用单位圆中的三角函数线推导出π 2± α,π±α的正弦、余弦、正 切的诱导公式. 知识梳理1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1. (2)sin α cos α =tan__α. 2.三角函数的诱导公式 [常用结论与微点提醒] 1.诱导公式的记忆口诀:奇变偶不变,符号看象限. 2.同角三角函数基本关系式的常用变形: (sin α±cos α)2=1±2sin αcos α. 3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 诊断自测 1.思考辨析(在括号内打“√”或“×”)

(1)sin(π+α)=-sin α成立的条件是α为锐角.( ) (2)六组诱导公式中的角α可以是任意角.( ) (3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π 2的奇数倍和偶数倍,变与不变指函数名称的变化.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=1 3.( ) 解析 (1)对于α∈R ,sin(π+α)=-sin α都成立. (4)当k 为奇数时,sin α=1 3, 当k 为偶数时,sin α=-1 3. 答案 (1)× (2)√ (3)√ (4)× 2.(2018·成都诊断)已知α为锐角,且sin α=4 5,则cos (π+α)=( ) A.-35 B.35 C.-45 D.45 解析 因为α为锐角,所以cos α=1-sin 2α=3 5,所以cos(π+α)=-cos α =-3 5,故选A. 答案 A 3.已知sin ? ????5π2+α =1 5,那么cos α=( ) A.-25 B.-15 C.15 D.25 解析 ∵sin ? ????5π2+α=sin ? ???? π2+α=cos α,∴cos α=15.故选C. 答案 C 4.(必修4P22B3改编)已知tan α=2,则 sin α+cos α sin α-cos α 的值为________. 解析 原式=tan α+1tan α-1=2+1 2-1 =3. 答案 3 5.已知sin θ+cos θ=43,θ∈? ? ???0,π4,则sin θ-cos θ的值为________. 解析 ∵sin θ+cos θ=43,∴sin θcos θ=7 18.

高中数学 任意角的三角函数练习题及答案详解

一数学限时训练---任意角的三角函数(4) 测试时间:2019.3.20 一、选择题 A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+ 6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .22 B .-22 C .±22 D .1 4.α是第二象限角,其终边上一点P (x ,),且cos α=x ,则sin α的值为( ) A . B . C . D .- 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos |=-cos ,则角是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 二、填空题 1.已知角α的终边落在直线y =3x 上,则sin α=________. 2.已知P (-3,y )为角α的终边上一点,且sin α=13 13,那么y 的值等于________. 3.已知锐角α终边上一点P (1,3),则α的弧度数为________. 4.(1)sin 49πtan 3 7π_________ 三、解答题 1.已知角α的终边过P (-3 ,4),求α的六种三角函数值 2.已知角β的终边经过点P (x ,-3)(x >0).且cos β= 2 x ,求sin β、cos β、tan β的值. 答案: 542 4104642410 2α2α2α

二倍角的三角函数

课 题:二倍角的三角函数 主 备 人 仲崇健 日期 2010-4-18 班级 姓名 【预习案】 (一) 复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, =+)sin(βα =+)cos(βα =+)tan(βα 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(提示:把上述公式中β看成α即可), (二)公式推导:=α2sin =α2cos 思考:把上述关于cos2α的式子能否变成只含有sin α形式的式子呢? =α2cos ,你发现=α2sin 把上述关于cos2α的式子能否变成只含有αcos 形式的式子呢? =α2cos ,你发现=α2cos ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα +=+==--.(你能说出它的定义域吗? ) 【导学案】一、公式的运用 例1、已知5sin 2,,1342ππαα= <<求sin 4,cos 4,tan 4ααα的值 【解】 例2、已知1tan 2,3 α=求tan α的值. 【解】 思考:如何证明 :在半径为R 的圆O 的所有内接矩形中,正方形的面积最大?

二、公式的变形运用 例3. 写出由tan α表示tan3α的公式。 例4.求值: (1) cos20°cos40°cos80° (2) sin10°sin30°sin50°sin70° 【巩固案】三、巩固练习: 1.求证: sin 4α=38-12cos2α+18cos4α 2 已知71cos =α,1413)cos(=-βα,且2 0παβ<<< (1)求α2tan 的值。 (2) 求β的值 3 思考 求函数 y=(1+sinx)(1+cosx) 的最大值和最小值 1sin 2cos 2tan 1sin 2cos 2θθθθθ+-=++

角函数的概念同角三角函数的基本关系式诱导公式重难点分析与出题角度归纳

Xx 学校学科教师辅导讲义 一)一、定义:角可以看作成平面内一条射线绕着端点从一个位置到另一个位置所称的图形。旋转开始时的射线、终止时 的射线分别叫作_______、_______,射线的端点O 叫做_________.按逆时针方向旋转形成的角叫做_______,顺时针方向旋转形成的角叫做_______,若一条射线没有作任何旋转,称它形成了一个_______。 二、在直角坐标系内讨论角: (1)角的顶点在原点,始边与x 轴的非负半轴重合,角的终边(除端点外)在第几项先,就说这个角是第几象限角(或 者说这个角属于第几象限); 例如:30°、390°、-330°等都是第一象限角;120°、480°、-240°等都是第二象限角;240°、600°、-120°等 都是第三象限角;-30°、-390°、330°等都是第四象限角。 注意:锐角_____第一象限角,但第一象限角_______锐角;钝角______第二象限角,但第二象限角________钝角。(填 “都是”或者“不都是”) (2)若角的终边在坐标轴上,就说这个角不属于任一象限。 例如:直角、周角、平角都不属于任一象限。 三、终边相同的角(重点) 所有与角α终边相同的角,连同角α在内,可构成一个集合S={Z k k ∈?+=?,360/αββ },即任一与角α终 边相同的角都可以表示为角α与整个周角的和。 四、1弧度角的定义:我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。单位符号是 rad,读作弧度。2、弧度 数:在单位圆中,当圆心角为周角时,它所对的弧长为2π,所以周角的弧度数为2π,周角是2πrad 的角. 任意一个0°~360°的角的弧度数必然适合不等式 0≤x<2π. 任一正角的弧度数都是一个正实数;,任一负角的弧度数都是一个负实数; 零角的弧度数是0. 五、弧度制与角度制的换算 360°=2πrad ;180°=πrad ;1°= 180πrad ≈;1rad=π 180 ≈°≈57°18′。

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

三角函数公式大全及推导过程

一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan(-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2 π-α)= sinα sin (2π+α)= cosα cos(2 π+α)= -sinα

sin ( 23π-α)= -cosα cos(2 3π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+ βαβαβαsin sin cos cos )cos(?+?=- β αβαβαtan tan 1tan tan )tan(?-+=+ βαβαβαtan tan 1tan tan )tan(?+-= - 四、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α αα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式: )sin(cos sin 22?++=+x b a x b x a (其中a b =?tan ) 其中:角?的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z) 六、其它公式: 1、正弦定理: R C c B b A a 2sin sin sin ===(R 为ABC ?外接圆半径) 2、余弦定理 A bc c b a cos 2222?-+=

相关主题
文本预览
相关文档 最新文档