当前位置:文档之家› 单缸四冲程柴油机课程设计说明书68399

单缸四冲程柴油机课程设计说明书68399

单缸四冲程柴油机课程设计说明书68399
单缸四冲程柴油机课程设计说明书68399

目录

目录

1、机构简介与设计数据 (2)

(1)机构简介 (2)

(2)设计数据 (3)

2、设计容及方案分析 (3)

(1)曲柄滑块机构的运动分析 (4)

(2)齿轮机构的设计 (6)

(3)凸轮机构的设计 (8)

3、设计体会 (11)

4、主要参考文献 (11)

单缸四冲程柴油机

1、机构简介与设计数据

(1)机构简介

柴油机(如附图1(a))是一种燃机,他将燃料燃烧时所产生的热能转变成机械能。往复式燃机的主体机构为曲柄滑块机构,以气缸的燃气压力推动活塞3经连杆2而使曲柄1旋转。

本设计是四冲程燃机,即以活塞在气缸往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸的压力变化可由示功图(用示功器从气缸测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。

进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a →b。

压缩冲程:活塞上行,曲柄转角θ=180°→360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。

做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。随着燃气的膨胀,气缸容积增加,压力逐渐降低,如图上c→b。

排气冲程:活塞上行,曲柄转角θ=540°→720°。排气阀打开,废气被驱出,气缸压力略高于1大气压,一般亦以1大气压计算,如图上的b →a。

进排气阀的启闭是由凸轮机构控制的。凸轮机构是通过曲柄轴O上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。由于一个工作循环中,曲柄转两转而进排气阀各启闭一次,所以齿轮的传动比i12=n1/n2=Z1/Z2 =2。

由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程是对外做功的,其余的三个冲程则需一次依靠机械的惯性带动。

(2)设计数据

2、设计容及方案分析

(1)曲柄滑块机构的运动分析

已知:活塞冲程H,连杆与曲柄长度之比λ,曲柄每分钟转数n1。

要求:设计曲柄滑块机构,绘制机构运动简图,做机构滑块的位移、速度和加速度运动线图。

曲柄位置图的做法如附图2所示,以滑块在上指点是所对应的曲柄位置为起

始位置(即θ=0°),将曲柄圆周按转向分成12等分分得12个位置1→12,12′(θ=375°)为气缸指示压力达最大值时所对应的曲柄位置,13→24为曲柄第二转时对应的各位置。

1)设曲柄长度为r,连杆长度为l,由已知条件:

λ=l/r=4,H=(l+r)-(l-r)=2r=120mm

可得r=60mm,l=240mm按此尺寸做得曲柄滑块机构的机构运动简图,如图1。

2)

O s B 12 12′

r l 11 1

A 10 2

9 3

8 4 7 5

附图2 曲柄位置图 6

由几何知识:sin∠OAB= = 故:

cos∠OAB=

∴ s=rcos+l cos∠OAB= rcos+l

V==-ωrsin- 把各点的角度分别代入上式得:

S1=S11=290.079mm S2=S10=264.3mm

S3=S9=232.38mm S4=S8=204.31mm

S5=S7=186.156mm S6=180mm S12=300mm

V1=-V11=-5.741m/s V2=-V10=-9.207m/s

V3=-V9=-9.425m/s V4=-V8=-7.117m/s

V5=-V7=-3.684m/s V6=V12=0m/s

a1=a11=1282.86m/s2 a2=a10=739.401 m/s2

a3=a9=-1.598 m/s2 a4=a8=741.036 m/s2

a5=a7=-1281.34 m/s2 a6=-1478.9 m/s2

根据上面的数据描点画图分别得其位移、速度和加速度运动线图(分别如图2(a)、图2(b)和图2(c)所示)。

(2)齿轮机构的设计

已知:齿轮齿数Z1,Z2,模数m,分度圆压力角α,齿轮为正常齿制,再闭式润滑油池中工作。

要求:选择两轮变位系数,计算齿轮各部分尺寸,用2号图纸绘制齿轮传动的啮合图。

1)传动类型的选择:

按照一对齿轮变位因数之和(x

1+x

2

)的不同,齿轮传动可分为零传

动、正传动和负传动。

零传动就是变位因数之和为零。零传动又可分为标准齿轮传动和高度变为齿轮传动。

高变位齿轮传动具有如下优点:①小齿轮正变位,齿根变厚,大

齿轮负变位,齿根变薄,大小齿轮抗弯强度相近,可相对提高齿轮机构的承载能力;②大小齿轮磨损相近,改善了两齿轮的磨损情况。因为在柴油机中配气齿轮要求传动精确且处于高速运动中,为提高使用寿命高变位齿轮较为合适。

2)变位因数的选择:

此次设计应用封闭图法,查表计算得x

1=0.23 x

2

=-0.23, 数据查

表得具体参考《齿轮设计与实用数据速查》第34页容(展主编机械工业)

3)齿轮机构几何尺寸的计算:

齿轮m=5>1 且为正常齿制故ha*=1 , c*=0.25

名称小齿

轮大齿

计算公式

变位因

数x

0.23 -0.23

分度圆

直径d

110 220 d=mz

法向齿

距Pn

14.76 Pn=πm·cosα啮合角

α′

20°20°

中心距

a(a′)

165

节圆直

径d′

110 220

中心距

变动因

数y

齿高变

动因数

σ

0 σ=x1+x2-y

齿顶高

h

a

6.15 3.85 h a=(h a*+c*-σ)m

齿根高

h

f

5.1 7.4 h f=(h a*+c*-x)m

齿全高h 11.25 11.25 h=h a+h f

齿顶圆

直径d

a

122.3 227.7 d a=d+2h a

齿根圆

直径d

f

99.8 205.2 d f=d-2h f

重合度

1.65

ε

a

分度圆齿厚s 7.85

齿顶厚s

7.11 3.79

a

4)根据以上数据作出齿轮传动啮合图(如图3)

(3)凸轮机构的设计

已知:从动件冲程h,推程和回程的许用压力角[α] ,[α]′,推程运动角Φ,远休止角Φs,回程运动角Φ′,从动件的运动规律如(附图3)所示。

要求:按照许用压力角确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线。并画在2号图纸上

s ′

1)运动规律的选择:

根据从动件运动规律图(附图3)分析知位移s对转角φ的二阶导数为常数且周期变换,所以确定为二次多项式运

动规律。公式:

S=C0+C1δ+C2δ2

加速阶段 0-25°

S=2hδ2/δ0

减速阶段 25-50°

S=h-2h(δ0-δ)2/δ02

以从动件开始上升的点为δ=0°

S= S(δ) 的变化曲线(如图4)2)基圆半径计算

根据许用压力角计算出基圆半径最小值,凸轮形状选为偏距为零且对称。如下图所示,从动件的盘型机构位于推程的某位置上,法线n—n与从动件速度VB2的夹角为轮廓在B点的压力角,P12 为凸轮与从动件的相对速度瞬心。

故V P12=V B2=ω|OP12|,

从而有|OP12| =V B2/ω1=ds/dδ。

由上图中的三角形△BCP12可知

tanα==

整理得基圆半径

将S=S(δ)和α=[α]代入得:

r0≥20mm 在此我取r0=34mm

滚子半径选取r r=4mm

3)作出凸轮设计图

根据以上数据作出凸轮的实际廓线及理论廓线(如图5)。

3、设计体会

经过几天不断的努力,身体有些疲惫,但看到劳动后的硕果,心中又有几分喜悦。总而言之,感触良多,收获颇丰。

通过认真思考和总结,机械设计存在以下一般性问题:机械设计的过程是一个复杂细致的工作过程,不可能有固定不变的程序,设计过程须视具体情况而定,大致可以分为三个主要阶段:产品规划阶段、方案设计阶段和技术设计阶段。值得注意的是:机械设计过程是一个从抽象概念到具体产品的演化过程,我们在设

计过程中不断丰富和完善产品的设计信息,直到完成整个产品设计;设计过程是一个逐步求精和细化的过程,设计初期,我们对设计对象的结构关系和参数表达往往是模糊的,许多细节在一开始不是很清楚,随着设计过程的深入,这些关系才逐渐清楚起来;机械设计过程是一个不断完善的过程,各个设计阶段并非简单的序进行,为了改进设计结果,经常需要在各步骤之间反复、交叉进行,指导获得满意的结果为止。

获得这份拥有是我们团队共同努力的结果。我们通过默契的配合,精细的分工,的合作,不断的拼搏,共同完成了这一艰巨而又光荣的任务。

在这里,特别要感一下田老师。经过她的精心指导,我们多了几分激情,少了几分麻烦,多了几分灵感,少了几分忧虑

4、主要参考文献

《齿轮设计与实用数据速查》(展主编机械工业)

《机械原理教程》(第2版)(伟社主编西北工业大学)

相关主题
文本预览
相关文档 最新文档