当前位置:文档之家› 半导体物理知识要点总结

半导体物理知识要点总结

半导体物理知识要点总结
半导体物理知识要点总结

第一章 半导体的能带理论

1. 基本概念

? 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不在局限在某一个原子上,

可以由一个原子转移到相邻的原子上去,因而电子可以在整个晶体中运动,这种运动称为电子的共有化运动。

? 单电子近似:假设每个电子是在大量周期性排列且固定不动的原子核势场及其他电子的

平均势场中运动。该势场也是周期性变化的。

? 能带的形成:原子相互接近,形成壳层交替→电子共有化运动→能级分裂(分成允带、

禁带)→形成能带

? 能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些

区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。

? 价带:P6

? 导带:P6

? 禁带:P5

? 导体

? 半导体

? 绝缘体的能带

? 本征激发:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,

称为本征激发。

? 空穴:具有正电荷q 和正有效质量的粒子

? 电子空穴对

? 有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场

对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。

? 载流子及载流子浓度

2. 基本理论

? 晶体中的电子共有化运动

? 载流子有效质量的物理意义 :当电子在外力作用下运动时,它一方面受到外电场力f

的作用,同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势场和外电场作用的综合效果。但是,要找出内部势场的具体形式并且求得加速度遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中的杂质与缺陷能级

1. 基本概念

? 杂质存在的两种形式:

间隙式杂质:杂质原子位于晶格原子间的间隙位置。

替位式杂质:杂质原子取代晶格原子而位于晶格点处。

? 施主能级D E 和受主能级A E :被施主杂质束缚的电子能量状态称为施主能级。被受主

杂质束缚的空穴的能量状态称为受主能级。

?杂质浓度

?施主杂质(n型):V族杂质在硅、锗中电离时,能够释放电子而产生导电电子并形成正

电中心。

?施主电离能:使价电子挣脱束缚成为导电电子所需要的能量。

?n型半导体:主要依靠导带电子导电的半导体。

?受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负电中心。

?受主电离能:使空穴挣脱受主杂质束缚成为导电空穴所需要的能量。

?p型半导体:主要依靠空穴导电的半导体。

?杂质补偿:施主和受主杂质之间有相互的抵消作用。

?弗仑克耳缺陷:由于热运动,使一部分原子会获得足够的能量,克服周围原子对它的束

缚,挤入晶格原子间的间隙,形成间隙原子,原来的位置变成为空位,这时间隙原子和空位是成对出现的,称为弗仑克耳缺陷。

?肖特基缺陷:只是在晶体内形成空位而无间隙原子,称为肖特基缺陷。

2.基本理论

?实际半导体与理想半导体的主要区别(作业2-1)

?受主、施主能级在能带中的位置(作业2-2)

第三章半导体中载流子的统计分布

1.基本概念

?热激发:电子从不断热振动的晶格中获得一定的能量,就可能从低能量的量子态跃迁到

高能量的量子态。

?复合:电子从高能量的量子态跃迁到低能量的量子态,并向晶格放出一定能量,从而使

导带中的电子和价带中的空穴不断减少,这一过程称为载流子的复合。

?热平衡状态:在一定温度下,载流子激发和载流子复合之间建立起动态平衡。

?热平衡载流子:处于热平衡状态下的导电电子和空穴称为热平衡载流子。

?状态密度g(E):在能带中能量E附近每单位能量间隔的量子态数。

?费米分布函数f(E):P60

?费米能级:P60

?费米能级的物理意义:费米能级标志了电子填充能级的水平,一般可以认为,在温度不

是很高时,能量大于费米能级的量子态基本上没有被电子占据,而能量小于费米能级的量子态基本上被电子占据,而电子占据费米能级的几率在各种温度下总是1/2。如果费米能级较高,说明有较多的能量较高的量子态上有电子。

?玻尔兹曼分布函数:P62(上)

?多子和少子(多数载流子和少数载流子):N型半导体中的电子和P型半导体中的空穴

称为多子,N型半导体中的空穴和P型半导体中的电子称为少子。

?非简并性系统:服从玻耳兹曼统计率的电子系统。

?简并性系统:服从费米统计率的电子系统。

2.基本理论

?载流子统计分布理论(费米能级的物理意义)

?杂质半导体的载流子浓度分布及随温度的变化理论:P70-75

?简并化条件:P83

①简并半导体不能充分电离;

②禁带变窄效应。

? 禁带变窄效应:P86:当掺杂浓度大于3×18103

cm (即重掺杂时),禁带宽度变窄了,

称为禁带变窄效应。

3. 推导与计算

第四章 半导体的导电特性

1. 基本概念

? 漂移运动:有外加电压时,导体内部的自由电子受到电场力的作用,沿着电场的反方向

作定向运动构成电流。电子在电场力作用下的这种运动称为漂移运动。

? 扩散运动:

?迁移率:P94

?扩散系数:

?电导率:P94

?载流子的散射:当载流子在半导体中作热运动时,会不断地与热振动着的晶格原子或电

离了的杂质离子发生碰撞,碰撞后载流子速度的大小及方向就发生改变,这种碰撞称为载流子散射。

?声子:格波的能量子hw,称为声子。

?平均自由时间:载流子在电场中作漂移运动时,只有在连续两次散射之间的时间内才

作加速运动,这段时间称为自由时间。自由时间长短不一,若取极多次而求得其平均值则称为载流子的平均自由时间。

2.基本理论

?半导体中载流子运动的欧姆定律:P93(推导)

?载流子的散射理论与散射机构:P96—98

3.推导与计算

P93 、P103

第五章非平衡载流子

1.基本概念

?非平衡载流子浓度:P128

?陷阱效应:杂质中心具有的积累非平衡载流子的作用称为陷阱效应。

?光注入:用光照使得半导体内部产生非平衡载流子的方法称为光注入。

?电注入:P164由于外加正向偏压作用使非平衡载流子进入半导体的过程称为非平衡载

流子的电注入。

?非平衡载流子寿命:P133(下)

?产生率:单位时间和单位体积内产生的电子—空穴对数称为产生率。

?复合率:单位时间和单位体积内复合掉的电子—空穴对数称为复合率。

?准费米能级:P131(中)

?直接复合:由电子在导带与价带间直接跃迁而引起非平衡载流子的复合过程。

?间接复合:非平衡载流子通过复合中心的复合。P134

?俄歇复合:载流子复合时,把能量传给另一个载流子使之被激发到更高的能级上去,当

它重新跃迁回低能级时,多余的能量以声子的形式放出,这种复合称为俄歇复合。

2.基本理论

非平衡载流子的注入理论:P128

非平衡状态的载流子浓度理论(准费米能级):P131(中下)

复合理论(间接复合的四个过程):P135

①俘获电子的过程

②发射电子的过程

③俘获空穴的过程

④发射空穴的过程

非平衡载流子的扩散与漂移:P149

半导体的电流连续性方程:P151(会解)

3.推导与计算

第六章p-n结

1.基本概念

?空间电荷区:空间电荷所存在的区域称为空间电荷区。

?耗尽层:P163载流子浓度很小,可以忽略,空间电荷密度等于电离杂质浓度。

V称为pn结的接触电势差或内?接触电势差:平衡pn结的空间电荷区两端间的电势差

D

建电势差。

?势垒电容:P175

?扩散电容:P182

V时,反向电流密度突然?p-n结的击穿:P183对pn结施加反向偏压增大到某一数值

BR

开始迅速增大的现象。

?隧道效应:粒子具有一定的概率贯穿势垒的现象。

2.基本理论

?少数载流子扩散及平衡p-n结能带的形成(题四)

?正反向偏置时能带图的变化:P165

?理想p-n结的基本假设:P166

?电流电压特性关系及其物理含义:P171

3.推导与计算

第七章金属和半导体的接触

1. 基本概念

?功函数(作业7-1)

?金属和半导体功函数的意义:金属功函数表示一个起始能量等于费米能级的电子,由金

属内部逸出到真空所需要的最小能量。其大小标志着电子在金属中束缚的强弱,功函数越大,电子越不容易离开的金属。

?电子亲和能:P191

?接触电势差:由于接触而产生的电势差。

?肖特基势垒:金属和低掺杂的半导体接触具有整流特性。形成的势垒称为肖特基势垒。

肖特基势垒的宽度与外加电压无关。

?欧姆接触:当金属和半导体接触时,不产生明显的附加阻抗,也不会使半导体内部的平

衡载流子浓度发生显著的改变。

2.基本理论

?肖特基二极管和p-n结二极管的异同(作业P202)(题三-4)

?平衡金属半导体接触的能带图及整流理论

图7-5 金属与n型半导体接触能带图

图7-5 金属与p型半导体接触能带图

第八章 半导体表面与MIS 结构

1. 基本概念

? 表面态:x=0处两边,波函数都是按指数关系衰减,表明电子的分布概率主要集中在

x=0处,(即电子被局限在表面附近),这种电子状态称为表面态。

? MIS 结构:中间以绝缘层隔开的金属板和半导体衬底组成的装置,在金属板与半导体间

加电压时即可产生表面电场。

? 表面势S V :空间电荷层两端的电势差为表面势,以S V 表示。

? 堆积状态:(作业8-2)P213

? 耗尽状态:(作业8-2)P215

? 反型状态:(作业8-2)P216

? 平带状态:P214当外加电压G V =0时,表面势S V =0,表面处能带不发生弯曲,称为平

带状态。

2. 基本理论

? 理想MIS 结构的满足条件

① 金属与半导体间功函数差为零;

② 在绝缘层内没有任何电荷且绝缘层完全不导电;

③ 绝缘层与半导体界面处不存在任何界面态。

? 外场作用下半导体表面状态的分析(能带图)

? 深耗尽非平衡状态的应用

? 理想MIS 结构的C-V 特性:(作业8-3)

P212推导

第九章半导体异质结构

1.基本概念

?同质结:pn结由导电类型相反的同一种半导体单晶材料组成的。

?异质结:由两种不同的半导体材料组成的结称为异质结,更具这两种半导体单晶材料的

导电类型。异质结又可分为反型异质结和同型异质结。

(反型异质结:由导电类型相反的两种不同的半导体单晶材料所形成的异质结。)

(同型异质结:由导电类型相同的两种不同的半导体单晶材料所形成的异质结。)

2.基本理论

?异质结成结理论及能带图分析

P242

半导体物理考研总结

1.布喇格定律(相长干涉):点阵周期性导致布喇格定律。 2.晶体性质的周期性:电子数密度n(r)是r的周期性函数,存在 3.2πp/a被称为晶体的倒易点阵中或傅立叶空间中的一个点,倒易点中垂线做直线可得布里渊区。 3.倒易点阵: 4.衍射条件:当散射波矢等于一个倒易点阵矢量G时,散射振幅 达到最大 波矢为k的电子波的布喇格衍射条件是: 一维情况(布里渊区边界满足布拉格)简化为: 当电子波矢为±π/a时,描述电子的波函数不 再是行波,而是驻波(反复布喇格反射的结果) 5.布里渊区: 6.布里渊区的体积应等于倒易点阵初基晶胞的体积。 7.简单立方点阵的倒易点阵,仍是一个简立方点阵,点阵常数为2π/a,第一布里渊区是个以原点为体心,边长为2π/a的立方体。 体心立方点阵的倒易点阵是个面心立方点阵,第一布里渊区是正菱形十二面体。面心立方点阵的倒易点阵是个体心立方点阵,第一布里渊区是截角八面体。 8.能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。(边界处布拉格反射形成驻波,造成能量差)

9.第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 绝缘体:至一个全满,其余全满或空(初基晶胞内的价电子数目为偶数,能带不 交叠)2N. 金属:半空半满 半导体或半金属:一个或两个能带是几乎空着或几乎充满以外,其余全满 (半金属能带交叠) 10.自由电子: 11.半导体的E-k关系: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

半导体物理重点

半导体重点 第一章 1.能带论:用单电子近似的方法研究晶体中电子状态的理论成为能带论。 2.单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其它电子的平均势场中运动的。 3.金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导体。半导体中,如图所示,下面是被价电子占满的满带,亦称价带,中间为禁带,上面是空带,当温度升高,或者有光照的时候,满带中有少量电子可能被激发到上面的空带中去,此时半导体就能导电了。在半导体中导带的电子和价带的空穴均参与导电,金属中只有电子导电。 4.电子公有化运动:当原子相互接近形成晶体是,不同原子的相似壳层之间就有了一定程度的交叠,电子不再完全局限在一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动,这种运动就称为电子的共有化运动。 第二章 1.施主杂质:在Si,Ge中电离是能够施放电子而产生导电电子,并形成正电中心的杂质。常见V族杂质有:P,As,Sb

2.受主杂质:在Si,Ge中电离是能够接收电子而产生导电空穴并形成负电中心的杂质。 常见的III族杂质:B,Al,Ga,In 3.深能级:非III,V族杂质在Si,Ge的禁带中产生的施主能级距导带底较远,产生的受主能级距价带顶也较远,通常称这种能级为深能级,相应的杂质为深能级杂质。 作用:这些深能级杂质能够产生多次电离,每一次电离相应的有一个能级。因此这些杂质在Si,Ge的禁带中往往引入若干个能级,而且有的杂质既能产生施主能级,又能产生受主能级。对于载流子的复合作用比前能级杂质强,Au是一种很典型的复合中心,在制造高速开关器件是,常有意掺入Au以提高器件的速度。 4.补偿作用:在半导体中,施主和受主杂质之间的相互抵消的作用称为杂质的补偿。 (1)当N >>N :为n型半导体,(2)当N >>N :为P型半导体,(3)N >>N 时,施主电子刚好填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿。 利用杂质的补偿作用,可以根据需要用扩散或者离子注入方法来改变半导体中某一区域的导电类型,以制成各种器件。

最新尼尔曼第三版半导体物理与器件小结+重要术语解释+知识点+复习题

尼尔曼第三版半导体物理与器件小结+重要术语解释+知识点+复 习题

第一章固体晶体结构 (3) 小结 (3) 重要术语解释 (3) 知识点 (3) 复习题 (3) 第二章量子力学初步 (4) 小结 (4) 重要术语解释 (4) 第三章固体量子理论初步 (4) 小结 (4) 重要术语解释 (4) 知识点 (5) 复习题 (5) 第四章平衡半导体 (6) 小结 (6) 重要术语解释 (6) 知识点 (6) 复习题 (7) 第五章载流子运输现象 (7) 小结 (7) 重要术语解释 (8) 知识点 (8) 复习题 (8) 第六章半导体中的非平衡过剩载流子 (8) 小结 (8) 重要术语解释 (9) 知识点 (9) 复习题 (10) 第七章pn结 (10) 小结 (10) 重要术语解释 (10) 知识点 (11) 复习题 (11) 第八章pn结二极管 (11) 小结 (11) 重要术语解释 (12) 知识点 (12) 复习题 (13) 第九章金属半导体和半导体异质结 (13) 小结 (13) 重要术语解释 (13) 知识点 (14) 复习题 (14) 第十章双极晶体管 (14)

小结 (14) 重要术语解释 (15) 知识点 (16) 复习题 (16) 第十一章金属-氧化物-半导体场效应晶体管基础 (16) 小结 (16) 重要术语解释 (17) 知识点 (18) 复习题 (18) 第十二章金属-氧化物-半导体场效应管:概念的深入 (18) 小结 (19) 重要术语解释 (19) 知识点 (19) 复习题 (20)

第一章固体晶体结构 小结 1.硅是最普遍的半导体材料。 2.半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。晶胞是晶体 中的一小块体积,用它可以重构出整个晶体。三种基本的晶胞是简立方、体心立方和面心立方。 3.硅具有金刚石晶体结构。原子都被由4个紧邻原子构成的四面体包在中间。 二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。 4.引用米勒系数来描述晶面。这些晶面可以用于描述半导体材料的表面。密勒 系数也可以用来描述晶向。 5.半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。少量可控的替位杂 质有益于改变半导体的特性。 6.给出了一些半导体生长技术的简单描述。体生长生成了基础半导体材料,即 衬底。外延生长可以用来控制半导体的表面特性。大多数半导体器件是在外延层上制作的。 重要术语解释 1.二元半导体:两元素化合物半导体,如GaAs。 2.共价键:共享价电子的原子间键合。 3.金刚石晶格:硅的院子晶体结构,亦即每个原子有四个紧邻原子,形成一个 四面体组态。 4.掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。 5.元素半导体:单一元素构成的半导体,比如硅、锗。

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1、1 半导体 通常就是指导电能力介于导体与绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1、2能带 晶体中,电子的能量就是不连续的,在某些能量区间能级分布就是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1、2能带论就是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程与周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1、2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型就是为分析晶体中电子运动状态与E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上就是周期函数,而且某些能量区间能级就是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1、2导带与价带 1、3有效质量 有效质量就是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体物理(刘恩科)--详细归纳总结

第一章、 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成 为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解:空穴是价带中未被电子占据的空量子态,被用来描述半满带中的大量 电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][] )sin(3)cos(1.0)cos(3)sin(1.002 22 0ka ka E a k d dE ka ka aE dk dE +=-=

半导体物理笔记总结 对考研考刘恩科的半导体物理很有用 对考研考刘恩科的半导体物理很有用

半导体物理 绪 论 一、什么是半导体 导体 半导体 绝缘体 电导率ρ <10- 9 3 10~10- 9 10> cm ?Ω 此外,半导体还有以下重要特性 1、 温度可以显著改变半导体导电能力 例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力 例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C 27 300K )时,电阻率由214000Ω降至0.2Ω 3、 光照可以明显改变半导体的导电能力 例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。 另外,磁场、电场等外界因素也可显著改变半导体的导电能力。 综上: ● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。 二、课程内容 本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。 预备知识——化学键的性质及其相应的具体结构 晶体:常用半导体材料Si Ge GaAs 等都是晶体 固体 非晶体:非晶硅(太阳能电池主要材料) 晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里(6 10-m )按一定方式规则排列——称为长程有序。 单晶:主要分子、原子、离子延一种规则摆列贯穿始终。 多晶:由子晶粒杂乱无章的排列而成。 非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距)存在结构有 序——短程有序。 §1 化学键和晶体结构 1、 原子的负电性 化学键的形成取决于原子对其核外电子的束缚力强弱。 电离能:失去一个价电子所需的能量。 亲和能:最外层得到一个价电子成为负离子释放的能量。(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0? (Li 定义为1) ● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。 ● 价电子向负电性大的原子转移 ⅠA 到ⅦA ,负电性增大,非金属性增强

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体物理第七章总结复习_北邮全新

第七章 一、基本概念 1.半导体功函数: 半导体的费米能级E F 与真空中静止电子的能量E 0的能量之差。 金属功函数:金属的费米能级E F 与真空中静止电子的能量E 0的能量之差 2.电子亲和能: 要使半导体导带底的电子逸出体外所需的最小能量。 3. 金属-半导体功函数差o: (E F )s-(E F )m=Wm-Ws 4. 半导体与金属平衡接触平衡电势差: q W W V s m D -= 5.半导体表面空间电荷区 : 由于半导体中自由电荷密度的限制,正电荷分布在表面相当厚的一层表面层内,即空间电荷区。表面空间电荷区=阻挡层=势垒层 6.电子阻挡层:金属功函数大于N 型半导体功函数(Wm>Ws )的MS 接触中,电子从半导体表面逸出到金属,分布在金属表层,金属表面带负电。半导体表面出现电离施主,分布在一定厚度表面层内,半导体表面带正电。电场从半导体指向金属。取半导体内电位为参考,从半导体内到表面,能带向上弯曲,即形成表面势垒,在势垒区,空间电荷主要有带正电的施主离子组成,电子浓度比体内小得多,因此是是一个高阻区域,称为阻挡层。 【电子从功函数小的地方流向功函数大的地方】 7.电子反阻挡层:金属功函数小于N 型半导体功函数(Wm

半导体物理学第七章知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静 止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数 图7-3 半导体功函数和电子亲合能

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态 §1.1 锗和硅的晶体结构特征 金刚石结构的基本特征 §1.2 半导体中的电子状态和能带 电子共有化运动概念 绝缘体、半导体和导体的能带特征。几种常用半导体的禁带宽度; 本征激发的概念 §1.3 半导体中电子的运动 有效质量 导带底和价带顶附近的E(k)~k 关系()()2 * 2n k E k E m 2h -0= ; 半导体中电子的平均速度dE v hdk = ; 有效质量的公式:2 2 2 * 11dk E d h m n = 。 §1.4本征半导体的导电机构 空穴 空穴的特征:带正电;p n m m ** =-;n p E E =-;p n k k =- §1.5 回旋共振 §1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴 第二章 半导体中杂质和缺陷能级 §2.1 硅、锗晶体中的杂质能级

基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。 §2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为 第三章 半导体中载流子的统计分布 热平衡载流子概念 §3.1状态密度 定义式:()/g E dz dE =; 导带底附近的状态密度:() () 3/2 * 1/2 3 2()4n c c m g E V E E h π=-; 价带顶附近的状态密度:() () 3/2 *1/2 3 2()4p v V m g E V E E h π=- §3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01 ()1exp /F f E E E k T = +-???? ; Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。费米能级位置较高,说明有较多的能量较高的量子态上有电子。 Boltzmann 分布函数:0()F E E k T B f E e --=; 导带底、价带顶载流子浓度表达式: 0()()c c E B c E n f E g E dE '= ?

半导体物理知识归纳及习题讲解

半导体物理 绪 论 一、什么是半导体 导体 半导体 绝缘体 电导率ρ <3 10- 93 10~10 - 910> cm ?Ω 此外,半导体还有以下重要特性 1、 温度可以显著改变半导体导电能力 例如:纯硅(Si ) 若温度从ο 30C 变为C ο 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力 例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C ο 27 300K )时,电阻率由214000Ω降至0.2Ω 3、 光照可以明显改变半导体的导电能力 例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。 另外,磁场、电场等外界因素也可显著改变半导体的导电能力。 综上: ● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。 二、课程内容 本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。 预备知识——化学键的性质及其相应的具体结构 晶体:常用半导体材料Si Ge GaAs 等都是晶体 固体 非晶体:非晶硅(太阳能电池主要材料) 晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里 (6 10-m )按一定方式规则排列——称为长程有序。 单晶:主要分子、原子、离子延一种规则摆列贯穿始终。 多晶:由子晶粒杂乱无章的排列而成。 非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距) 存在结构有序——短程有序。 §1 化学键和晶体结构 1、 原子的负电性 化学键的形成取决于原子对其核外电子的束缚力强弱。 电离能:失去一个价电子所需的能量。 亲和能:最外层得到一个价电子成为负离子释放的能量。(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0? (Li 定义为1) ● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。

半导体物理学第八章知识点

第8章 半导体表面与MIS 结构 许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。 §8.1 半导体表面与表面态 在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。 一、理想一维晶体表面模型及其解 达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。在此半无限周期场中,电子波函数满足的薛定谔方程为 )0(20202≤=+-x E V dx d m φφφη (8-1) )0()(2202≥=+-x E x V dx d m φφφη (8-2) 式中V (x)为周期场势能函数,满足V (x +a )=V(x )。 对能量E <V 0的电子,求解方程(8-1)得出这些 电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η -=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为 kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4) 当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。 但是,当k 取复数k =k '+ik ''时(k '和k ''皆为实数),式(8-4)变成 x k x k i k x k x k i k e e x u A e e x u A x '''--''-'+=ππππφ2222212)()()( (8-5) 此解在x→∞或-∞时总有一项趋于无穷大,不符合波函数有限的原则,说明无限周期势场不能有复数解。但是,当A 1和A 2任有一个为零,即考虑半无限时,k 即可取复数。例如令A 2=0,则 x k x k i k e e x u A x ''-'=ππφ2212)()( (8-6) 图8-l 一维半无限晶体的势能函数

北大半导体物理讲义整理

第一章晶体结构晶格 §1晶格相关的基本概念 1.晶体:原子周期排列,有周期性的物质。 2.晶体结构:原子排列的具体形式。 3.晶格:典型单元重复排列构成晶格。 4.晶胞:重复性的周期单元。 5.晶体学晶胞:反映晶格对称性质的最小单元。 6.晶格常数:晶体学晶胞各个边的实际长度。 7.简单晶格&复式晶格:原胞中包含一个原子的为简单晶格,两个或者两个以上的称为复 式晶格。 8.布拉伐格子:体现晶体周期性的格子称为布拉伐格子。(布拉伐格子的每个格点对应一 个原胞,简单晶格的晶格本身和布拉伐格子完全相同;复式晶格每种等价原子都构成和布拉伐格子相同的格子。) 9.基失:以原胞共顶点三个边做成三个矢量,α1,α2,α3,并以其中一个格点为原点, 则布拉伐格子的格点可以表示为αL=L1α1 +L2α2 +L3α3 。把α1,α2,α3 称为基矢。 10.平移对称性:整个晶体按9中定义的矢量αL 平移,晶格与自身重合,这种特性称为平 移对称性。(在晶体中,一般的物理量都具有平移对称性) 11.晶向&晶向指数:参考教材。(要理解) 12.晶面&晶面指数:参考教材。(要理解) 立方晶系中,若晶向指数和晶面指数相同则互相垂直。 §2金刚石结构,类金刚石结构(闪锌矿结构) 金刚石结构:金刚石结构是一种由相同原子构成的复式晶格,它是由两个面心立方晶格沿立方对称晶胞的体对角线错开1/4长度套构而成。常见的半导体中Ge,Si,α-Sn(灰锡)都属于这种晶格。 金刚石结构的特点:每个原子都有四个最邻近原子,它们总是处在一个正四面体的顶点上。(每个原子所具有的最邻近原子的数目称为配位数) 每两个邻近原子都沿一个<1,1,1,>方向, 处于四面体顶点的两个原子连线沿一个<1,1,0>方向, 四面体不共顶点两个棱中点连线沿一个<1,0,0,>方向。

半导体物理期末总结

载流子:晶体中荷载电流(或传导电流)的粒子,如电子和空穴。 空穴:在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下的空位。(价带中不被电子占据的空状态,价带顶附近空穴有效质量>0) 杂质的补偿作用:受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A受主能级后,施主能级上还有N D-N A个电子,在杂质全部电离的条件下,它们跃迁到导带中成为导电电子,这时,n=N D-N A≈N D ,半导体是n型的;同理p型。 等电子陷阱:与基质晶体原子具有同数量价电子的杂质原子,它们替代了格点上的同族原子后,基本上仍是电中性的。由于原子序数不同,这些原子的共价半径和电负性有差别,因而它们能俘获某种载流子而成为带电中心。 本征半导体:晶体具有完整的(完美的)晶格结构,无任何杂质和缺陷。 有效质量(物理意义?):电子受到外力+原子核势场和其它电子势场力,引入有效质量可以 把加速度和外力直接联系。根据势场的作用由有效质量反映,m n*的正负反应了晶体内部势场的作用。 分布函数:能量为E的一量子态被一个电子占据概率为 杂质电离:当电子从施主能级跃迁到导带时产生导带电子;当电子从价带激发到受主能级时产生价带空穴等。 费米能级的意义:当它和温度T、半导体材料的导电类型n、p,杂质的含量以及能量零点选取有关。E F是一个很重要的物理参数,只要知道E F数值,在特定T下,电子在各量子态上的统计分布就完全确定。统计理论表明,热力学上费米能级E F是系统的化学势。费米能级位置直观地标志了电子占据量子态情况。固体物理中处于基态的单个Fermi粒子所具有的最大能量—Fermi粒子所占据的最高能级的能量。费米能级标志了电子填充能级的水平。对一系统而言, E F位置较高,有较多的能量较高的量子态上有电子。 杂质散射和格波散射:(1)杂质电离后是一个带电离子,施主电离后带正电,受主电离后带负电。在电离施主或受主周围形成一个库仑势场,局部地破坏周期性势场,是使载流子散射的附加势场。(2)T定,晶格中原子都各自在其平衡位置附近作微振动。晶格中原子的振动都是由若干不同的基波—格波按照波的叠加原理组合而成,声学波声子往往起着交换动量的作用,光学波交换能量。非弹性散射,主要是长波。

半导体物理知识点

半导体物理知识点 1.前两章: 1、半导体、导体、绝缘体的能带的定性区别 2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。注意随着原子序数的增大, 还原性增大,得到的电子稳固,便能提供更多的空穴。所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点 常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋) 3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导) 4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点, mt是沿垂直轴方向的质量,ml是沿轴方向的质量。 锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。 砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。此能谷可以造成负微分电阻效应。 2.第三章载流子统计规律: 1、普适公式 ni^2 = n*p ni^2 = (NcNv)^0.5*exp(-Eg/(k0T)) n = Nc*exp((Ef-Ec)/(k0T)) p = Nv*exp((Ev-Ef)/(k0T)) Nv Nc与 T^1.5成正比 2、掺杂时。注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意 Ef前的符号! nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度 nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度 na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度 na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度 3、掺杂时,电离情况。 电中性条件: n + na- = p + nd+ N型的电中性条件: n + = p + nd+ (1)低温弱电离区:记住是忽略本征激发。由n = nd+推导,先得费米能级,再代 入得电子浓度。Ef从Ec和Ed中间处,随T增的阶段。 (2)中间电离区:(亦满足上面的条件,即n = nd+),当T高于某一值时,Ef递减 的阶段。当Ef = Ed时,1/3的施主电离。(注意考虑简并因子!) (3)强电离区:杂质全部电离,且远大于本征激发,n = Nd,再利用2.1推导 (4)过渡区:杂质全部电离,本征激发加剧,n = Nd + p和n*p=ni^2联立 4、非简并条件 电子浓度exp((Ef-Ec)/(k0T))<<1 空穴浓度exp((Ev-Ef)/(k0T))<<1 这意味着有效态密度Nc和Nv中只有少数态被占据,近似波尔兹曼分布。不满足这 个条件时,即Ef在Ec之上或Ev之下则是简并情况。弱简并是指还在Eg之内,但 距边界小于2K0T。

半导体物理1-8章重点总结

半导体重点总结(1-7章) 绪论 1. 制作pn 结的基本步骤。(重点,要求能够画图和看图标出步骤) 第一章. 固体晶体结构 1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。 大部分化合物半导体材料是III 族和V 族化合形成的。 2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而 成)、InP 、ZnS 。类似的也有三元素化合物半导体。 3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。似晶非晶。 4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。晶胞就是可以复制出整个晶体 的小部分晶体。 5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子 计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。 比如上图(c )假设晶格常数为5A 。求原子体密度。 8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。 9. 特定原子面密度:原子数/截面面积。 计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。 举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度: 该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2 () 2233 84 3.210510cm ρ-==??个原子/

半导体物理期末复习考点整理

大三下:半导体物理期末复习考点整理 重要:15年6月底期末考试原卷(除了计算题改成了书上的原题,其他题目完全一样),书上的计算题难度和这上面的难度一样,是基础计算共30分强烈建议考前翻翻这篇pdf附近有关的推广链接,有这类题型的且不难的卷子.(我就是考前看了看这个链接,考试就是原题); 计算题只用关心一两步公式就能做出来的书上作业基础原题; 简答概念 ●典型面心结构有银铜铝汞 ●金刚石/ZnS是两个彼此错开的面心结构.砷化镓结构和其类似 ●本征半导体:完全不含杂质且无晶格缺陷的 ●把价带中空着的状态看成带正电的粒子空穴 ●导带上的电子与价带空穴参与导电 ●杂质影响半导体性质原因:破坏周期性势场,导致禁带产生能级,打破 了原有的Eg大小 ●电子共有化:能量相近的电子由于壳层交叠不再局限于单个原子 ●简并度:拥有相同能量的状态个数 ●肖特基缺陷特点:晶体体积增大晶格常数变化,克尔缺陷仅错位体积晶 格常数不变

● ●←计算必考 ●这种↓题型必考计算 ● ●(计算题必考,代入计算一步出答案)●;(简答必考) ●电流密度方程 ●[了解]负微分电导现象是由非等效能谷间的电子转移引起的;n型GaAs中的 强电场输运与硅不同,其漂移速度达到一最大值后,随着电场的进一步增加

反而会减小 ●[了解]碰撞离化:当半导体中的电场增加到某个阈值以上时,载流子将得到 足够的动能,可以通过雪崩过程(avalanche process)产生电子-空穴对 ●位于禁带中央附近的深能级是最有效的复合中心。 ●载流子从高能级向低能级跃迁,发生电子-空穴复合时,把多余的能 量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回低能级时,多余的能量常以声子形式放出,这种复合称为俄歇复合。 ●(深能级)积累非平衡载流子的作用称为陷阱效应,在费米能级附近 时,最有利于陷阱效应 ● (必考简答题,p改成n就是电子对应的方程) ●金半接触的能带弯曲图会画,并能理解;很重要 ●PN结中得势垒宽度高度: 势垒高度V D=kT μln?(N D n i ); 势垒宽度X D=√kT q (1 n A +1 n D )V D;

(完整word版)半导体物理刘恩科考研复习总结

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成 闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以在 整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围内, 可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差) 自由电子与 半导体的 E-K图: 自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

波矢为k的电子波的布喇格衍射条件: 一维情况(布里渊区边界满足布拉格): 第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。 杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施 主杂质;3族元素接收电子,负电中心,受主杂质。)2)间隙式杂质(杂质原子小) 杂质能带是虚线,分离的。 浅能级杂质电离能: 施主杂质电离能 受主杂质电离能 杂质补偿作用:施主和受主杂质之间的相互抵消作用(大的起作用) 杂质高度补偿:施主电子刚好能填充受主能级,虽然杂质多,但不能向导带和价带提供电子和空穴。 深能级杂质:非III,V 族杂质在禁带中产生的施主能级和受主能级距离导带底和价带顶都比较远。 1)杂质能级离带边较远,需要的电离能大。 2)多次电离?多重能级,还有可能成为两性杂质。(替位式) 缺陷、错位能级:1)点缺陷:原子获得能量克服周围原子的束缚,挤入晶格原 子的间隙,形成间隙原子。 弗仓克尔缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内形成空位而无间隙原子。 2)位错 (点缺陷,空穴、间隙原子;线缺陷,位错;面缺陷,层错、晶粒间界) 导体、半导体、绝缘体的能带:

相关主题
文本预览
相关文档 最新文档