当前位置:文档之家› 大学物理仿真实验——霍尔效应

大学物理仿真实验——霍尔效应

大学物理仿真实验——霍尔效应
大学物理仿真实验——霍尔效应

仿真实验(霍尔效应)------

霍尔效应

1目的:(1)霍尔效应原理及霍尔元件有关参数的含义和作用

(2)测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流I M之间的关系。

(3)学习利用霍尔效应测量磁感应强度B及磁场分布。

(4)学习用“对称交换测量法”消除负效应产生的系统误差。

(1)实验原理

霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图(1)所示,磁场B 位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。设电子按平均速度V,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

f L=-e V B

式中:e 为电子电量,V为电子漂移平均速度,B为磁感应强度。

同时,电场作用于电子的力为: f

E H H eV eE -=-=l

(1) 霍尔效应原理

式中:E H 为霍尔电场强度,V H 为霍尔电势,l 为霍尔元件宽度

当达到动态平衡时: f L =-f E

V B=V H /l (1)设霍尔元件宽度为l ,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为 ld V ne Is =由(1)、(2)两式可得:d IsB R d IsB ne l E V H H H ===1 (3即霍尔电压V H (A 、B 间电压)与Is 、B 的乘积成正比,与霍尔元件的厚度成反比,比例系数)/(1ne R H =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,只要测出H V (伏),以及s I (安),B (高斯)和d (厘米)可按下式计算H R (厘米3/库仑)。实验计算时,采用以下公式:810?=B I d V R s H H (4上式中108 是单位换算而引入。根据H R 可进一步求载流子浓度: e R n H 1= (5 应该指出,这个关系式是假定所以的载流子都具有相同的漂移速度得到的,严格一点,考虑载流子的速度统计分布,需引入修正因子8/3π。 所以实际计算公式为:e R n H 183π= (6 根据材

料的电导率μσne =的关系,还可以得到p R H μσμ==/或σμH R = (7)式中:μ为

载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因

此制作霍尔元件时大多采用N 型半导体材料。当霍尔元件的材料和厚度确 d R K H

H = (8

将式(8)代入式(3)中IsB K V H H =(9)式中:H K 称为元件的灵敏度,它表示霍尔元件在单位磁感应强度和单位控制电流下的霍尔电势大小,其单位是[]T mA mV ?/,一要求H K 愈大愈好。由于金属的电子浓度()n 很高,所以它的R H 或K H ,都不大,因此不适宜作霍尔元件。此外元件厚度d 愈薄,K H 愈高,所以制作时,往往采用减少d 的办法来增加灵敏度,但不能认为d 愈薄愈好,因为此时元件的输入和输出电阻将会增加,这对霍尔元件是不希望的 应当注意:当磁感应强度B 和元件平面法线成一角度时(如图2),作用在元件上的有效磁场是其法线方向上的分量θcos B θcos B I K V s H H = (10)所以一般在使用时应调整元件两平面方位,使V H 达到最大,即:0=θ,=H V IsB K H 由式(10)可知,当工作电流Is 或磁感应强度B ,两者之一改变方向时,霍尔电势V H 方向随之改变;若两者方向同时改变,则霍尔电势不变。霍尔元件测量磁场的基本电路如图(3),将霍尔元件置于待测磁场的相应位置,并使元件平面与磁感应强度B 垂直,在其控制端输入恒定的工作电流Is ,霍尔元件的霍尔电势输出端接毫伏表,测量霍尔电势V H 的值,就可以计算磁感应强度B

图(2) 磁感应强度

B 和元件 图(3) 霍尔元件测量磁场的基本电路平面法线成一角度 测量霍尔电势V H 时,不可避免的会产生一些副效应,由此而产生的附加电势叠加在霍尔电势上,形成测量系统误差,这些副效应有:

(1)不等位电势V 0

由于制作时,两个霍尔电势既不可能绝对对称的焊在霍尔片两侧、霍尔片电阻率不均匀、控制电流极的端面接触不良都可能造成A 、B 两极不处在同一等位面上,此时虽未加磁场,但A 、B 间存在电势差V 0,此称不等位电势。

(2)爱廷豪森效应

当元件X 方向通以工作电流I s ,Z 方向加磁场B 时,由于霍尔片内的载流子速度服从统计分布,有快有慢。在到达动态平衡时,在磁场的作用下慢速快速的载流子将在洛仑兹

力和霍耳电场的共同作用下,沿y轴分别向相反的两侧偏转,这些载流子的动能将转化为热能,使两侧的温升不同,因而造成y方向上的两侧的温差(T A-T B)。因为霍尔电极和元件两者材料不同,电极和元件之间形成温差电偶,这一温差在A、B间产生温差电动势V E。这一效应称爱廷豪森效应,V E的大小与正负符号与I s、B的大小和方向有关,跟V H与I s、B的关系相同,所以不能在测量中消除。

(3)伦斯脱效应

由于控制电流的两个电极与霍尔元件的接触电阻不同,控制电流在两电极处将产生不同的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(称为热电流)Q,热电流在磁场作用下将发生偏转,结果在y方向上产生附加的电势差V H,且V H∝QB这一效应称为伦斯脱效应,由上式可知V H的符号只与B的方向有关。

(4)里纪-杜勒克效应

如(3)所述霍尔元件在x方向有温度梯度,引起载流子沿梯度方向扩散而有热电流Q通过元件,在此过程中载流子受Z方向的磁场B作用下,在y方向引起类似爱廷豪森效应的温差T A-T B,由此产生的电势差V H∝QB,其符号与B的方向有关,与I s的方向无关。

三实验方法与步骤

一.对称测量法

由于产生霍尔效应的同时,伴随多种副效应,以致实测的AB间电压不等于真实的V H 值,因此必需设法消除。根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。具体的做法是I s和B(即I M)的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的I s和B(即I M)时的V1,V2,V3,V4,

1)+I s +B V1

2)+I s -B V2

3)-I s -B V3

4)-I s +B V4然后求它们的代数平均值,可得4

4 3

2 1

V V

V

V

V

H

-+

-

=

通过对称测量法求得的V H误差很小

二.实验仪器

仪器背部为220V交流电源插座。

仪器面板为三大部分

1、励磁电流I M输出:前面板右侧、三位半数显显示输出电流值I M(A)。

2、霍尔片工作电流I S输出:前面板左侧、三位半数显显示输出电流值I S(mA)。

(以上两组直流恒源只能在规定的负载范围内恒流,与之配套的“测试架”上的负载符合要求。若要作它用时需注意。)

3、霍尔电压V H输入:前面板中部三位半数显表显示输入电压值V H(mV),使用前将两输出端接线柱短路,用调零旋钮调零。

4、三档换向开关分别对励磁电流I M,工作电流I S、霍尔电势V H进行正反向换向控制。三.按仪器面板上的文字和符号提示将DH4512实验仪与DH4512测试仪正确连接。

1、将DH4512霍尔效应测试仪面板右下方的励磁电流I M的直流恒流输出端(0~0.500A),接DH4512霍尔效应实验仪上的励磁线圈电流I M的输入端(将红接线柱与红接线柱对应相

连,黑接线柱与黑接线柱对应相连)。2、将DH4512霍尔效应测试仪面板左下方供给元件工作电流I S 的直流恒流源(0~5mA )输出端,接DH4512霍尔效应实验仪上霍尔片工作电流I S 输入端(将红接线柱与红接线柱对应相连,黑接线柱与黑接线柱对应相连)。3、DH4512霍尔效应实验仪上霍尔元件的霍尔电压V H 输出端,接DH4512霍尔效应测试仪中部下方的霍尔电压输入端。 四.测量霍尔电压VH 与工作电流Is 的关系1)先将Is ,I M 都调零,调节中间的霍尔电压表,使其显示为0mV 。2)将霍尔元件移至线圈中心,调节I M =500mA ,调节Is =1.00mA,按表中Is ,I M 正负情况切换方向,分别测量霍尔电压VH 值(V1,V2,V3,V4)填入表中。以后Is 每次递增0.50mA ,测量各V1,V2,V3,V4值。绘出Is —VH 曲线,验证线性关系。五.测量霍尔电压V H 与励磁电流I M 的关系

1) 先将Is 调节至3.00mA ,

2) 调节I M =100、150、200……500mA(间隔为50mA),分别测量霍尔电压V H 值填入表中的

值。

3) 根据表中所测得的数据,绘出I M —V H 曲线,验证线性关系的范围。

六.测量线圈中磁感应强度B 的分布

1)先将I M ,Is 调零,调节中间的霍尔电压表,使其显示为0mV 。

2)将霍尔元件置于线圈中心,调节I M =500mA ,调节I S =3.00mA ,测量相应的V H 。

3)将霍尔元件从中心向边缘移动每隔5mm 选一个点测出相应的V H ,填入表中。

4)由以上所测V H 值,由公式:V H =K H I S B B =S H H

I K V 计算出各点的磁感应强度。

四 实验注意事项

1、霍尔电势V H 测量的条件是霍尔元件平面与磁感应强度B 垂直,此时V H 取得最大值,仪器在组装时已调整好,为防止搬运,移动中发生的位移,实验前应将霍尔元件传感器盒移至线圈中心,使其在I M 、I S 相同时,达到输出V H 最大

2、为了不使通电线圈过热而受到损害,或影响测量精度,除在短时间内读取有关数据,通过励磁电流I M 外,其余时间最好断开励磁电流开关。

五 实验结果 数据处理

保持Is=4.50mA 不变,测绘Vh-Im 曲线

大学物理仿真实验——霍尔效应

大学物理实验报告 姓名:wuming 1目的:(1)霍尔效应原理及霍尔元件有关参数的含义和作用 (2)测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流I M之间的关系。 (3)学习利用霍尔效应测量磁感应强度B及磁场分布。 (4)学习用“对称交换测量法”消除负效应产生的系统误差。 2简单的实验报告数据分析 (1)实验原理 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图(1)所示,磁场B 位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。设电子按平均速度V,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e V B 式中:e 为电子电量,V为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为: f E H H eV eE- = - =l

霍尔效应实验报告

霍耳效应实验报告 学号:200702050940 实验人:张学林 同组人: 杨天海 实验目的: 1、 观察霍耳效应; 2、 了解应用霍耳效应进行简单的相关测量的方法 实验内容: 1、确定样品导电类型; 2、测算霍耳系数、载流子浓度、霍耳灵敏度; 3、测算长螺线管轴线上的磁场分布。 实验原理: 一、关于霍耳效应 如图一所示。当电流通过一块导体或半导体制 成的薄片时,载流子会发生漂移。 而将这种通有电流的薄片置于磁场中,并使薄 片平面垂直于磁场方向。根据图一中的电流方向,并结合右手定则,我们可以看到:(1)无论导体中的载流子带正电荷还是负电荷,其受力均为F m 方向;(2)载流子均会沿X 轴方向运动,并最终靠在A 端。于是:(1)当载流子为正电荷时薄板A 端带正电荷,导致板A 端电势高于B 端;(2)当载流子为负电荷时薄板A 端带负电荷,导致板B 端电势高于A 端。 这就是霍耳效应。 二、关于霍耳效应性质的研究 如图一,关于霍耳效应的相关参量已如图所 示。 其中载流子所受的磁场力 m F qvB = (1) 载流子所受的电场力 e F qE = (2) 当其所受磁场力与电场力受力平衡时: (a B (b z y x (图一)

有关系, e m F F = (3) 且有, H H U E a vBa == (4) 我们又知道,(I v n nqab = 为载流子浓度) (5) 于是,由(1)~(3)可知 H IB E nqab = (6) 再结合(4)式可得 1 ()H IB U IB nqb nqb = = (7) 令 1 H R nq = (8) 为霍耳系数,并代入(7)式可得 H H B U R I b = (9) 那么,霍耳系数又可表示为 H H U b R IB = (10) 即, 1 H H U b R IB nq = = (11) 三、关于霍耳效应的应用 1、利用霍耳效应确定导体的类型 由(11)式可得,导体横向电势差与导体中载流子类型有关:当H U 为正时载流子为电子,导体为P 型半导体;反之,载流子为空穴,导体为N 型半导体。 2、利用霍耳效应计算霍耳系数 根据(9)式,可以固定B 、b ,改变I 得到U H ,多测几组U —I 值。然后根据几组U —I 值在直角坐标系中描 点,可根据拟合出来的直线的斜率求出霍耳系数。 3、 霍耳灵敏度的计算 若将(7)式中的括号以内的项定义为霍耳灵敏度,即令1 n H K R b nqb ==。于是,(二、2)中的霍耳系数计算出来,霍耳灵敏度也就计算出来了。 4、利用霍耳效应计算载流子浓度 由(7)、(11)式可得1H n R q = 。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

霍尔效应实验数据及曲线

表1 测绘Vh-Is实验曲线数据记录表(Im=0.500A) Is(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is 0.50.64-0.370.37-0.630.5025 1 1.28-0.740.75-1.271 1.5 1.91-1.11 1.12-1.9 1.53 2 2.53-1.48 1.49-2.52 2.005 2.5 3.16-1.86 1.87-3.15 2.51 3 3.79-2.2 4 2.25-3.77 3.0125 3.5 4.42-2.61 2.62-4.39 3.51 4 5.03-2.99 3.01-5.01 4.01 Vh-Is实验曲线 表2 测绘Vh-Im实验曲线数据记录表 Im(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is

0.1 1.380.16-0.15-1.360.7625 0.2 1.980.44-0.43-1.96 1.2025 0.3 2.59 1.04-1.03-2.57 1.8075 0.4 3.18 1.64-1.63-3.16 2.4025 0.5 3.79 2.25-2.23-3.77 3.01 表3 测绘Vh-X实验曲线数据记录表 X V1(Mv)V2(Mv)V3(Mv)V4(Mv)Vh=(|V1|+|V2|+|V3|+|V4|)/4 Vh 0 2.12-0.570.59-2.09 1.3425 1 2.92-1.37 1.39-2.89 2.1425 2 3.38-1.82 1.85-3.35 2.6 3 3.58-2.03 2.06-3.56 2.8075 4 3.68-2.12 2.06-3.6 5 2.8775 5 3.73-2.17 2.2-3.7 2.95 6 3.76-2.2 2.23-3.73 2.98 8 3.77-2.21 2.24-3.74 2.99

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告Word版

【实验名称】霍尔效应 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 【实验仪器】 霍尔效应实验仪 【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B = e v B (1) 则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。电场的指向取决于试样的导电类型。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有: Is (X)、 B (Z) E H (Y) <0 (N型) E H (Y) >0 (P型) 显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE与 洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有 H eE= B v e(2) 其中 H E为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则 bd v ne Is=(3)由(2)、(3)两式可得 d B I R d B I ne b E V S H S H H = = = 1 (4) 即霍尔电压 H V(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。 比例系数 ne R H 1 =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, 整理为word格式

霍尔效应实验报告(DOC)

大学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日

? (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议

霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N型半 导体材料),它沿着与电流s I 相反的X负向运动。 由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y轴负方向的B 侧偏转,并使B侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。 设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B 式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。 同时,电场作用于电子的力为 l eV eE f H H E /-=-= 式中H E 为霍尔电场强度,H V 为霍尔电压,l 为霍尔元件宽度

大学物理实验教案-霍尔效应 (1)

大学物理实验教案

实验名称:霍尔效应 实验目的: 1、了解霍尔效应原理。 2、了解霍尔电势差V H 与霍尔元件工作电流s I 之间的关系,了解霍尔电势差V H 与励磁电流m I 之 间的关系。 3、学习用“对称交换测量法”消除负效应产生的系统误差。 4、学习利用霍尔效应测量磁感应强度B 的原理和方法。 实验仪器: TH-H 霍尔效应实验仪 TH-H 霍尔效应测试 实验原理: 一、霍尔效应原理 若将通有电流的导体置于磁场B 之中,磁场B (沿z 轴)垂直于电流S I (沿x 轴)的方向,如图所示,则在导体中垂直于B 和S I 的方向上出现一个横向电势差H U ,这个现象称为霍尔效应。 这一效应对金属来说并不显著,但对半导体非常显著。利用霍尔效应可以测定载流子浓度、载流子迁移率等重要参数,是判断材料的导电类型和研究半导体材料的重要手段。还可以用霍尔效应测量直流或交流电路中的电流强度和功率,以及把直流电流转成交流电流并对它进行调制、放大。用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。 霍尔电势差产生的本质,是当电流S I 通过霍尔元件(假设为P 型,即导电的载流子是空穴。)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力

()B q =?F v B (1) 式中q 为载流子电荷。洛沦兹力使载流子产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =q E 与磁场作用的洛沦兹力相抵消为止,即 ()q q ?=v B E (2) 这时载流子在样品中流动时将不偏转地通过霍尔元件,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,即导电的载流子是电子,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为n ,宽度为b ,厚度为d 。通过样品电流nevbd I S =,则空穴的速度nebd I v S = ,代入(2)式有 nebd B I S = ?=B v E (3) 上式两边各乘以b ,便得到 S S H H I B I B V Eb R ned d == = (4) 霍尔电压H V ( A 、A '之间电压)与S I 、B 的乘积成正比,与霍尔元件的厚度d 成反比,比例系数H R ,称为霍尔系数。它是反映材料霍尔效应强弱的重要参数。 H H S V d 1 R I B ne = = (5) 在应用中一般写成 H H S V K I B = (6) 比例系数ned 1 I R K S H H = = ,称为霍尔元件灵敏度,单位为mV/(mA ·T)。一般要求H K 愈大愈好。H K 与载流子浓度n 成反比,半导体内载流子浓度远比金属载流子浓度小,所以选用半导体材料作为霍尔元件。H K 与片厚d 成反比,所以霍尔元件都做的很薄,一般只有0.2mm 厚。 由(4)式可以看出,知道了磁感应强度B ,只要分别测出传导电流S I 及霍尔电势差H V ,就可算出霍尔系数H R 和霍尔元件灵敏度H K 。

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

霍尔效应实验报告

大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

霍尔效应实验报告

霍尔效应实验报告 以下是小编给大家整理收集的霍尔效应实验报告,仅供参考。 霍尔效应实验报告1 实验内容: 1. 保持不变,使Im从0.50到4.50变化测量VH. 可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即 +B,+I VH=V1 —B,+ VH=-V2 —B,—I VH=V3

+B,-I VH=-V4 VH = (V1+V2+V3+V4)/4 0.50 1.60 1.00 3.20 1.50 4.79 2.00 6.90 2.50 7.98 3.00 9.55 3.50

11.17 4.00 12.73 4.50 14.34 画出线形拟合直线图: Parameter Value Error ------------------------------------------------------------ A 0.11556 0.13364 B 3.16533 0.0475 ------------------------------------------------------------ R SD N P ------------------------------------------------------------ 0.99921 0.18395 9 0.0001 2.保持IS=4.5mA ,测量Im—Vh关系 VH = (V1+V2+V3+V4)/4

1.60 0.100 3.20 0.150 4.79 0.200 6.90 0.250 7.98 0.300 9.55 0.350 11.06 0.400 1 2.69

大学物理实验--霍尔效应实验报告

实验报告模板 实验题目:霍尔效应实验 学 号 姓名实验日期 实验目的1.了解霍尔效应的物理过程。 2.学习用对称测量法消除负效应的影响,测量试样的霍尔电压。 3.确定试样的导电类型,载流子浓度以及迁移率。 实验原理将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极 、 ′上施加电流I时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力的作用。无论载流子是负电荷还是正电荷,均在洛伦兹力的作用下,载流子发生偏移,产生电荷积累,从而在薄片 、 ′两侧产生一个电位差,形成一个电场E。电场使载流子又受到一个与洛伦兹力方向相反的电场力。达到稳定状态时,两力相等。此时两侧的电压称为霍尔电压。

实验内容1.开机调零 2.正确接线 3.保存接线状态 4.零磁场条件下,测量不等位电压 5.保持励磁电流不变,改变工作电流的值,测量霍尔电压值 6.保持工作电流不变,改变励磁电流的值,测量霍尔电压值 7.计算霍尔效应系数,霍尔元件载流子浓度,霍尔元件电导率,霍尔元件载流子迁移率 8.关机整理仪器 数据处理

误 差 分 析 及 思 考 题思考题:霍尔元件为什么选用半导体薄片?答:霍尔效应,一般在半导体薄片的长度方向上施加磁感应强度为B 的磁场,则在宽度方向上会产生电动势UH,这种现象即称为霍尔效应。UH 称为霍尔电势,其大小可表示为:UH=RH/d*I*B,RH 称为霍尔系数,由导体材料的性质决定;d 为导体材料的厚度,I 为电流强度,B 为磁感应强度。设RH/d=K,则公式可写为:UH=K*I*B 可见,霍尔电压与控制电流及磁感应强度的度乘积成正比,K 值越大,灵敏度就越高,输出电压也越大,所以要选用薄片。霍尔系数:K=1/(n*q),n 为载流子密度,一般金属中载流子密度很大,所以金属材料的霍尔系数很小,霍尔效应不明显;而半导体中的载流子的密度比金属要小得多,所以半导体的霍尔系数比金属大得多,能产生较大的霍尔效应,所以用半导体。 教师 总 评 (教师填写,每个实验按10分记。 )分说明:实验报告最终以“学号-姓名-实验名称”为文件名,在实验当日内上传实验报告。

霍尔效应实验报告.doc

实验报告 姓名:学号:系别:座号: 实验题目 :通过霍尔效应测量磁场 实验目的 :通过实验测量半导体材料的霍尔系数和电导率可以判断材料的 导电类型、载流子浓度、载流子迁移率等主要参数实验内容 : 已知参数: b=4.0mm, d=0.5mm,l B 'C =3.0mm. 设 B KI M,其中K=6200GS/A; 1. 保持I M =0.450A 不变,测绘V H I S曲线 测量当 I M正(反)向时,I S正向和反向时 V H的值,如下表 调节控制电流I S/mA I S B 正向V H/mV 正 B 反向V H/mV 向 I S B 反向V H/mV 反 B 反向V H/mV 向 绝对值平均值 V H/mV 做出 V H I S曲线如下

v V m / b V 16 Linear fit of date v 14 12 10 8 6 4 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Linear Regression for Data1_V: Y=A+B*X Parameter Value Error ----------------------------- -------------- A B Is/mA 由 origin 得 V H 3.564( ) I S 由 R V H d 108 (cm 3 / C ) 和 B KI M 得 H I S B V H d 10 8 3.564 0.05 10 8 6.39 10 3 3 / C ) R H I S KI M 6200 0.450 (cm 2. 保持 I S 不变,测绘 V H I M 曲线 = 测量当 I S 正( 反) 向时, I M 正向和反向时 V H 的值 , 如下表 调节励磁电流 I M /A I S B 正向 V H /mV 正 B 反向 V H /mV I S B 反向 V H /mV 反 B 反向 V H /mV 绝对值平均值 V H /mV 做出 V H I M 曲线如下

霍尔效应实验报告参考

霍尔效应实验报告参考

华南农业大学信息软件学院实验报告 课程:大学物理实验学期:2012-2013第一学期任课老师:*** 专业班级:**************学号:************** 姓名:*** 评分: 实验3 霍尔效应的应用 一.实验目的 1.了解霍尔效应实验原理以及有关霍尔器件对材 料要求的知识。 2.测量霍尔元件的曲线,了解霍尔电压与霍尔元件 工作电流、直螺线管的励磁电流之间的系。 3.学习用对称测量法消除副效应的影响,测量试样 的和曲线。 4.确定试样的导电类型、载流子浓度以及迁移率。二.实验仪器设备 TH-H 型霍尔实验组合仪由试验仪和测试仪组成

1.实验仪:本实验仪由电磁铁、二维移动标尺、三个换向闸刀开关、霍尔元件组成。C型 电磁铁,给它通以电流产生磁场。二维移动标尺及霍尔元件;霍尔元件是由N型半导体材料制成的,将其固定在二维移动标尺上,将霍尔元件放入磁铁的缝隙之中,使霍尔元件垂直放置在磁场之中,在霍尔元件上通以电流,如果这个电流是垂直于磁场方向的话,则在垂直于电流和磁场方向上导体两侧会产生一个电势差。三个双刀双掷闸刀开关分别对励磁电流,工作电流霍尔电压进行通断和换向控制。右边闸刀控制励磁电流的通断换向。左边闸刀开关控制工作电流的通断换向。中间闸刀固定不变即指向一侧。 2.测试仪

测试仪有两组独立的恒流源,即“输出” 为0~10mA给霍尔元件提供工作电流的电流源,“输出”为0~1A为电磁铁提供电流的励磁电流源。两组电流源相互独立。两路输出电流大小均连续可调,其值可通过“测量选择”键由同一数字电流表进行测量,向里按“测量选择”测,放出键来测。电流源上有Is调节旋钮和Im调节旋钮。 直流数字电压表用于测量霍尔电压,本实验只读霍尔电压、所以将中间闸刀开关拨向上面即可。当显示屏上的数字前出现“—”号时,表示被测电压极性为负值。 三.实验的基本构思和原理 霍尔效应从本质上讲是运动的带电粒子在磁

相关主题
文本预览
相关文档 最新文档