当前位置:文档之家› 抽取与内插的频谱分析

抽取与内插的频谱分析

抽取与内插的频谱分析
抽取与内插的频谱分析

抽取与内插的频谱分析

工科试验班

钟汇凯

3080100443

我们知道,为了避免在抽样信号中出现混叠,抽样定理要求被抽样的信号是一个带限信号。然而,在实际应用中,绝大多数信号都不能满足这个要求,为了减小混叠的影响以及放宽对滤波器性能指标的要求,在实际应用中往往采取一种提高抽样率的办法,使信号的抽样率远远大于限带滤波器通带频率的两倍。例如,在下图中,当抽样频率略大于限带频率 ωm 的两倍时,混叠的影响还是很明显的,而当抽样频率远远大于两倍的 ωm 时,混叠的影响就非常之小了。

虽然提高抽样率可以减小混叠的影响,但是,在对连续时间信号进行处理的离散时间系统中,过高的抽样率将增加系统的成本,因为,过高的抽样率将要求离散时间系统以较高的速率工作,而高速率器件的成本一般都要贵于低速率的器件。可以设想,如果能对信号的抽样率进行调整,使得在信号的抽样和恢复中使用较高的抽样率,在离散时间处理中使用较低的抽样率,那么,上述性能和成本的矛盾就可以得到适当的折中,而离散时间信号的抽取和内插就是一种调整信号抽样率的办法。从技术性能层面来看。这两种方法类似于连续时间信号的抽样和内插。

抽取

离散时间信号的抽取包含信号抽样和尺度变换两个步骤:首先,以抽样间隔N 对离散时间信号进行抽样,然后再对抽样信号进行1/ N 的尺度压缩变换。下图是离散时间信号的抽取过程,图中,x [ n ] 是离散时间信号,xs [ n ] 是抽样信号,抽样间隔N=3,xd [ n ] 是抽取信号,它是xs [ n ] 进行1/N 尺度压缩变换后所得到的结果。

由图可见,在抽样信号xs [ n ] 和抽取信号xd [ n ] 之间存在以下关系:

(1)

由于抽样信号xs [ n ] 在N 的整数倍上和离散时间信号x [ n ] 相等,因此,式(4.55)也可等效为:

(2)

虽然式(1)和式(2)在形式上完全相同,但两者的含义不同:式(1)的含义是,抽取信号xd [ n ] 是由抽样信号xs [ n ] 进行1/N 尺度压缩变换的结果;而式(2)的含义是,抽取信号xd [ n ] 是从离散时间信号x [ n ] 中每隔(N-1)个点取一个样本值所组成的一个新序列,这个过程就称为离散时间信号的抽取。

既然xd [ n ] 是xs [ n ] 进行尺度变换的结果,那么,利用xs [ n ] 的傅里叶变换和傅里叶变换的尺度换性质就可以求得抽取信号xd [ n ] 的变换式。

根据式(1)和傅里叶变换的尺度变换特性可以求得:

(3)

而抽样信号xs [ n ] 的傅里叶变换为:

(4

将此式代入式(3)而得:

由于,抽取信号xd [ n ] 的傅里叶变换为:

(4.59)

此式表明,抽取信号的频谱是被扩展N 倍的离散时间信号的频谱以2p 为间隔周期重复的结果。或者说,抽取信号的频谱由N 个离散时间信号的频谱叠加而成,这N 个频谱的频带被扩展了N 倍,而且,每个频谱之间相距2p 。如果考虑抽取信号和抽样信号之间的关系,那么,由式(3)可知,抽取信号的频谱仅仅是抽样信号频谱扩展N 倍的结果。下图给出了当N = 3 时,离散时间信号、抽样信号以及抽取信号的频谱,其中,下图a主要用来说明抽取信号的频谱和抽样信号频谱之间的关系,而下图b主要用来说明抽取信号的频谱和原序列频谱之间的关系。

内插

离散时间信号的内插是抽取的逆过程,它可以增加信号的抽样率,因此,内插也称为增抽样。内插一般用来从抽取信号中还原出离散时间信号,其基本过程是在抽取信号的两个相邻样本值之间插入(N -1)个零值点,这也是从抽取信号到抽样信号的转换,然后再利用一个低通滤波器滤出原离散时间信号,整个过程的相关波形及系统结构如图。

根据内插的定义,当n/N为整数时,抽取信号xd [ n ]和内插信号xi [ n的关系为:

而当不为整数时,xi [ n ] = 0。根据这个定义可将抽取信号表示为:

(5)

再利用尺度变换性质,可以求得:

(6)

该式表明,内插信号的频谱是对抽取信号的频谱进行尺度压缩变换的结果,其尺度因子为1/N 。

如果使内插信号通过一个截止频率为的低通滤波器,则滤波器的输出就是离散时间信号x [ n ],这样,我们就从抽取信号中还原出了原来的离散时间信号,整个还原过程的相关频谱如图所示,图中假设内插因子N = 3 。

举例与MATLAB分析抽取X[ones(1,11)] X1=X[2N] X2=X[3N] MATLAB仿真

内插x1=[zeros(1,18),1,1,1,1,1,zeros(1,18)];

x2=[zeros(1,16),1,0,1,0,1,0,1,0,1,zeros(1,16)];

x3=[zeros(1,14),1,0,0,1,0,0,1,0,0,1,0,0,1,zeros(1,14)]; MATLAB仿真:

连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

1 引言 随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。仪器设备很大部分陈 旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。虚拟仪器正是解决这一矛盾的最佳方案。基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。 信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。因为Pn只是n的函数,所以X(j )在重复的过程中不会使其形状发生变化。假定信号x(t)的频谱限制在- m~+ m的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(j )是以s为周期重复。显然,若在抽样的过程中s<2 m,则X^(j )将发生频谱混叠现象,只有在抽样的过程中满足s>=2 m条件,X^(j )才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

实验一利用DFT分析信号频谱

实验一利用DFT 分析信号频谱 一、 实验目的 1. 加深对DFT 原理的理解。 2. 应用DFT 分析信号的频谱。 3. 深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。 二、 实验设备与环境 计算机、MATLAB^件环境。 三、 实验基础理论 1. DFT 与DTFT 的关系 方法二:实际在MATLAB 十算中,上述插值运算不见得是最好的办法。 由于DFT 是DTFT 的取 样值,其相邻两个频率样本点的间距为 —,所以如果我们增加数据的长度 N,使得到的 N DFT 谱线就更加精细,其包络就越接近 DTFT 的结果,这样就可以利用 DFT 计算DTFT 如果 没有更多的数据,可以通过补零来增加数据长度。 3、利用DFT 分析连续时间函数 利用DFT 分析连续时间函数是,主要有两个处理:①抽样,②截断 对连续时间信号x a (t) 一时间T 进行抽样,截取长度为 M 则 址 ML X a (N)「-x a (t)e4dt 二「x a (nT)e jnT n=0 再进行频域抽样可得 M 4 —j 竺 n 送,T' X a (nT)e N =TX M (k) NT n =0 因此,利用DFT 分析连续时间信号的步骤如下: (1 )、确定时间间隔,抽样得到离散时间序列 x(n). (2) 、选择合适的窗函数和合适长度 M 得到M 点离散序列x M DFT 实际上是 DTFT 在单位圆上以 的抽样,数学公式表示为: N-1 _j 空 k X(k) = X(z)| 耳八 x(n)e N z” N n=0 (2 — 1) 2、利用 DFT 求DTFT 方法一:利用下列公式: 2rk X(e j )二、X(k)( ) k=0 N k= 0,1,..N - 1 (2 — 2) Sn(N ,/2) Nsin(,/2) .N A e 2为内插函数 (2— 3) (2—4) X a (r 1)|

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

频谱及信号分析技术

频谱及信号分析技术 【摘要】随着电子技术的发展,世界各国加速了对电子领域的研究,具体体现在竞相提高通信、雷达、遥控、导航等无线电电子设备的威力和效能等方面。在这些方面,频谱分析成为必不可少的信号分析手段。频谱分析可以对信号的频率、电平、频谱纯度及抗干扰特性进行分析,使其成为电子领域必不可少的测量手段。对于信号分析,使用的仪器也是重中之重。其中使用最广泛的事频谱分析仪和矢量信号分析仪等。 【关键词】频谱、信号分析、应用、频谱分析仪、矢量信号分析仪首先介绍一下信号频谱分析的方法,信号又分为周期和非周期两种。下面就连续周期和非周期信号频谱分析的方法做一个介绍和研究。在信号处理过程中,频域分析方法往往比时域分析方法更方便和有效。对于确知连续时间信号,其频域分析可以通过连续时间傅里叶变换来进行,但是,这样计算出来的结果仍然是连续函数,计算机不能直接加以处理。为了实现数值计算,还需要对其进行离散化处理,即采用离散傅里叶变换(DFT)进行分析。DFT 的快速算法的出现,使 DFT 在数字通信、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、医学等各个领域都得到广泛应用。对于时间连续信号f(t),其频谱分析可以通过连续时间傅里叶变换(CTFT)来进行。连续时间傅里叶变化特别适合于对时间连续信号的理论分析,但是,由于函数 f(t)和其频谱函数都是连续函数,不能够直接用计算机来处理,因此在进行数值计算时必须将其离散化,然后利用离散傅里叶变换(DFT)实现近似计算。在已知连续信号数学解析式的情况下,非周期信号的频谱可以根据傅里叶变换的定义进行解析计算。实际应用中的多数信号不存在数学解析式,信号的频谱无法利用傅里叶分析公式方法直接计算,一般需采用数值方法进行近似计算分析频谱,在进行数字计算时,需对计算的连续变量进行离散化。由于连续非周期信号 x(t) 的频谱函数 X(jω)是连续函数,因此,需要对其进行离散化处理得到 x[n]以近似分析相应的频谱。通过建立序列 x[n]的离散傅里叶变换 X[m]与连续非周期信号 x(t)的傅里叶变换 X(jω)之间的关系,可以利用DFT对连续非周期信号频谱进行近似分析。在利用DFT分析连续时间信号的频谱时,涉及频谱混叠、频率泄漏及栅栏现象。频率混叠与连续信号的时域抽样间隔有关,频率泄漏与信号的时域加窗截短的长度及窗型有关,栅栏现象与DFT的点数有关。在大多数情况下,一般已知待分析连续信号的最高频率,以及希望的DFT的频率分辨率。 频谱分析仪是功能强大并广泛应用于射频信号检测的一种仪器。现代外差式频谱分析仪由射频前端、第1级混频、多级中频处理、视频处理、检波和踪迹输出5部分组成,如图1所示。

实验3-采样的时频域分析

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号:2010103080 指导教师: 一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理: 1、采样的概念:采样是将连续信号变化为离散信号的过程。 1. A 、理想采样:即将被采样信号与周期脉冲信号相乘 B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。 根据傅里叶变换性质 00 0()() ()() ??()()()()()()(()) FT FT a a T n n FT a a T a T a a n n x t X j T j x t x t T x nT t nT X j X j n ωδωδδδω=+∞ =+∞=-∞ =-∞ ←?→Ω←?→Ω==-←?→Ω=Ω-Ω∑ ∑ 式中T 代表采样间隔,01T Ω= ) (t T δ^ ()T p t ^)t

由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。 C 、低通采样和Nyquist 采样定理 设()()a a x t X j ?Ω且()0,2a M M X j f πΩ=Ω>Ω=当, 即为带限信号。则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的 ^ ()()()a a s s n x t x n T t n T δ∞ =-∞ = -∑ 信号无失真地恢复()a x t 。称2M f 为奈奎斯特频率, 12 N M T f =为奈奎斯特间隔。 注意: 实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。 2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。 低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下: )() a G j Ω0 m -ΩΩ m Ω

数字信号课程设计 应用FFT对信号进行频谱分析

实验二应用FFT对信号进行频谱分析 一、实验目的 1.加深对离散信号的DTFT和DFT的及其相互关系的理解。 2.在理论学习的基础上,通过本次实验,加深对快速傅立叶变换 的理解,熟悉FFT算法及其程序的编写。 3.熟悉应用FFT对典型信号进行频谱分析的方法。 4.了解应用FFT进行信号频谱分析过程中可能出现的问题,以便 在实际中正确应用FFT。 二、实验原理与方法 一个连续信号x a(t)的频谱可以用他的傅立叶变换表示为: = 如果对该信号进行理想采样,可以得到采样序列:x(n)=X a(nT) 同样可以对该序列进行Z变换,其中T为采样周期:X(z)= 当Z=e jω的时候,我们就得到了序列的傅立叶变换:X(e j ω)= 其中称为数字频率,它和模拟域频率的关系为: 式中的f s是采样频率,上式说明数字频率是模拟频率对采样频率 f s的归一化。同模拟域的情况相似,数字频率代表了序列值变化的 速率,而序列的傅里叶变换为序列的频谱。序列的傅里叶变换和对应的采样信号频率具有下式的对应关系。 X(e jω)= 即序列的频谱是采样信号频谱的周期延拓。从上式可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号频谱,就可以得到相应的连续信号的频谱。注意:这里的信号必须是带限信号,采样也必须满足Nyquist定理。 在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。无限长的序列也往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅里叶变换(DFT),这一变换可以很好地反映序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N时,我们定义离散傅里叶变化为:X(k)=DFT[x(n)]= 其中,它的反变换定义为: x(n)=IDFT[X(k)]= 令Z=,则有:==DFT[x(n)] 可以得到,是Z平面单位圆上幅角为 的点,就是将单位圆进行N等分以后第K个点。所以,X(k)是Z变换在单位圆上的等距采样,或者说是序列福利叶变换的等距

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

用频谱分析仪测量通信信号

用频谱分析仪测量通信信号 一、GSM信号的测量 现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。 典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。 显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。顶部水平线表示0dBm,垂直方向每一格代表10dB。信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。 图1 GSM信道带宽显示和功率测量 GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。该信号很明显是未调制载波,因为它的频谱很窄。实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。 按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。 为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。 与此相比,数字滤波器的形状系数还不到5。例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。 标记1处的信号电平是4.97dBm。为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。 图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。公式1定义了在整个带宽内计算主信道功率的方法。 其中, CHPwr:信道功率,单位dBm CHBW:信道带宽 Kn:噪声带宽与分辨带宽之比 N:信道内象素的数目 Pi:以1mW为基准的电平分贝数(dBm)

时域抽样与频域抽样

实验三时域抽样与频域抽样 一、实验目的 1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。 2.加深对时域取样后信号频谱变化的认识。掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。 3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。 二、实验原理 1.时域抽样。 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。 2.频域抽样。 非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。

三、实验内容 1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。 (1)当T=0.01s 时,采样得到x(n),所用程序为: %产生连续信号x (t ) t=0:0.001:1; x=sin(20*pi*t); subplot(4,1,1) plot(t,x,'r') hold on title('原信号及抽样信号') %信号最高频率fm 为10 Hz %按100 Hz 抽样得到序列 fs=100; n=0:1/fs:1; y=sin(20*pi*n); subplot(4,1,2) stem(n,y) 对应的图形为: ()sin(20),01a x t t t =π≤≤

DFT在信号频谱分析中的应用

DFT在信号频谱分析中的应用 目录 Ⅰ.设计题目 (1) Ⅱ.设计目的 (1) Ⅲ.设计原理 (1) Ⅳ.实现方法 (1) Ⅴ.设计内容及结果 (5) Ⅵ.改进及建议 (11) Ⅶ.思考题及解答 (14) Ⅷ.设计体会及心得 (15) Ⅸ.参考文献 (16)

Ⅰ.设计题目 DFT 在信号频谱分析中的应用 Ⅱ.设计目的 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换。了解DFT 应用,用DFT 对序列进行频谱分析,了解DFT 算法存在的问题及改进方法。学习并掌握FFT 的应用。 Ⅲ.设计原理 所谓信号的频谱分析就是计算信号的傅里叶变换。连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。 工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。 Ⅳ.实现方法 离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。 快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。(对称性nk N nk N W W N -=+2 ,

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

开课学期 2016-2017 学年第 2 学期 实验课程信号与系统仿真实验 实验项目常用信号的频谱分析及时域采样定理 班级学号学生姓名 实验时间实验台号A11 操作成绩报告成绩 一、实验目的 1.掌握常用信号的频域分析方法; 2.掌握时域采样定理; 3.掌握时域采样信号恢复为原来连续信号的方法及过程。 二、实验性质 验证性 三、预习内容 1.时域采样定理的内容及信号时域采样过程; 2.连续信号经时域采样后,信号的频谱发生的变化; 3.时域采样信号恢复为原来连续信号的方法及过程。 四、实验内容(编写程序,绘制实验结果) 1.实现周期信号的频谱 f(t)=sin( 2*80t) 程序: fa='sin(2.*pi.*80.*t)';%原信号 fs0=10000; %采样频率 tp=0.1;%时间范围 t=[-tp:1/fs0:tp];%信号持续时间范围 k1=0:999;k2=-999:-1; m1=length(k1);m2=length(k2); f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围 w=[-2*pi*k2/m2,2*pi*k1/m1]; fx1=eval(fa);%把文本fa赋值给信号fx1 FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换 figure subplot(2,1,1),plot(t,fx1,'r'); title('原信号');xlabel('时间t(s)');%原信号的时域波形图 axis([min(t),max(t),min(fx1),max(fx1)]); subplot(212),plot(f,abs(FX1),'r'); title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图 axis([-100,100,0,max(abs(FX1))+5]);

信号的频谱分析

姓名冯浩学号222017322092029 班级电气2班 专业电气工程及其自动化实验日期2019年6月10日实验学时 3 一.实验名称 信号的频谱分析 二.实验目的 1.熟悉快速傅里叶变换的fft函数的调用; 2.熟悉频谱分析仿真的方法; 3.验证时域抽样定理。 三.实验原理(略) 四.仿真实验练习 1.显示海明窗函数时域波形与频谱,与矩形窗比较。 海明窗函数与矩形窗函数比较脚本程序: N=51; w=hamming(N); %长度为51的海明窗 W=fft(w,256); %作256点的快速傅里叶变换 subplot(221);stem([0:N-1],w);title(‘海明窗函数’) subplot(222);plot([-128:127],abs(fftshift(W))); %将零频点移到频谱中 %间并取幅值为正 title(‘海明窗频谱’) w=boxcar(N); %长度为51的矩形窗 W=fft(w,256); subplot(223);stem([0:N-1],w); title(‘矩形窗函数’) Subplot(224);plot([-128:127],abs(fftshift(W)));title(‘矩形窗频谱’)

2.编写函数,分析抽样函数的频谱,并分析在不同采样频率、不同采样时间区间、不同加窗函数情况下的频谱与理论函数的区别。 函数编写: function X = SY2(T,t0,t1,window) if winodw==[] %输入参数没有说明加窗类型时默认使用矩形窗 window=1; end t=t0:T:t1; x=sinc(100*t); N=length(x); switch window case 1 w=boxcar(N); %矩形窗 case 2 w=hamming(N); %海明窗 case 3 w=hanning(N); %汉宁窗 end x=x'.*w; %转置后相乘 X=fft(x); end ①不同的采样频率脚本程序: clc t0=-1; t1=1; T=[0.001 0.005 0.01 0.05]; %取不同采样时间(间隔) for i=1:4 X=hs(T(i),t0,t1); N=length(X); w=(0:N-1)*5/N; %频率区间为5 subplot(5,1,i);plot(w,abs(X)) ylabel({num2str(T(i))}) %y坐标标题为采样时间 end 图片显示如下

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

频谱分析仪和信号分析仪的区别

在实验室和车间最常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察最简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。 频谱分析议和FFT颁谱分析议 传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。 但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;第二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;第三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。 既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

DFT信号频谱分析

一,实验名称: DFT 的频谱分析 二,实验目的: 1. 加深对 DFT 原理的理解,熟悉DFT 的性质。 2. 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换 3. 深刻理解利用 DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法 三,实验原理: 所谓信号的频谱分析就是计算信号的傅里叶变换。连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。 离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的 傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。(对称性 nk N nk N W W N -=+2 ,12 -=N N W ;周期性nk N nk N nrN N k rN n N W W W W ---==)(,r 为任意整数

,1=nrN N W ) 离散傅里叶变换的推导: 离散傅里叶级数定义为 nk j N k p p e k x N n x N 21 )(1 )(π∑-== (1-1) 将上式两端乘以nm j N e π2-并对n 在0~N-1 求和可得 ?? ??? ?==∑∑∑∑∑-=---=-=-=---=-1 )(1 1 0101 )(1 0N 2 N 2N 2 )()(1)(N n m k n j N N k p N n N k m k n j p N n nm j p e k X e k X N e n x πππ 因为 { m k 1m k 0)(N )(1 ) (N 2 N 2N 2-1-1N 11=≠---=-==∑m k j m k j N n m k n j e e e N πππ 所以∑∑-=-=--=1 10 )()()(N 2N k p N n nm j p m k k X e n x δπ 这样∑-=-=10 N 2)()(N n nm j p p e n x m X π用k 代替m 得 ∑-=-=10 N 2)()(N n nk j p P e n x k X π (1-2) 令N 2πj N e W -=,则(1-2)成为DFS []∑-===10 )()()(N n nk N p p p W n x k X n x (1-3) (1-1)成为 IDFS [] ∑-=-= =1 )(1 )()(N n nk N p p p W k X N n x k X (1-4) 式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。其中 )()(k X n x p p 、都是周期为N 的周期序列,DFS[·]表示离散傅里叶级数 正变换,IDFS[·]表示离散傅里叶级数反变换。习惯上,对于长为N 的周期序列,把0≤n ≤N-1区间称为主值区,把)1(~)0(-N x x p p 称为)(n x p 的主值序列,同样也称)1(~)0(-N X X p p 为)(k X p 的主值序列。由于 )()()(n R n x n x N p =,对于周期序列)(n x p 仅有N 个独立样值,对于任何一 个周期进行研究就可以得到它的全部信息。在主值区研究)(n x p 与)(n x 是等价的,因此在主值区计算DFS 和DFT 是相等的,所以DFT 计算公式形式与DFS 基本相同。其关系为

相关主题
文本预览
相关文档 最新文档