当前位置:文档之家› 信号完整性

信号完整性

信号完整性
信号完整性

3.2 信号完整性仿真

3.2.1 信号完整性基础

高速PCB的信号线必须按照传输线理论去设计,否则就会产生反射、串扰、过冲和下冲等问题而严重影响信号的完整性。信号完整性是指信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了误触发、阻尼振荡、过冲、欠冲等时钟间歇振荡和数据出错等信号完整性问题。当频率超过50MHz或信号上升时间Tr小于6倍传输线延时时,系统的设计必然面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。以下是印象信号完整性的一些现象。

①反射

反射就是信号在传输线上的回波现象。此时信号功率没有全部传输到负载处,有一部分被反射回来了。在高速的PCB中导线必须等效为传输线,按照传输线理论,如果源端与负载端具有相同的阻抗,反射就不会发生了。如果二者阻抗不匹配就会引起反射,负载会将一部分电压反射回源端。根据负载阻抗和源阻抗的关系大小相同,反射电压可能为正,也可能为负。如果反射信号很强,叠加在原信号上,很可能改变逻辑状态,导致接受数据错误。如果在时钟信号上可能引起时钟沿不单调,进而引起误触发。一般布线的几何形状、不正确的线端接、经过连接器的传输以及电源平面的不连续等因素均会导致此类反射。;另外常有一个输出多个接收,这时不同的布线策略产生的反射对每个接收端的影响也不相同,所以布线策略也是影响反射的一个不可忽视的因素。

②串扰

在所有的信号完整性问题中,串扰现象是非常普遍的。串扰可能会出现在芯片内部,也可能出现在电路板、连接器、芯片封装以及线缆上。串扰是指在两个不同的电性能之间的相互作用。产生串扰被称为Aggressor,而另一个收到串扰的被称为Victim。通常,一个网络既是入侵者,又是受害者。振铃和地弹都属于信号完整性问题中单信号线的现象,串扰则是自同一块PVB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引起耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。

③过冲和下冲

过冲就是第一个峰值或谷值超过设定电压——对于上升沿是指最高电压,而

对于下降沿是指最低电压。下冲是指下一个谷值或峰值。引起过冲的主要原因为驱动端的驱动能力过强,走线过长引起的反射,阻抗未匹配或电感过大等。对于过冲最常用的措施是缩短布线长度减少反射和进行源端匹配,通过仿真扫描得到一合适的阻值电阻以消除过冲。

④信号延迟

电路中只能按照规定的时序接受数据,过长的信号延迟可能导致时序和功能的混乱,在低速的系统中不会有问题,但是信号边缘速率加快,时钟速率加快,信号在器件之间的传输时间以及同步时间就会缩短。由于驱动过载、走线过长都会引起延时,因此在越来越短的时间预算中满足所有门延时,包括建立时间、保持时间、线延迟和偏斜。由于传输线上的等效电容和电感都会对信号的数字切换产生延迟,加上反射引起的振荡回绕,使得数据信号不能满足接收端器件正确接收所需要的时间,因此会导致接受错误。

⑤单调性

SPECCTRAQuest仿真设计中的单调性通常是由于阻抗未匹配、串扰或多负载引起的信号在逻辑高低电平之间上升沿或下降沿处非单调性。对于数据、地址等非时钟信号,要尽量消除和减少非单调性的影响,而对于时钟信号,要求其上升沿和下降沿都应具有良好的单调性。

⑥时序

对于数字系统设计来说,时序分析是设计中的重要内容。尤其是随着百兆总线的出现,信号边沿速率达到皮秒级后,系统性能更取决于前端设计,要求在设计之初必须进行精确地时序分析和计算。时序分析和信号完整性密不可分,好的信号质量是确保时序关系的关键。由于反射、串扰等现象造成的信号质量问题都很有可能带来时序的偏移和紊乱,二者必须结合起来才能设计成功。

时序分析的出发点是根据信号建立或保持时间关系来确定设计方案,这种方法贯穿于整个设计流程,包括IC设计、板级设计和系统设计。以一个典型的同步数字连接路径为例,有效数据在时钟上沿经过延时Tco后由源端发出,到达接收端并满足相应的建立或保持时间要求。考虑到负载及传输线效应对信号及时序的影响,可以得到信号完整性分析中的分析飞行时间Tof,进而得到实际的布线规则。

⑦地弹

在电路中有大的电流涌动时会引起地弹,如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面上产生电压的波动和变化,这个噪声会影响其他元件的动作。负载电容的增大、负载电阻的减少、地电感的增大、

同时开关器件数目的增加均会导致地弹的增大。

⑧振铃和环绕振荡

振荡就是反复出现过冲和下冲。信号的振铃和环绕振荡由线上过度的电感和电容引起,振铃属于欠阻尼状态,而环绕振荡则属于过阻尼状态。信号完整性问题通常发生在周期信号中,如时钟等,振荡和环绕振荡同反射一样也是由于多种因素引起的,振荡可以通过适当的端接予以减少,但是不可能完全消除。

3.2.2 SPECCTRAQuest信号完整性仿真

传统的设计方法在制作的过程中没有仿真软件来考虑信号完整性问题,所以产品很难首次成功,因而降低了生产效率。只有在设计过程中融入信号完整性分析,才能做到产品在上市时间和性能方面占优势。

信号完整性的研究还是一个不成熟的领域,很多问题只能做定性分析。为此,在设计过程中首先要尽量应用已经成熟的工作经验,其次是对产品的性能作出预测、评估以及仿真。在设计过程中可以不断地积累分析能力,不断创新解决信号完整性的方法,利用仿真工具可以得到检验。

由于PCB板级信号完整性分析多种多样,目前市场上还没有一种统一的模型来完成仿真任务。因此在高速数字PCB板设计中,需要混合几种模型来最大程度地建立关键信号和敏感信号的传输模型。几种常见模型的性能对比如表3-1所示。

SpecctraQuest Interconnect Designer是Cadence公司为了满足高速系统和板级设计需要而开发的工程设计环境。它将功能设计和物理实际设计有机地结合在一起,设计工程师能在直观的环境中探索并解决与系统功能息息相关的高速设计问题。在进行实际的布局和布线之前,SpecctraQuest Interconnect Designer使设计工程师在时间特性、信号完整性、EMI、散热及其他相关问题上做出最优化的设计。这种统一的考虑不仅在单块板的系统中得到完美体现,更能在多快板构成的系统中,包括ASIC芯片、电路板、连接电缆和插接件等之间的连接进行分析。仿真流程如图3-14所示。

表3-1 各种模型的性能对比

特性Spice模型IBIS模型V erilog-AMS和

VHDL-AMS

精度精确好好

高频设计支持可达几至几十

GHz级适合1GHz以下V4.1扩展支持

GHz上

地弹、回流建模支

支持不支持不支持

目标IC支持PCB和系统设计IC、PCB和系统设

目标电路模拟电路,混合信

数字电路混合信号

模型级别晶体管、MOS管、

二极管等数字引脚I/O、I/V

和V/T曲线

行为模型

计算速度/计算量慢/大快/小速度和精度的折

模型来源IC厂家、SPICE

厂家、仿真器厂家

IC和仿真器厂家仿真器厂家

模型规范的版本Ph.D.thesis,1972

SPICE 2G6,1984 不断有新的模型

支持

1.0 1993

3.2 1999

4.1 2004

V erilog-AMS

1998

VHDL-AMS 1999

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.doczj.com/doc/7410054563.html, for more information,please refer to https://www.doczj.com/doc/7410054563.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

信号完整性需要重视的几大关键问题

信号完整性需要重视的几大关键问题 信号完整性是许多设计人员在高速数字电路设计中涉及的主要主题之一。信号完整性涉及数字信号波形的质量下降和时序误差,因为信号从发射器传输到接收器会通过封装结构、PCB走线、通孔、柔性电缆和连接器等互连路径。 当今的高速总线设计如LpDDR4x、USB 3.2 Gen1 / 2(5Gbps / 10Gbps)、USB3.2x2(2x10Gbps)、PCIe和即将到来的USB4.0(2x20Gbps)在高频数据从发送器流向接收器时会发生信号衰减。本文将概述高速数据速率系统的信号完整性基础知识和集肤效应、阻抗匹配、特性阻抗、反射等关键问题。 随着硅节点采用10nm、7nm甚至5nm工艺,这可以在给定的芯片尺寸下实现高集成度并增加功能。在移动应用中,趋势是更高的频率和更高的数据速率,并降低工作核心电压如0.9v、0.8V、0.56V甚至更低以优化功耗。 在较低的工作电压下以较高的频率工作会使阈值电平或给定位数据的数据有效窗口变小,从而影响走线和电源层分配功率以及“眼图”的闭合度。 由较高频率和较低工作电压引起的闭眼,增加了数据传输误差的机会,因而增加了误码率,这就需要重新传输数据流。重传会导致处理器在较长时间处于有源模式以重传数据流,这会导致移动应用更高的功耗并减少使用日(DOU)。

图1. 频率和较低电压对眼图张开的影响 在给定的高频设计中增加其它设计挑战如信号衰减、反射、阻抗匹配、抖动等时,很明显,信号损耗使接收器难以正确译出信息,从而增加了误差的机会。 数据流中的时钟采样 在接收器处,数据是在参考时钟的边缘处采样的。眼图张开越大,就越容易将采样CLK设置在给定位的中间以采样数据。任何幅值衰减、反射或任何抖动,都将使眼图更闭合并使数据有效窗口和有效位时间变得更窄,从而导致接收端出现误差。 图2. CLK采样 现在,让我们检查何时需要将通道或互连视为传输线,并查看在智能手机或平板电脑等系统中传输损耗的一些主要原因。

信号完整性学习笔记

期待解决的问题: 1.为何AC耦合电容放在TX端; 2.为何有的电源或地平面要挖掉一块; 3.搞清楚反射; 4.搞清楚串扰; 5.搞清楚地弹; 6.搞清楚眼图; 7.搞清楚开关噪声; 8.各种地过孔的作用; 9.写一份学习总结。 自己总结: 从微观的角度讲,信号完整性研究的是电子在电场和磁场的作用下是如何运动的,以及这种运动会造成哪些电气特性产生什么变化。 从宏观的角度讲,信号完整性研究的是如何保证信号从源端传送到终端的过程中,失真的程度在要求的范围内。

第1章 四类基本信号完整性问题: 1、单一网络的信号质量:在信号路径和返回路径上由阻抗突变而引起的反射和失真。 2、两个或多个网络间的串扰:理想回路和非理想回路耦合的互电容和互电感。 3、电源分配系统中的轨道塌陷:电源和地网络中的阻抗压降。 4、来自元件或系统的电磁干扰。 阻抗: 1、任何阻抗突变,都会引起电压信号的反射和失真。 2、信号的串扰,是由相邻线条及其返回路径之间的电场和磁场的耦合引起的,信号线间的 互耦合电容和互耦合电感的阻抗决定了耦合电流的值。 3、电源供电轨道的塌陷,与电源分布系统(PDS)的阻抗有关。 4、最大的EMI根源是流经外部电缆的共模电流,此电流由地平面上的电压引起。在电缆周 围使用铁氧体扼流圈,增加共模电流所受到的阻抗,从而减小共模电流。

第2章时域与频域 频谱:在频域中,对波形的描述变为不同正弦波频率值的集合。每个频率值都有相关的幅度和相位。把所有这些频率值及其幅度值的集合称为波形的频谱。(在频域中,描述波形的方法) 频域中的频谱表示的是时域波形包含的所有正弦波频率的幅度。 计算时域波形频谱的唯一方法是傅立叶变换。 即使每个波形的时钟频率相同,然而他们的上升时间可能不同,因此带宽也不同。 每个严肃认真的工程师都应该至少用手工计算一次傅立叶积分来观察它的细节。 带宽:表示频谱中有效的最高正弦波频率分量。 把频谱中更高频率的分量都去掉,也能充分近似时域波形的特征。 信号的带宽就是幅度比理想方波幅度小3dB(50%)的那个最高频率。 上升时间与时钟周期什么关系? 原则上讲,两者之间的唯一约束是:上升时间一定小于周期的50%。

关于SI信号完整性,你应该了解以下几点

关于SI信号完整性,你应该了解以下几点 1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻 2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。 3、什么是电磁兼容(EMI)?电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。 4、在时域(time domain)和频域(frequency domain)之间又什么不同?时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

高速电路中的信号完整性问题

高速电路中的信号完整性问题 许致火 (07级信号与信息处理 学号 307081002025) 1 信号完整性问题的提出 一般来讲,传统的低频电路设计对于电子工程师并不是多么复杂的工作。因为在低于30MHz的系统中并不要考虑传输线效应等问题,信号特性保持完好使得系统照常能正常工作。但是随着人们对高速实时信号处理的要求,高频信号对系统的设计带来很大的挑战。电子工程师不仅要考虑数字性能还得分析高速电路中各种效应对信号原来 面目影响的问题。 输入输出的信号受到传输线效应严重的影响是我们严峻的挑战 之一。在低频电路中频率响应对信号影响很小,除非是传输的媒介的长度非常长。然而伴随着频率的增加,高频效应就显而易见了。对于一根很短的导线也会受到诸如振玲、串扰、信号反射以及地弹的影响,这些问题严重地损害了信号的质量,也就是导致了信号完整性性能下降。 2 引起信号完整性的原因 2.1 传输线效应 众所周知,传输线是用于连接发送端与接收段的连接媒介。传统的比如电信的有线线缆能在相当长的距离范围内有效地传输信号。但是高速的数字传输系统中,即使对于PCB电路板上的走线也受到传输线效应的影响。如图1所示,对于不同高频频率的PCB板上的电压分布是不同的。 图 1 PCB在不同频率上的电压波动

因为低频电路可以看成是一个没有特性阻抗、电容与电感寄生效应的理想电路。高速电路中高低电平的快速切换使得电路上的走线要看成是阻抗、电容与电感的组合电路。其等效电路模型如图2所示。导线的阻抗是非常重要的概念,一旦传输路径上阻抗不匹配就会导致信号的质量下降。 图 2 传输线等效电路模型 由图2的模型可得电报方程: 2.2 阻抗不匹配情况 信号源输出阻抗(Zs)、传输线上的阻抗(Zo)以及负载的阻抗(ZL)不相等时,我们称该电流阻抗不匹配。也这是说信号源的能量没有被负载全部吸收,还有一部分能量被反射回信号源方向了。反射后又被信号源那端反射给负载,除了吸收一部分外,剩下的又被反射回去。这个过程一直持续,直到能量全部被负载吸收。这样就会出现过冲与下冲(Overshoot/Undershoot)、振铃(ring)、阶梯波形(Stair-step Waveform)现象,这些现象的产生导致信号出现错误。 当传输媒介的特性阻抗与负载终端匹配时,阻抗就匹配了。对于PCB板来说,我们可以选取合适的负载终端策略及谨慎地选择传输介

信号完整性研究反射现象

信号完整性研究:反射现象 前面讲过,对于数字信号的方波而言,含有丰富的高频谐波分量,边沿越陡峭,高频成分越多。而pcb上的走线对于高频信号而言相当于传输线,信号在传输线中传播时,如果遇到特性阻抗不连续,就会发生反射。反射可能发生在传输线的末端,拐角,过孔,元件引脚,线宽变化,T型引线等处。总之,无论什么原因引起了传输线的阻抗发生突变,就会有部分信号沿传输线反射回源端。 反射形成机理很复杂,这包含了很多电磁领域的复杂的知识,本文不准备深入讨论,如果你真的很想知道,可以给我留言,我专门讲解。 工程中重要的是反射量的大小。表征这一现象的最好的量化方法就是使用反射系数。反射系数是指反射信号与入射信号幅值之比,其大小为:(Z2-Z1)/ (Z2+Z1)。Z1是第一个区域的特性阻抗,Z2是第二个区域的特性阻抗。当信号从第一个区域传输到第二个区域时,交界处发生阻抗突变,因而形成反射。举个例子看看反射能有多大,假设Z1=50欧姆,Z2=75欧姆,根据公式得到反射系数为:(75-50)/(75+50)=20%。如果入射信号幅度是3.3v,反射电压达到了 3.3*20%=0.66v。对于数字信号而言,这是一个很大的值。你必须非常注意他的影响。

实际电路板上的反射可能非常复杂,反射回来的信号还会再次反射回去,方向与发射信号相同,到达阻抗突变处又再次反射回源端,从而形成多次反射,一般的资料上都用反弹图来表示。多次的反弹是导致信号振铃的根本原因,相当于在信号上叠加了一个噪声。为了电路板能正确工作,你必须想办法控制这个噪声的大小,噪声预算是设计高性能电路板的一个非常重要的步骤。 信号完整性:信号反射 时间:2009-04-17 21:12来源:未知作者:于博士点击: 3212次 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

信号完整性问题

二信号的完整性问题及解决办法 两个方面(时序和电平) 信号完整性(Signal Integrity)是指信号未受到损伤的一种状态,它表示信号质量和信号传输后仍保持正确的功能特性。良好的信号完整性是指在需要时信号仍能以正确的时序和电压电平值作出响应。随着高速器件的使用和高速数字系统设计越来越多,系统数据速率、时钟速率和电路密集度都在不断增加。在这种设计中,系统快斜率瞬变和工作频率很高,电缆、互连、印制板(PCB)和硅片将表现出与低速设计截然不同的行为,即出现信号完整性问题。 信号完整性问题能导致或者直接带来信号失真,定时错误,不正确数据、地址和控制线以及系统误工作甚至系统崩溃,解决不好会严重影响产品性能并带来不可估量的损失,已成为高速产品设计中非常值得注意的问题。 信号完整性问题的真正起因是不断缩减的信号上升与下降时间。一般来说,当信号跳变比较慢即信号的上升和下降时间比较长时,PCB中的布线可以建模成具有一定数量延时的理想导线而确保有相当高的精度。此时,对于功能分析来说,所有连线延时都可以集总在驱动器的输出端,于是,通过不同连线连接到该驱动器输出端的所有接收器的输入端在同一时刻观察都可得到相同波形。然而,随着信号变化的加快,信号上升时间和下降时间缩短,电路板上的每一个布线段由理想的导线转变为复杂的传输线。此时信号连线的延时不能再以集总参数模型的方式建模在驱动器的输出端,同一个驱动器信号驱动一个复杂的PCB连线时,电学上连接在一起的每一个接收器上接收到的信号就不再相同。从实践经验中得知,一旦传输线的长度大于驱动器上升时间或者下降时间对应的有效长度的1/6,传输线效应就会出来,即出现信号完整性问题,包括反射、上冲和下冲、振荡和环绕振荡、地电平面反弹和回流噪声、串扰和延迟等。表1列出了高速电路设计中常见的信号完整性问题,以及可能引起该信号完整性的原因,并给出了相应的解决方法。目前,解决信号完整性问题的方法主要有电路设计、合理布局和建模仿真。电路设计中,通常采用以下方法来解决信号完整性问题:·控制同步切换输出数量,控制各单元的最大边沿速率(dI/dt和dV/dt),从而得到最低且可接受的边沿速率;·为高输出功能块(如时钟驱动器)选择差分信号;·在传输线上端接无源元件(如电阻、电容等),以实现传输线与负载间的阻抗匹配。端接策略的选择应该是对增加元件数目、开关速度和功耗的折中,且端接串联电阻R或RC电路应尽量靠近激励端或接收端。布线非常重要,设计者应该在不违背一般原则的前提下,利用现有的设计经验,综合多种可能的方案,优化布线,消除各种潜在的问题。一方面要充分利用现有的、已经过验证的布线经验,将它们应用于布线工作中;另一方面要积极利用一些信号完整性方面的仿真工具,约束、指导布线。合理进行电路建模仿真是最常见的信号完整性解决方法。在高速电路设计中,仿真分析越来越显示出优越性。它给设计者以准确、直观的设计结果,便于及早发现问题,及时修改,从而缩短设计时间,降低设计成本。在进行电路建模仿真过程中,设计者应对

信号完整性之初识信号反射

信号完整性之初识信号反射 版本号更改描述更改人日期 1.0 第一次撰稿 eco 2013-10-19 E-mial:zhongweidianzikeji@https://www.doczj.com/doc/7410054563.html, QQ:2970904654 反射产生的原因 在《和信号完整性有关的几个概念》中我们已经简单的介绍了“反射”这厮。在下认为 “信号反射”在电路中是不可避免的,不论是高速电路还是低速电路。而我们只能用一些办 法去优化电路,去优化PCB的布局布线,从而降低反射的大小或者在信号反射时避免对电 路的操作。 为什么信号反射无法完全消除,在高速和低速电路中都会存在,在下鄙见如下: V = 3x10^8 / sqrξ 式1 其中:V是带状线中信号传播的速度(m/s),3x10^8是光速(m/s),ξ是介电常数。 由式1可知,信号的传播速度只与物质的介电常数有关,在基材相同的情况下,不论在 高速电路中还是在低速电路中信号都会以相同的速度传播。在基材为FR4的电路板中,介 电常数ξ一般为4左右,由式1我们可以计算出信号的传播速度V = 3x10^8 / sqr(4) = 1.5x10^8 m/s,转换单位后约为6in/ns,这就是为什么很多资料上喊信号在FR4材料中的传 播速度为6in/ns(注:1mil = 0.0254mm; 1inch = 25.4mm。对于这个单位转化,感兴趣 的人一定要自己计算计算,享受过程可以让你更快乐更智慧哦)。1.5x10^8 m/s(6in/ns) 速度极快了吧,设想山间小溪,小溪中的水流以1.5x10^8 m/s流动,流动中突遇一石头便 会荡起无数涟漪,迸射无数水花。溪中这块石头意味着阻抗失配。综上所述,我们姑且把这 水流现象近似看作电路中的信号反射。 为了给大家一个直观的感受,在下从网上找了两张图片,见图1、图2。很多时候有些 东西是说不清道不明的,关键看大家如何去想,如何去悟。我建议大家应该看着这个水流冥 想一下。 图1 这就是电流

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

高速信号与信号完整性分解

什么是高速数字信号? 高速数字信号由信号的边沿速度决定,一般认为上升时间小于4倍信号传输延迟时可视为高速信号,而高频信号是针对信号频率而言的。高速电路涉及信号分析、传输线、模拟电路的知识。错误的概念是:8KHz帧信号为低速信号。多高的频率才算高速信号? 当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号. 对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,信号从10%上升到90%的时间小 于6倍导线延时,就是高速信号! 即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线理论。 信号完整性研究:什么是信号完整性? 时间:2009-03-11 20:18来源:sig007 作者:于博士点击:1813次 信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。一般认为,当系统工作在50MHz时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等 这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。 1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法: 问题可能原因解决方法其他解决方法 过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源 直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面

PCB SI信号完整性之反射仿真.

一、IBIS模型的获取 a) 直接找芯片供应商 b) 从网上下载 i.到Google网站直接搜索某个型号的IBIS模型; ii. 到器件厂商的官方网站下载; iii.从专门提供IBIS模型的网站搜索下载。 c) 仿真器件的SPICE 模型或直接测量 二、IBIS模型的转化过程 将模型的IBIS格式转化为DML格式,可以使用Allegro自带的Model Integrity.一般有两种方式打开此软件: 1、在SPECCTRAQuest下,点击Tools->Model Integrity; 2、在Allegro目录下,Model Integrity作为单独的软件存在,只要点下即可。 然后,选择File->Open,打开已经获得的IBIS模型,可同时打开多个芯片的IBIS模型,其界面如下图所示: 只要打开IBIS模型,在输出窗口的Parse Messages里,会自动显示关于此模型的错误和警告信息,具体如下图所示:

此界面的右下角,如下图所示的方框,可在方框里输入提示错误的行,然后点击左边的,则跳转到该行,进行修改。对于警告信息,可以不用理会,现在绝大多数的IBIS模型都或多或少有警告信息。 如果想观察模型的波形,可如下图所示进行操作。也可在选中任一IOCell模型,直接点快捷按钮。具体操作如下图所示: 之后,出现的波形如下图所示:

当模型的语法错误修改完毕后,可右击该模型,选择IBIS to DML,如下图所示: 若此步可以完成,说明成功转化为DML格式。 保存转化为DML格式的方件,最好把需要用到的DML文件放在同一文件夹里。此时,可以关闭Model Integrity. 三、IBIS模型的注意事项 1、确认IBIS模型里PIN的名称与原理图及PCB图的PIN名称一致,特别是对于PGA封装的IC。例如HI3520芯片,原理图上有一PIN为AM9,而其IBIS模型的名称为AM09,则命名不一致。这种情况可以转化为DML格式,但在后续仿真中,其模型不能正确被加载。

信号完整性分析与测试

信号完整性分析与测试 信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。本文还有很多不足,欢迎各位帮助补充,谢谢! 梁全贵 2011年9月16日

目录 第1章什么是信号完整性------------------------------------------------------------------------------ 3第2章轨道塌陷 ----------------------------------------------------------------------------------------- 5第3章信号上升时间与带宽 --------------------------------------------------------------------------- 6第4章地弹----------------------------------------------------------------------------------------------- 8第5章阻抗与特性阻抗--------------------------------------------------------------------------------- 9 5.1 阻抗 ------------------------------------------------------------------------------------------ 9 5.2 特性阻抗------------------------------------------------------------------------------------- 9第6章反射----------------------------------------------------------------------------------------------11 6.1 反射的定义 ---------------------------------------------------------------------------------11 6.2 反射的测试方法--------------------------------------------------------------------------- 12 6.3 TDR曲线映射着传输线的各点 --------------------------------------------------------- 12 6.4 TDR探头选择 ----------------------------------------------------------------------------- 13 第7章振铃--------------------------------------------------------------------------------------------- 14 第8章串扰--------------------------------------------------------------------------------------------- 16 8.1 串扰的定义 -------------------------------------------------------------------------------- 16 8.2 观测串扰 ----------------------------------------------------------------------------------- 16 第9章信号质量 --------------------------------------------------------------------------------------- 18 9.1 常见的信号质量问题 --------------------------------------------------------------------- 18 第10章信号完整性测试 ----------------------------------------------------------------------------- 21 10.1 波形测试---------------------------------------------------------------------------------- 21 10.2 眼图测试---------------------------------------------------------------------------------- 21 10.3 抖动测试---------------------------------------------------------------------------------- 23 10.3.1 抖动的定义 ------------------------------------------------------------------------ 23 10.3.2 抖动的成因 ------------------------------------------------------------------------ 23 10.3.3 抖动测试 --------------------------------------------------------------------------- 23 10.3.4 典型的抖动测试工具: ---------------------------------------------------------- 24 10.4 TDR测试 --------------------------------------------------------------------------------- 24 10.5 频谱测试---------------------------------------------------------------------------------- 25 10.6 频域阻抗测试 ---------------------------------------------------------------------------- 25 10.7 误码测试---------------------------------------------------------------------------------- 25 10.8 示波器选择与使用要求: -------------------------------------------------------------- 26 10.9 探头选择与使用要求-------------------------------------------------------------------- 26 10.10 测试点的选择--------------------------------------------------------------------------- 27 10.11 数据、地址信号质量测试 ------------------------------------------------------------- 27 10.11.1 简述 ------------------------------------------------------------------------------- 27 10.11.2 测试方法-------------------------------------------------------------------------- 27

相关主题
文本预览
相关文档 最新文档